Types for Flexible Objects
Building a Typed Scripting Language

Pottayil Harisanker Menon, Zachary Palmer,
Alexander Rozenshteyn, Scott F. Smith

The Johns Hopkins University

November 17th, 2014



Objective

Flexible OO language



Objective

Flexible OO language

+
Static typing, inference, etc.

2/1



What is “flexible?”

@ Freely transition between views on data

3/1



What is “flexible?”

@ Freely transition between views on data
@ Freely manipulate data at runtime

3/1



What is “flexible?”

@ Freely transition between views on data

@ Freely manipulate data at runtime
@ Python, Javascript, Ruby

3/1



What is “flexible?”

@ Freely transition between views on data

@ Freely manipulate data at runtime
@ Python, Javascript, Ruby

@ Objects are dictionaries (almost seamlessly)

3/1



What is “flexible?”

@ Freely transition between views on data

@ Freely manipulate data at runtime
@ Python, Javascript, Ruby

o Objects are dictionaries (almost seamlessly)
@ Dynamic lookup, update, etc. based on runtime
conditions

3/1



(%)

© o

What is “flexible?”

Freely transition between views on data

Freely manipulate data at runtime
Python, Javascript, Ruby

o Objects are dictionaries (almost seamlessly)
@ Dynamic lookup, update, etc. based on runtime
conditions

Minimal semantic clutter (for readability)

3/1



(%)

© o

©

What is “flexible?”

Freely transition between views on data

Freely manipulate data at runtime
Python, Javascript, Ruby

o Objects are dictionaries (almost seamlessly)
@ Dynamic lookup, update, etc. based on runtime
conditions

Minimal semantic clutter (for readability)
Good for ad-hoc, situational requirements

3/1



Examples of Flexibility

Add a method to an existing object:

class A:
def foo(): return 1
a = AQ)
a.bar = types.MethodType (
lambda self: 2, a)

4/1



Examples of Flexibility

Rely on execution path invariants:

def neg(x):
if type(x) is int:
return -x
else:
return not x
print neg(2) + 3

4/1



Why Types?

@ Flexible languages are good:

5/1



Why Types?

o Flexible languages are good:
e Faster development

5/1



Why Types?

o Flexible languages are good:

o Faster development
e Capture complex ideas with clever patterns

5/1



Why Types?

o Flexible languages are good:
o Faster development
o Capture complex ideas with clever patterns
e Structurally typed (“duck typing”)

5/1



Why Types?

o Flexible languages are good:

o Faster development
o Capture complex ideas with clever patterns
o Structurally typed (“duck typing")

@ Static types are good:

5/1



Why Types?

o Flexible languages are good:
o Faster development
o Capture complex ideas with clever patterns
o Structurally typed (“duck typing")
@ Static types are good:
@ Describe invariants on data

5/1



Why Types?

o Flexible languages are good:

o Faster development
o Capture complex ideas with clever patterns
o Structurally typed (“duck typing")

@ Static types are good:

o Describe invariants on data
@ Help programmer understanding

5/1



Why Types?

o Flexible languages are good:
o Faster development
o Capture complex ideas with clever patterns
o Structurally typed (“duck typing")

@ Static types are good:

o Describe invariants on data
o Help programmer understanding
e Statically identify programming errors

5/1



Why Types?

o Flexible languages are good:

o Faster development
o Capture complex ideas with clever patterns
o Structurally typed (“duck typing")

@ Static types are good:

o Describe invariants on data

Help programmer understanding
Statically identify programming errors
Improve runtime performance

e 6 o



Why Types?

o Flexible languages are good:

(*]
(]
(]

Faster development
Capture complex ideas with clever patterns
Structurally typed (“duck typing")

@ Static types are good:

()

® 6 06 o

Describe invariants on data

Help programmer understanding

Statically identify programming errors

Improve runtime performance

Other static invariants: immutability, limiting data
scope, etc.

5/1



Why Types?

o Flexible languages are good:
o Faster development
o Capture complex ideas with clever patterns
o Structurally typed (“duck typing")

@ Static types are good:
o Describe invariants on data
Help programmer understanding
Statically identify programming errors
Improve runtime performance
Other static invariants: immutability, limiting data
scope, etc.

@ We want both!

®© 6 06 o

5/1



Options?

@ Powerful traditional type system

o

(]
(*]
(]

© Captures static invariants (monads, dep. types)
® Often incurs semantic clutter

® High barrier to entry

Not enough flexibility

6/1



Options?

o Powerful traditional type system
o © Captures static invariants (monads, dep. types)
@ ® Often incurs semantic clutter
o ® High barrier to entry
o Not enough flexibility

@ Build type inference system for existing
language (e.g. DRuby)
o ® Fundamentally flexible language
o ® Limited success: language features defy static
typing (e.g. mutable monkeypatching, Python
locals)
o Not enough static typing

6/1



Options?

o Powerful traditional type system
o © Captures static invariants (monads, dep. types)
@ ® Often incurs semantic clutter
o ® High barrier to entry
o Not enough flexibility
@ Build type inference system for existing
language (e.g. DRuby)
o ® Fundamentally flexible language
o ® Limited success: language features defy static
typing (e.g. mutable monkeypatching, Python
locals)
o Not enough static typing

@ Design a language to include
statically-typed flex

6/1



TinyBang

@ Start with an ML-like basis

7/1



TinyBang

@ Start with an ML-like basis

@ records, variants, patterns, let, refs, inference

7/1



TinyBang

@ Start with an ML-like basis

@ records, variants, patterns, let, refs, inference

@ Add flexible properties

All types inferred — no declarations
Structural subtyping (“duck typing")
Powerful record combinators
First-class match clauses

Refinement on pattern matching

7/1



TinyBang

@ Start with an ML-like basis

@ records, variants, patterns, let, refs, inference

@ Add flexible properties

All types inferred — no declarations
Structural subtyping (“duck typing")
Powerful record combinators
First-class match clauses

Refinement on pattern matching

(]

© 6 0 o

@ Result: flexible language with static typing

7/1



Outline

@ Semantics
@ Powerful records and record combinators
o First-class match clauses
@ Object encoding using variants
@ Static typing
@ Overview
@ Union elimination
@ Polymorphism

@ Summary

8/1



Asymmetric Concatenation

@ Use type-indexed records [Blume et. al. '06]

9/1



Asymmetric Concatenation

o Use type-indexed records [Blume et. al. '06]
o {int = 4, A = {int = 5}}

9/1



Asymmetric Concatenation

o Use type-indexed records [Blume et. al. '06]
o {int = 4, A = {int = 5}}
o4& ‘AS

9/1



Asymmetric Concatenation

o Use type-indexed records [Blume et. al. '06]
o {int = 4, A = {int = 5}}
o4 & ‘A5
@ Note: l-ary record = l-ary variant

9/1



Asymmetric Concatenation

o Use type-indexed records [Blume et. al. '06]
o {int = 4, A = {int = 5}}
o4& ‘A5
o Note: 1-ary record = l-ary variant
@ Concatenation asymmetrically prefers left
components

o ‘A4 & ‘B6& ‘A3=Z°‘A4 & ‘B6

9/1



Asymmetric Concatenation

o Use type-indexed records [Blume et. al. '06]
o {int = 4, A = {int = 5}}
o4& ‘A5
o Note: 1-ary record = l-ary variant
@ Concatenation asymmetrically prefers left
components
o ‘A4& ‘B6& ‘A3~°‘A4& ‘B6

@ Asymmetry is fundamental in several encodings

9/1



Outline

@ Semantics
o Powerful records and record combinators
@ First-class match clauses
@ Object encoding using variants
@ Static typing
@ Overview
@ Union elimination
@ Polymorphism

@ Summary

10/1



Partial Functions

All TinyBang functions are partial via
pattern-matching:

11/1



Partial Functions

All TinyBang functions are partial via
pattern-matching:

@ int -> 0 matches all records with an int
component

11/1



Partial Functions

All TinyBang functions are partial via
pattern-matching:

@ int -> 0 matches all records with an int
component
@ int & x -> x Is integer identity
@ In patterns, & is conjunction
@ Variables (e.g. x) match anything and bind it

11/1



Partial Functions

All TinyBang functions are partial via
pattern-matching:

@ int -> 0 matches all records with an int
component
@ int & x -> x is integer identity
o In patterns, & is conjunction
o Variables (e.g. x) match anything and bind it

@ Pattern-matching takes the leftmost match
o (‘B x ->x+1) (‘A 3¢& ‘B1) =2
o (‘Bx ->x+1) (‘B5¢& ‘A3& ‘B1) =26

11/1



Partial Functions

All TinyBang functions are partial via
pattern-matching:

@ int -> 0 matches all records with an int
component
@ int & x -> x is integer identity
o In patterns, & is conjunction
o Variables (e.g. x) match anything and bind it
@ Pattern-matching takes the leftmost match

o (‘Bx ->x+1) (‘A3& ‘B1)=2
o (‘Bx ->x+1) (‘B5& ‘A3& ‘B1)=6

11/1



Extensible match clauses

@ Single clause: write as function
(‘lx& ‘ry->x+y)

12/1



Extensible match clauses

@ Single clause: write as function
(‘lx& ‘ry->x+y)

@ Concatenate functions (&) for multiple clauses
(‘1 x & ‘r 'y ->x +y) &
(int & z -> z + 1)

12/1



Extensible match clauses

@ Single clause: write as function
(‘lx& ‘ry->x+y)

e Concatenate functions (&) for multiple clauses
(‘1 x & ‘r 'y ->x +y) &
(int & z -=> z + 1)

@ Encodes match!

12/1



Extensible match clauses

@ Single clause: write as function
(‘lx& ‘ry->x+y)

e Concatenate functions (&) for multiple clauses
(‘1 x & ‘r 'y ->x +y) &
(int & z -=> z + 1)

@ Encodes matcnh!

@ Operator & uniformly concatenates records,
match clauses: (¢x 1) & (int -> 0)

12/1



Outline

@ Semantics
o Powerful records and record combinators
o First-class match clauses
@ Object encoding using variants
@ Static typing
o Overview
@ Union elimination
@ Polymorphism

@ Summary

13/1



Variant-Based Object Encoding

let rec seal = (see paper) in

let prePoint =
‘x 2 & ‘y 4 &
(‘mg & ‘self slf -> slf ‘gx + slf ‘gy ) &
(‘gx & ‘self slf -> slf.x) & ...

in let point = seal prePoint in

point ‘mg // returns 6

@ & can combine data and match clauses

14/1



Variant-Based Object Encoding

let rec seal

let prePoint
‘x 2 & ‘y 4 &
(‘mg & ‘self slf -> slf ‘gx + slf ‘gy ) &
(‘gx & ‘self slf -> slf.x) & ...

in let point = seal prePoint in

point ‘mg // returns 6

(see paper) in

@ & can combine data and match clauses
@ Match clause encoding of objects, not records

14/1



Variant-Based Object Encoding

let rec seal

let prePoint
‘x 2 & ‘y 4 &
(‘mg & ‘self slf -> slf ‘gx + slf ‘gy ) &
(‘gx & ‘self slf -> slf.x) & ...

in let point = seal prePoint in

point ‘mg // returns 6

(see paper) in

@ & can combine data and match clauses
@ Match clause encoding of objects, not records
@ Seal is a combinator tying self-reference knot

14/1



Variant-Based Object Encoding

let rec seal = (see paper) in

let prePoint =
‘x 2 & ‘y 4 &
(‘mg & ‘self slf -> slf ‘gx + slf ‘gy ) &
(‘gx & ‘self slf -> slf.x) & ...

in let point = seal prePoint in

point ‘mg // returns 6

@ & can combine data and match clauses

@ Match clause encoding of objects, not records
@ Seal is a combinator tying self-reference knot
@ Can seal, message, extend, reseal, message

14/1



Variant-Based Object Encoding

let rec seal

let prePoint
‘x 2 & ‘y 4 &
(‘mg & ‘self slf -> slf ‘gx + slf ‘gy ) &
(‘gx & ‘self slf -> slf.x) & ...

in let point = seal prePoint in

point ‘mg // returns 6

(see paper) in

@ & can combine data and match clauses

@ Match clause encoding of objects, not records
@ Seal is a combinator tying self-reference knot
@ Can seal, message, extend, reseal, message

@ All statically typed!

14/1



Other Encodings

Together, type-indexed records and partial functions
can encode:

15/1



Other Encodings
Together, type-indexed records and partial functions
can encode:
o Conditionals (¢‘True () and ‘False ())
Variant-based objects
Operator overloading
Classes, inheritance, subclasses, etc.

First-class cases

o
)
o
@ Mixins, dynamic functional object extension
o
@ Optional arguments

o

etc.

15/1



Other Encodings

Together, type-indexed records and partial functions
can encode:

o Conditionals (¢‘True () and ‘False ())

@ Variant-based objects

@ Operator overloading

o Classes, inheritance, subclasses, etc.

@ Mixins, dynamic functional object extension

o First-class cases

@ Optional arguments

0 etc.

And we can type them!

15/1



Outline

@ Semantics
o Powerful records and record combinators
o First-class match clauses
@ Object encoding using variants
@ Static typing
@ Overview
@ Union elimination
@ Polymorphism

@ Summary

16/1



Types

@ Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)

17/1



Types

@ Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)
@ With new notions of

17/1



Types

@ Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)
@ With new notions of
e Union type elimination

17/1



Types

@ Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)
@ With new notions of

@ Union type elimination
e Polymorphism

17/1



Types

@ Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)
@ With new notions of

@ Union type elimination
o Polymorphism
@ Metatheory (rule system, soundness, etc)

17/1



Types

@ Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)
@ With new notions of

@ Union type elimination
o Polymorphism
o Metatheory (rule system, soundness, etc)

@ Inspired by program analysis

17/1



Types

@ Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)
@ With new notions of

@ Union type elimination
o Polymorphism
o Metatheory (rule system, soundness, etc)

@ Inspired by program analysis
@ Union elimination: path sensitivity

17/1



Types

@ Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)
@ With new notions of
@ Union type elimination
o Polymorphism
o Metatheory (rule system, soundness, etc)
@ Inspired by program analysis

@ Union elimination: path sensitivity
@ Polymorphism: context sensitivity

17/1



Types

@ Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)
@ With new notions of

@ Union type elimination
o Polymorphism
o Metatheory (rule system, soundness, etc)

@ Inspired by program analysis

@ Union elimination: path sensitivity
@ Polymorphism: context sensitivity
e Concession: it's whole-program typing

17/1



Outline

@ Semantics
o Powerful records and record combinators
o First-class match clauses
@ Object encoding using variants
@ Static typing
@ Overview
@ Union elimination
@ Polymorphism

@ Summary

18/1



Union type elimination

@ Example: patterns ¢z and ¢s ¢S x on Peano
number input

19/1



Union type elimination

@ Example: patterns ¢z and ¢s ¢s x on Peano
number input

argument type some posszble slices patterns
‘= y Co~(0) . C2~(0)
<
%11(‘e
@ —Slhice 7 ICc o @@
@ DD ©

19/1



Union type elimination

@ Example: patterns ¢z and ¢s ¢s x on Peano
number input
argument type some posszble slices patterns
@ blcg ?@_}@
-0 ©

@ Adaptively eliminate union to depth of pattern

19/1



Union type elimination

@ Example: patterns ¢z and ¢s ¢s x on Peano
number input

argument type some posszble slices patterns

‘T y o~ . Co~(0)
the B

@ —Slhice 7 ICc o @@

@ae ©

o Adaptively eliminate union to depth of pattern
@ Slices specialize argument type

19/1



Union type elimination

@ Example: patterns ¢z and ¢s ¢s x on Peano
number input

argument type some posszble slices patterns
o = -
e mamc
<
qh(‘e
@ o (DD

@9@ ©

o Adaptively eliminate union to depth of pattern
@ Slices specialize argument type

let f = (x:°A4 () -> x.B) &
(y:P O -> 1)
in £f (‘A () & ‘B 5) + £ ‘P ()

19/1



Outline

@ Semantics
o Powerful records and record combinators
o First-class match clauses
@ Object encoding using variants
@ Static typing
@ Overview
@ Union elimination
e Polymorphism

@ Summary

20/1



Inferred function polymorphism

@ let-polymorphism ignores call context

21/1



Inferred function polymorphism

@ let-polymorphism ignores call context

@ Program analyses have polyvariance, e.g. nCFA
but are brittle to refactoring
—arbitrary cutoff at n depth

21/1



Inferred function polymorphism

@ let-polymorphism ignores call context

@ Program analyses have polyvariance, e.g. nCFA
but are brittle to refactoring
—arbitrary cutoff at n depth

@ Our approach: polyvariance approach with
regular expression call strings

21/1



Inferred function polymorphism

@ let-polymorphism ignores call context

@ Program analyses have polyvariance, e.g. nCFA
but are brittle to refactoring
—arbitrary cutoff at n depth

@ Our approach: polyvariance approach with
regular expression call strings

@ Limits polymorphism of recursion but nothing else

21/1



Inferred function polymorphism

@ let-polymorphism ignores call context

@ Program analyses have polyvariance, e.g. nCFA
but are brittle to refactoring
—arbitrary cutoff at n depth

@ Our approach: polyvariance approach with
regular expression call strings

@ Limits polymorphism of recursion but nothing else
o Similar to DCPA and ACFA, but optimistic

21/1



Outline

@ Semantics
o Powerful records and record combinators
o First-class match clauses
@ Object encoding using variants
@ Static typing
@ Overview
@ Union elimination
@ Polymorphism

@ Summary

22/1



Summary

@ Existing scripting languages are fundamentally
untypeable

23/1



Summary

o Existing scripting languages are fundamentally
untypeable

@ So, start with ML and add “principled flex”

23/1



Summary

o Existing scripting languages are fundamentally
untypeable
@ So, start with ML and add “principled flex”

@ TinyBang is our initial result
—supports flex but more safely/declaratively

23/1



Bigger Picture: BigBang

@ TinyBang is the currently implemented core

24/1


http://big-bang-lang.org

Bigger Picture: BigBang

@ TinyBang is the currently implemented core
@ Building a larger language: code in it

24/1


http://big-bang-lang.org

Bigger Picture: BigBang

@ TinyBang is the currently implemented core
o Building a larger language: code in it

@ Also developing compile-time dispatch
methodology

24/1


http://big-bang-lang.org

Bigger Picture: BigBang

@ TinyBang is the currently implemented core
o Building a larger language: code in it

@ Also developing compile-time dispatch
methodology

@ http://big-bang-lang.org

24/1


http://big-bang-lang.org

Related Work

Re-sealing objects generalizes [Fisher Bono '98]
Unifying records and variants from [Pottier '00]
Type-indexed records [Shields Meijer '01]

First-class match generalizes [Blume et. al. '06]
CDuce [Castagna et. al. '14]

o Similar expressiveness in several dimensions
o CDuce: type checking; TinyBang: type inference

25/1



Questions?



