
Types for Flexible Objects
Building a Typed Scripting Language

Pottayil Harisanker Menon, Zachary Palmer,

Alexander Rozenshteyn, Scott F. Smith

The Johns Hopkins University

November 17th, 2014

Objective

Flexible OO language

+
Static typing, inference, etc.

2/1

Objective

Flexible OO language
+

Static typing, inference, etc.

2/1

What is “flexible?”

Freely transition between views on data

Freely manipulate data at runtime
Python, Javascript, Ruby

Objects are dictionaries (almost seamlessly)
Dynamic lookup, update, etc. based on runtime
conditions

Minimal semantic clutter (for readability)

Good for ad-hoc, situational requirements

3/1

What is “flexible?”

Freely transition between views on data

Freely manipulate data at runtime

Python, Javascript, Ruby

Objects are dictionaries (almost seamlessly)
Dynamic lookup, update, etc. based on runtime
conditions

Minimal semantic clutter (for readability)

Good for ad-hoc, situational requirements

3/1

What is “flexible?”

Freely transition between views on data

Freely manipulate data at runtime
Python, Javascript, Ruby

Objects are dictionaries (almost seamlessly)
Dynamic lookup, update, etc. based on runtime
conditions

Minimal semantic clutter (for readability)

Good for ad-hoc, situational requirements

3/1

What is “flexible?”

Freely transition between views on data

Freely manipulate data at runtime
Python, Javascript, Ruby

Objects are dictionaries (almost seamlessly)

Dynamic lookup, update, etc. based on runtime
conditions

Minimal semantic clutter (for readability)

Good for ad-hoc, situational requirements

3/1

What is “flexible?”

Freely transition between views on data

Freely manipulate data at runtime
Python, Javascript, Ruby

Objects are dictionaries (almost seamlessly)
Dynamic lookup, update, etc. based on runtime
conditions

Minimal semantic clutter (for readability)

Good for ad-hoc, situational requirements

3/1

What is “flexible?”

Freely transition between views on data

Freely manipulate data at runtime
Python, Javascript, Ruby

Objects are dictionaries (almost seamlessly)
Dynamic lookup, update, etc. based on runtime
conditions

Minimal semantic clutter (for readability)

Good for ad-hoc, situational requirements

3/1

What is “flexible?”

Freely transition between views on data

Freely manipulate data at runtime
Python, Javascript, Ruby

Objects are dictionaries (almost seamlessly)
Dynamic lookup, update, etc. based on runtime
conditions

Minimal semantic clutter (for readability)

Good for ad-hoc, situational requirements

3/1

Examples of Flexibility

Add a method to an existing object:

class A:

def foo (): return 1

a = A()

a.bar = types.MethodType(

lambda self: 2, a)

4/1

Examples of Flexibility

Rely on execution path invariants:

def neg(x):

if type(x) is int:

return -x

else:

return not x

print neg (2) + 3

4/1

Why Types?

Flexible languages are good:

Faster development
Capture complex ideas with clever patterns
Structurally typed (“duck typing”)

Static types are good:

Describe invariants on data
Help programmer understanding
Statically identify programming errors
Improve runtime performance
Other static invariants: immutability, limiting data
scope, etc.

We want both!

5/1

Why Types?

Flexible languages are good:
Faster development

Capture complex ideas with clever patterns
Structurally typed (“duck typing”)

Static types are good:

Describe invariants on data
Help programmer understanding
Statically identify programming errors
Improve runtime performance
Other static invariants: immutability, limiting data
scope, etc.

We want both!

5/1

Why Types?

Flexible languages are good:
Faster development
Capture complex ideas with clever patterns

Structurally typed (“duck typing”)

Static types are good:

Describe invariants on data
Help programmer understanding
Statically identify programming errors
Improve runtime performance
Other static invariants: immutability, limiting data
scope, etc.

We want both!

5/1

Why Types?

Flexible languages are good:
Faster development
Capture complex ideas with clever patterns
Structurally typed (“duck typing”)

Static types are good:

Describe invariants on data
Help programmer understanding
Statically identify programming errors
Improve runtime performance
Other static invariants: immutability, limiting data
scope, etc.

We want both!

5/1

Why Types?

Flexible languages are good:
Faster development
Capture complex ideas with clever patterns
Structurally typed (“duck typing”)

Static types are good:

Describe invariants on data
Help programmer understanding
Statically identify programming errors
Improve runtime performance
Other static invariants: immutability, limiting data
scope, etc.

We want both!

5/1

Why Types?

Flexible languages are good:
Faster development
Capture complex ideas with clever patterns
Structurally typed (“duck typing”)

Static types are good:
Describe invariants on data

Help programmer understanding
Statically identify programming errors
Improve runtime performance
Other static invariants: immutability, limiting data
scope, etc.

We want both!

5/1

Why Types?

Flexible languages are good:
Faster development
Capture complex ideas with clever patterns
Structurally typed (“duck typing”)

Static types are good:
Describe invariants on data
Help programmer understanding

Statically identify programming errors
Improve runtime performance
Other static invariants: immutability, limiting data
scope, etc.

We want both!

5/1

Why Types?

Flexible languages are good:
Faster development
Capture complex ideas with clever patterns
Structurally typed (“duck typing”)

Static types are good:
Describe invariants on data
Help programmer understanding
Statically identify programming errors

Improve runtime performance
Other static invariants: immutability, limiting data
scope, etc.

We want both!

5/1

Why Types?

Flexible languages are good:
Faster development
Capture complex ideas with clever patterns
Structurally typed (“duck typing”)

Static types are good:
Describe invariants on data
Help programmer understanding
Statically identify programming errors
Improve runtime performance

Other static invariants: immutability, limiting data
scope, etc.

We want both!

5/1

Why Types?

Flexible languages are good:
Faster development
Capture complex ideas with clever patterns
Structurally typed (“duck typing”)

Static types are good:
Describe invariants on data
Help programmer understanding
Statically identify programming errors
Improve runtime performance
Other static invariants: immutability, limiting data
scope, etc.

We want both!

5/1

Why Types?

Flexible languages are good:
Faster development
Capture complex ideas with clever patterns
Structurally typed (“duck typing”)

Static types are good:
Describe invariants on data
Help programmer understanding
Statically identify programming errors
Improve runtime performance
Other static invariants: immutability, limiting data
scope, etc.

We want both!

5/1

Options?
Powerful traditional type system

, Captures static invariants (monads, dep. types)
/ Often incurs semantic clutter
/ High barrier to entry
Not enough flexibility

Build type inference system for existing
language (e.g. DRuby)

, Fundamentally flexible language
/ Limited success: language features defy static
typing (e.g. mutable monkeypatching, Python
locals)
Not enough static typing

Design a language to include
statically-typed flex

6/1

Options?
Powerful traditional type system

, Captures static invariants (monads, dep. types)
/ Often incurs semantic clutter
/ High barrier to entry
Not enough flexibility

Build type inference system for existing
language (e.g. DRuby)

, Fundamentally flexible language
/ Limited success: language features defy static
typing (e.g. mutable monkeypatching, Python
locals)
Not enough static typing

Design a language to include
statically-typed flex

6/1

Options?
Powerful traditional type system

, Captures static invariants (monads, dep. types)
/ Often incurs semantic clutter
/ High barrier to entry
Not enough flexibility

Build type inference system for existing
language (e.g. DRuby)

, Fundamentally flexible language
/ Limited success: language features defy static
typing (e.g. mutable monkeypatching, Python
locals)
Not enough static typing

Design a language to include
statically-typed flex

6/1

TinyBang

Start with an ML-like basis

records, variants, patterns, let, refs, inference

Add flexible properties
All types inferred – no declarations
Structural subtyping (“duck typing”)
Powerful record combinators
First-class match clauses
Refinement on pattern matching

Result: flexible language with static typing

7/1

TinyBang

Start with an ML-like basis

records, variants, patterns, let, refs, inference

Add flexible properties
All types inferred – no declarations
Structural subtyping (“duck typing”)
Powerful record combinators
First-class match clauses
Refinement on pattern matching

Result: flexible language with static typing

7/1

TinyBang

Start with an ML-like basis

records, variants, patterns, let, refs, inference

Add flexible properties
All types inferred – no declarations
Structural subtyping (“duck typing”)
Powerful record combinators
First-class match clauses
Refinement on pattern matching

Result: flexible language with static typing

7/1

TinyBang

Start with an ML-like basis

records, variants, patterns, let, refs, inference

Add flexible properties
All types inferred – no declarations
Structural subtyping (“duck typing”)
Powerful record combinators
First-class match clauses
Refinement on pattern matching

Result: flexible language with static typing

7/1

Outline

Semantics
Powerful records and record combinators
First-class match clauses
Object encoding using variants

Static typing
Overview
Union elimination
Polymorphism

Summary

8/1

Asymmetric Concatenation

Use type-indexed records [Blume et. al. ’06]

{int = 4, A = {int = 5}}

4 & `A 5

Note: 1-ary record = 1-ary variant

Concatenation asymmetrically prefers left
components

`A 4 & `B 6 & `A 3 ∼= `A 4 & `B 6

Asymmetry is fundamental in several encodings

9/1

Asymmetric Concatenation

Use type-indexed records [Blume et. al. ’06]

{int = 4, A = {int = 5}}

4 & `A 5

Note: 1-ary record = 1-ary variant

Concatenation asymmetrically prefers left
components

`A 4 & `B 6 & `A 3 ∼= `A 4 & `B 6

Asymmetry is fundamental in several encodings

9/1

Asymmetric Concatenation

Use type-indexed records [Blume et. al. ’06]

{int = 4, A = {int = 5}}

4 & `A 5

Note: 1-ary record = 1-ary variant

Concatenation asymmetrically prefers left
components

`A 4 & `B 6 & `A 3 ∼= `A 4 & `B 6

Asymmetry is fundamental in several encodings

9/1

Asymmetric Concatenation

Use type-indexed records [Blume et. al. ’06]

{int = 4, A = {int = 5}}

4 & `A 5

Note: 1-ary record = 1-ary variant

Concatenation asymmetrically prefers left
components

`A 4 & `B 6 & `A 3 ∼= `A 4 & `B 6

Asymmetry is fundamental in several encodings

9/1

Asymmetric Concatenation

Use type-indexed records [Blume et. al. ’06]

{int = 4, A = {int = 5}}

4 & `A 5

Note: 1-ary record = 1-ary variant

Concatenation asymmetrically prefers left
components

`A 4 & `B 6 & `A 3 ∼= `A 4 & `B 6

Asymmetry is fundamental in several encodings

9/1

Asymmetric Concatenation

Use type-indexed records [Blume et. al. ’06]

{int = 4, A = {int = 5}}

4 & `A 5

Note: 1-ary record = 1-ary variant

Concatenation asymmetrically prefers left
components

`A 4 & `B 6 & `A 3 ∼= `A 4 & `B 6

Asymmetry is fundamental in several encodings

9/1

Outline

Semantics
Powerful records and record combinators
First-class match clauses
Object encoding using variants

Static typing
Overview
Union elimination
Polymorphism

Summary

10/1

Partial Functions

All TinyBang functions are partial via
pattern-matching:

int -> 0 matches all records with an int

component
int & x -> x is integer identity

In patterns, & is conjunction
Variables (e.g. x) match anything and bind it

Pattern-matching takes the leftmost match
(`B x -> x+1) (`A 3 & `B 1) ⇒ 2

(`B x -> x+1) (`B 5 & `A 3 & `B 1) ⇒ 6

11/1

Partial Functions

All TinyBang functions are partial via
pattern-matching:

int -> 0 matches all records with an int

component

int & x -> x is integer identity
In patterns, & is conjunction
Variables (e.g. x) match anything and bind it

Pattern-matching takes the leftmost match
(`B x -> x+1) (`A 3 & `B 1) ⇒ 2

(`B x -> x+1) (`B 5 & `A 3 & `B 1) ⇒ 6

11/1

Partial Functions

All TinyBang functions are partial via
pattern-matching:

int -> 0 matches all records with an int

component
int & x -> x is integer identity

In patterns, & is conjunction
Variables (e.g. x) match anything and bind it

Pattern-matching takes the leftmost match
(`B x -> x+1) (`A 3 & `B 1) ⇒ 2

(`B x -> x+1) (`B 5 & `A 3 & `B 1) ⇒ 6

11/1

Partial Functions

All TinyBang functions are partial via
pattern-matching:

int -> 0 matches all records with an int

component
int & x -> x is integer identity

In patterns, & is conjunction
Variables (e.g. x) match anything and bind it

Pattern-matching takes the leftmost match
(`B x -> x+1) (`A 3 & `B 1) ⇒ 2

(`B x -> x+1) (`B 5 & `A 3 & `B 1) ⇒ 6

11/1

Partial Functions

All TinyBang functions are partial via
pattern-matching:

int -> 0 matches all records with an int

component
int & x -> x is integer identity

In patterns, & is conjunction
Variables (e.g. x) match anything and bind it

Pattern-matching takes the leftmost match
(`B x -> x+1) (`A 3 & `B 1) ⇒ 2

(`B x -> x+1) (`B 5 & `A 3 & `B 1) ⇒ 6

11/1

Extensible match clauses

Single clause: write as function
(`l x & `r y -> x + y)

Concatenate functions (&) for multiple clauses
(`l x & `r y -> x + y) &

(int & z -> z + 1)

Encodes match!

Operator & uniformly concatenates records,
match clauses: (`x 1) & (int -> 0)

12/1

Extensible match clauses

Single clause: write as function
(`l x & `r y -> x + y)

Concatenate functions (&) for multiple clauses
(`l x & `r y -> x + y) &

(int & z -> z + 1)

Encodes match!

Operator & uniformly concatenates records,
match clauses: (`x 1) & (int -> 0)

12/1

Extensible match clauses

Single clause: write as function
(`l x & `r y -> x + y)

Concatenate functions (&) for multiple clauses
(`l x & `r y -> x + y) &

(int & z -> z + 1)

Encodes match!

Operator & uniformly concatenates records,
match clauses: (`x 1) & (int -> 0)

12/1

Extensible match clauses

Single clause: write as function
(`l x & `r y -> x + y)

Concatenate functions (&) for multiple clauses
(`l x & `r y -> x + y) &

(int & z -> z + 1)

Encodes match!

Operator & uniformly concatenates records,
match clauses: (`x 1) & (int -> 0)

12/1

Outline

Semantics
Powerful records and record combinators
First-class match clauses
Object encoding using variants

Static typing
Overview
Union elimination
Polymorphism

Summary

13/1

Variant-Based Object Encoding
let rec seal = (see paper) in

let prePoint =

`x 2 & `y 4 &

(`mg & `self slf -> slf `gx + slf `gy) &

(`gx & `self slf -> slf.x) & . . .
in let point = seal prePoint in

point `mg // returns 6

& can combine data and match clauses

Match clause encoding of objects, not records

Seal is a combinator tying self-reference knot

Can seal, message, extend, reseal, message

All statically typed!

14/1

Variant-Based Object Encoding
let rec seal = (see paper) in

let prePoint =

`x 2 & `y 4 &

(`mg & `self slf -> slf `gx + slf `gy) &

(`gx & `self slf -> slf.x) & . . .
in let point = seal prePoint in

point `mg // returns 6

& can combine data and match clauses

Match clause encoding of objects, not records

Seal is a combinator tying self-reference knot

Can seal, message, extend, reseal, message

All statically typed!

14/1

Variant-Based Object Encoding
let rec seal = (see paper) in

let prePoint =

`x 2 & `y 4 &

(`mg & `self slf -> slf `gx + slf `gy) &

(`gx & `self slf -> slf.x) & . . .
in let point = seal prePoint in

point `mg // returns 6

& can combine data and match clauses

Match clause encoding of objects, not records

Seal is a combinator tying self-reference knot

Can seal, message, extend, reseal, message

All statically typed!

14/1

Variant-Based Object Encoding
let rec seal = (see paper) in

let prePoint =

`x 2 & `y 4 &

(`mg & `self slf -> slf `gx + slf `gy) &

(`gx & `self slf -> slf.x) & . . .
in let point = seal prePoint in

point `mg // returns 6

& can combine data and match clauses

Match clause encoding of objects, not records

Seal is a combinator tying self-reference knot

Can seal, message, extend, reseal, message

All statically typed!

14/1

Variant-Based Object Encoding
let rec seal = (see paper) in

let prePoint =

`x 2 & `y 4 &

(`mg & `self slf -> slf `gx + slf `gy) &

(`gx & `self slf -> slf.x) & . . .
in let point = seal prePoint in

point `mg // returns 6

& can combine data and match clauses

Match clause encoding of objects, not records

Seal is a combinator tying self-reference knot

Can seal, message, extend, reseal, message

All statically typed!
14/1

Other Encodings
Together, type-indexed records and partial functions
can encode:

Conditionals (`True () and `False ())

Variant-based objects

Operator overloading

Classes, inheritance, subclasses, etc.

Mixins, dynamic functional object extension

First-class cases

Optional arguments

etc.

And we can type them!

15/1

Other Encodings
Together, type-indexed records and partial functions
can encode:

Conditionals (`True () and `False ())

Variant-based objects

Operator overloading

Classes, inheritance, subclasses, etc.

Mixins, dynamic functional object extension

First-class cases

Optional arguments

etc.

And we can type them!

15/1

Other Encodings
Together, type-indexed records and partial functions
can encode:

Conditionals (`True () and `False ())

Variant-based objects

Operator overloading

Classes, inheritance, subclasses, etc.

Mixins, dynamic functional object extension

First-class cases

Optional arguments

etc.

And we can type them!
15/1

Outline

Semantics
Powerful records and record combinators
First-class match clauses
Object encoding using variants

Static typing
Overview
Union elimination
Polymorphism

Summary

16/1

Types

Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)

With new notions of

Union type elimination
Polymorphism
Metatheory (rule system, soundness, etc)

Inspired by program analysis

Union elimination: path sensitivity
Polymorphism: context sensitivity
Concession: it’s whole-program typing

17/1

Types

Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)

With new notions of

Union type elimination
Polymorphism
Metatheory (rule system, soundness, etc)

Inspired by program analysis

Union elimination: path sensitivity
Polymorphism: context sensitivity
Concession: it’s whole-program typing

17/1

Types

Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)

With new notions of
Union type elimination

Polymorphism
Metatheory (rule system, soundness, etc)

Inspired by program analysis

Union elimination: path sensitivity
Polymorphism: context sensitivity
Concession: it’s whole-program typing

17/1

Types

Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)

With new notions of
Union type elimination
Polymorphism

Metatheory (rule system, soundness, etc)

Inspired by program analysis

Union elimination: path sensitivity
Polymorphism: context sensitivity
Concession: it’s whole-program typing

17/1

Types

Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)

With new notions of
Union type elimination
Polymorphism
Metatheory (rule system, soundness, etc)

Inspired by program analysis

Union elimination: path sensitivity
Polymorphism: context sensitivity
Concession: it’s whole-program typing

17/1

Types

Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)

With new notions of
Union type elimination
Polymorphism
Metatheory (rule system, soundness, etc)

Inspired by program analysis

Union elimination: path sensitivity
Polymorphism: context sensitivity
Concession: it’s whole-program typing

17/1

Types

Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)

With new notions of
Union type elimination
Polymorphism
Metatheory (rule system, soundness, etc)

Inspired by program analysis
Union elimination: path sensitivity

Polymorphism: context sensitivity
Concession: it’s whole-program typing

17/1

Types

Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)

With new notions of
Union type elimination
Polymorphism
Metatheory (rule system, soundness, etc)

Inspired by program analysis
Union elimination: path sensitivity
Polymorphism: context sensitivity

Concession: it’s whole-program typing

17/1

Types

Rooted in subtype constraint inference
(Aiken/Heintze/Pottier)

With new notions of
Union type elimination
Polymorphism
Metatheory (rule system, soundness, etc)

Inspired by program analysis
Union elimination: path sensitivity
Polymorphism: context sensitivity
Concession: it’s whole-program typing

17/1

Outline

Semantics
Powerful records and record combinators
First-class match clauses
Object encoding using variants

Static typing
Overview
Union elimination
Polymorphism

Summary

18/1

Union type elimination
Example: patterns `Z and `S `S x on Peano
number input

Partial

@⌧.⌧ <: ↵0 2 V

↵0
G#
V�;

V 0 ↵
0
0

Empty Onion

⌧ <: ↵0 2 V () <: ↵0
0 2 V 0 F = {↵0 <: ↵0

0}
↵0

V�F

V 0 ↵0
0

Label

l ↵1 <: ↵0 2 V l ↵0
1 <: ↵0

0 2 V 0 ↵1
�
V�F

V 0 ↵0
1

↵0
�
V�F

V 0 ↵0
0

Conjunction Pattern

↵0
1 &↵

0
2 <: ↵0

0 2 V 0 ↵0
�1
V�F1

V 0 ↵
0
1 ↵0

�2
V�F2

V 0 ↵
0
2

↵0
min(�1,�2)

V�F1[F2
V 0 ↵0

0

Onion Value Left

↵1 &↵2 <: ↵0 2 V ↵1
�
V�F

V 0 ↵0
0 � 6= #

↵0
�
V�F

V 0 ↵0
0

Onion Value Right

↵1 &↵2 <: ↵0 2 V ↵0
1 &↵

0
2 <: ↵0

0 62 V 0 ↵1
#
V�F 0

V 0 ↵0
0 ↵2

�
V�F

V 0 ↵0
0

↵0
�
V�F

V 0 ↵0
0

Label Mismatch

l ↵1 <: ↵0 2 V
⌧ <: ↵0

0 2 V 0 ⌧ = l0 ↵2 only if l 6= l0 ⌧ not of the form ↵0
&↵00 or ()

↵0
#
V�;

V 0 ↵
0
0

Fig. 3.9. Type compatibility: does a type match a pattern?

[↵ =

‘S‘Z

()

argument type

‘Z ()

‘S ‘S ↵

‘S ↵

slice

slice
slice

some possible slices

‘Z ()

‘S ‘S

()

 4

G#4

 4

patterns

Fig. 3.10. Type compatibility example

Matching Type matching directly parallels expression matching. As in the
evaluation system, type matching propagates the result of compatibility and uses
the � place to enforce left precedence of dispatch. Matching ↵0 ↵1

�
V0
;V1

↵2\C 0

is defined as the least relation satisfying the clauses in Figure 3.11.

Constraint Closure Constraint closure can now be defined; each step of clo-
sure represents one forward propagation of constraint information and abstractly
models a single step of the operational semantics. This closure is implicitly de-
fined in terms of an abstract polymorphism framework defined by two functions.
The first, �, is analogous to the ↵(�) freshening function of the operational
semantics. For decidability, however, we do not want � to freshen every vari-
able uniquely; it only performs some ↵-substitution on the constrained type.
We write �(C,↵) to indicate the freshening of the variables in C. The additional
parameter ↵ describes the call site at which the polyinstantiation took place;
this is useful for some polymorphism models.

Adaptively eliminate union to depth of pattern
Slices specialize argument type

let f = (x:`A () -> x.B) &

(y:`P () -> 1)

in f (`A () & `B 5) + f `P ()

19/1

Union type elimination
Example: patterns `Z and `S `S x on Peano
number input

Partial

@⌧.⌧ <: ↵0 2 V

↵0
G#
V�;

V 0 ↵
0
0

Empty Onion

⌧ <: ↵0 2 V () <: ↵0
0 2 V 0 F = {↵0 <: ↵0

0}
↵0

V�F

V 0 ↵0
0

Label

l ↵1 <: ↵0 2 V l ↵0
1 <: ↵0

0 2 V 0 ↵1
�
V�F

V 0 ↵0
1

↵0
�
V�F

V 0 ↵0
0

Conjunction Pattern

↵0
1 &↵

0
2 <: ↵0

0 2 V 0 ↵0
�1
V�F1

V 0 ↵
0
1 ↵0

�2
V�F2

V 0 ↵
0
2

↵0
min(�1,�2)

V�F1[F2
V 0 ↵0

0

Onion Value Left

↵1 &↵2 <: ↵0 2 V ↵1
�
V�F

V 0 ↵0
0 � 6= #

↵0
�
V�F

V 0 ↵0
0

Onion Value Right

↵1 &↵2 <: ↵0 2 V ↵0
1 &↵

0
2 <: ↵0

0 62 V 0 ↵1
#
V�F 0

V 0 ↵0
0 ↵2

�
V�F

V 0 ↵0
0

↵0
�
V�F

V 0 ↵0
0

Label Mismatch

l ↵1 <: ↵0 2 V
⌧ <: ↵0

0 2 V 0 ⌧ = l0 ↵2 only if l 6= l0 ⌧ not of the form ↵0
&↵00 or ()

↵0
#
V�;

V 0 ↵
0
0

Fig. 3.9. Type compatibility: does a type match a pattern?

[↵ =

‘S‘Z

()

argument type

‘Z ()

‘S ‘S ↵

‘S ↵

slice

slice
slice

some possible slices

‘Z ()

‘S ‘S

()

 4

G#4

 4

patterns

Fig. 3.10. Type compatibility example

Matching Type matching directly parallels expression matching. As in the
evaluation system, type matching propagates the result of compatibility and uses
the � place to enforce left precedence of dispatch. Matching ↵0 ↵1

�
V0
;V1

↵2\C 0

is defined as the least relation satisfying the clauses in Figure 3.11.

Constraint Closure Constraint closure can now be defined; each step of clo-
sure represents one forward propagation of constraint information and abstractly
models a single step of the operational semantics. This closure is implicitly de-
fined in terms of an abstract polymorphism framework defined by two functions.
The first, �, is analogous to the ↵(�) freshening function of the operational
semantics. For decidability, however, we do not want � to freshen every vari-
able uniquely; it only performs some ↵-substitution on the constrained type.
We write �(C,↵) to indicate the freshening of the variables in C. The additional
parameter ↵ describes the call site at which the polyinstantiation took place;
this is useful for some polymorphism models.

Adaptively eliminate union to depth of pattern
Slices specialize argument type

let f = (x:`A () -> x.B) &

(y:`P () -> 1)

in f (`A () & `B 5) + f `P ()

19/1

Union type elimination
Example: patterns `Z and `S `S x on Peano
number input

Partial

@⌧.⌧ <: ↵0 2 V

↵0
G#
V�;

V 0 ↵
0
0

Empty Onion

⌧ <: ↵0 2 V () <: ↵0
0 2 V 0 F = {↵0 <: ↵0

0}
↵0

V�F

V 0 ↵0
0

Label

l ↵1 <: ↵0 2 V l ↵0
1 <: ↵0

0 2 V 0 ↵1
�
V�F

V 0 ↵0
1

↵0
�
V�F

V 0 ↵0
0

Conjunction Pattern

↵0
1 &↵

0
2 <: ↵0

0 2 V 0 ↵0
�1
V�F1

V 0 ↵
0
1 ↵0

�2
V�F2

V 0 ↵
0
2

↵0
min(�1,�2)

V�F1[F2
V 0 ↵0

0

Onion Value Left

↵1 &↵2 <: ↵0 2 V ↵1
�
V�F

V 0 ↵0
0 � 6= #

↵0
�
V�F

V 0 ↵0
0

Onion Value Right

↵1 &↵2 <: ↵0 2 V ↵0
1 &↵

0
2 <: ↵0

0 62 V 0 ↵1
#
V�F 0

V 0 ↵0
0 ↵2

�
V�F

V 0 ↵0
0

↵0
�
V�F

V 0 ↵0
0

Label Mismatch

l ↵1 <: ↵0 2 V
⌧ <: ↵0

0 2 V 0 ⌧ = l0 ↵2 only if l 6= l0 ⌧ not of the form ↵0
&↵00 or ()

↵0
#
V�;

V 0 ↵
0
0

Fig. 3.9. Type compatibility: does a type match a pattern?

[↵ =

‘S‘Z

()

argument type

‘Z ()

‘S ‘S ↵

‘S ↵

slice

slice
slice

some possible slices

‘Z ()

‘S ‘S

()

 4

G#4

 4

patterns

Fig. 3.10. Type compatibility example

Matching Type matching directly parallels expression matching. As in the
evaluation system, type matching propagates the result of compatibility and uses
the � place to enforce left precedence of dispatch. Matching ↵0 ↵1

�
V0
;V1

↵2\C 0

is defined as the least relation satisfying the clauses in Figure 3.11.

Constraint Closure Constraint closure can now be defined; each step of clo-
sure represents one forward propagation of constraint information and abstractly
models a single step of the operational semantics. This closure is implicitly de-
fined in terms of an abstract polymorphism framework defined by two functions.
The first, �, is analogous to the ↵(�) freshening function of the operational
semantics. For decidability, however, we do not want � to freshen every vari-
able uniquely; it only performs some ↵-substitution on the constrained type.
We write �(C,↵) to indicate the freshening of the variables in C. The additional
parameter ↵ describes the call site at which the polyinstantiation took place;
this is useful for some polymorphism models.

Adaptively eliminate union to depth of pattern

Slices specialize argument type

let f = (x:`A () -> x.B) &

(y:`P () -> 1)

in f (`A () & `B 5) + f `P ()

19/1

Union type elimination
Example: patterns `Z and `S `S x on Peano
number input

Partial

@⌧.⌧ <: ↵0 2 V

↵0
G#
V�;

V 0 ↵
0
0

Empty Onion

⌧ <: ↵0 2 V () <: ↵0
0 2 V 0 F = {↵0 <: ↵0

0}
↵0

V�F

V 0 ↵0
0

Label

l ↵1 <: ↵0 2 V l ↵0
1 <: ↵0

0 2 V 0 ↵1
�
V�F

V 0 ↵0
1

↵0
�
V�F

V 0 ↵0
0

Conjunction Pattern

↵0
1 &↵

0
2 <: ↵0

0 2 V 0 ↵0
�1
V�F1

V 0 ↵
0
1 ↵0

�2
V�F2

V 0 ↵
0
2

↵0
min(�1,�2)

V�F1[F2
V 0 ↵0

0

Onion Value Left

↵1 &↵2 <: ↵0 2 V ↵1
�
V�F

V 0 ↵0
0 � 6= #

↵0
�
V�F

V 0 ↵0
0

Onion Value Right

↵1 &↵2 <: ↵0 2 V ↵0
1 &↵

0
2 <: ↵0

0 62 V 0 ↵1
#
V�F 0

V 0 ↵0
0 ↵2

�
V�F

V 0 ↵0
0

↵0
�
V�F

V 0 ↵0
0

Label Mismatch

l ↵1 <: ↵0 2 V
⌧ <: ↵0

0 2 V 0 ⌧ = l0 ↵2 only if l 6= l0 ⌧ not of the form ↵0
&↵00 or ()

↵0
#
V�;

V 0 ↵
0
0

Fig. 3.9. Type compatibility: does a type match a pattern?

[↵ =

‘S‘Z

()

argument type

‘Z ()

‘S ‘S ↵

‘S ↵

slice

slice
slice

some possible slices

‘Z ()

‘S ‘S

()

 4

G#4

 4

patterns

Fig. 3.10. Type compatibility example

Matching Type matching directly parallels expression matching. As in the
evaluation system, type matching propagates the result of compatibility and uses
the � place to enforce left precedence of dispatch. Matching ↵0 ↵1

�
V0
;V1

↵2\C 0

is defined as the least relation satisfying the clauses in Figure 3.11.

Constraint Closure Constraint closure can now be defined; each step of clo-
sure represents one forward propagation of constraint information and abstractly
models a single step of the operational semantics. This closure is implicitly de-
fined in terms of an abstract polymorphism framework defined by two functions.
The first, �, is analogous to the ↵(�) freshening function of the operational
semantics. For decidability, however, we do not want � to freshen every vari-
able uniquely; it only performs some ↵-substitution on the constrained type.
We write �(C,↵) to indicate the freshening of the variables in C. The additional
parameter ↵ describes the call site at which the polyinstantiation took place;
this is useful for some polymorphism models.

Adaptively eliminate union to depth of pattern
Slices specialize argument type

let f = (x:`A () -> x.B) &

(y:`P () -> 1)

in f (`A () & `B 5) + f `P ()

19/1

Union type elimination
Example: patterns `Z and `S `S x on Peano
number input

Partial

@⌧.⌧ <: ↵0 2 V

↵0
G#
V�;

V 0 ↵
0
0

Empty Onion

⌧ <: ↵0 2 V () <: ↵0
0 2 V 0 F = {↵0 <: ↵0

0}
↵0

V�F

V 0 ↵0
0

Label

l ↵1 <: ↵0 2 V l ↵0
1 <: ↵0

0 2 V 0 ↵1
�
V�F

V 0 ↵0
1

↵0
�
V�F

V 0 ↵0
0

Conjunction Pattern

↵0
1 &↵

0
2 <: ↵0

0 2 V 0 ↵0
�1
V�F1

V 0 ↵
0
1 ↵0

�2
V�F2

V 0 ↵
0
2

↵0
min(�1,�2)

V�F1[F2
V 0 ↵0

0

Onion Value Left

↵1 &↵2 <: ↵0 2 V ↵1
�
V�F

V 0 ↵0
0 � 6= #

↵0
�
V�F

V 0 ↵0
0

Onion Value Right

↵1 &↵2 <: ↵0 2 V ↵0
1 &↵

0
2 <: ↵0

0 62 V 0 ↵1
#
V�F 0

V 0 ↵0
0 ↵2

�
V�F

V 0 ↵0
0

↵0
�
V�F

V 0 ↵0
0

Label Mismatch

l ↵1 <: ↵0 2 V
⌧ <: ↵0

0 2 V 0 ⌧ = l0 ↵2 only if l 6= l0 ⌧ not of the form ↵0
&↵00 or ()

↵0
#
V�;

V 0 ↵
0
0

Fig. 3.9. Type compatibility: does a type match a pattern?

[↵ =

‘S‘Z

()

argument type

‘Z ()

‘S ‘S ↵

‘S ↵

slice

slice
slice

some possible slices

‘Z ()

‘S ‘S

()

 4

G#4

 4

patterns

Fig. 3.10. Type compatibility example

Matching Type matching directly parallels expression matching. As in the
evaluation system, type matching propagates the result of compatibility and uses
the � place to enforce left precedence of dispatch. Matching ↵0 ↵1

�
V0
;V1

↵2\C 0

is defined as the least relation satisfying the clauses in Figure 3.11.

Constraint Closure Constraint closure can now be defined; each step of clo-
sure represents one forward propagation of constraint information and abstractly
models a single step of the operational semantics. This closure is implicitly de-
fined in terms of an abstract polymorphism framework defined by two functions.
The first, �, is analogous to the ↵(�) freshening function of the operational
semantics. For decidability, however, we do not want � to freshen every vari-
able uniquely; it only performs some ↵-substitution on the constrained type.
We write �(C,↵) to indicate the freshening of the variables in C. The additional
parameter ↵ describes the call site at which the polyinstantiation took place;
this is useful for some polymorphism models.

Adaptively eliminate union to depth of pattern
Slices specialize argument type

let f = (x:`A () -> x.B) &

(y:`P () -> 1)

in f (`A () & `B 5) + f `P ()

19/1

Outline

Semantics
Powerful records and record combinators
First-class match clauses
Object encoding using variants

Static typing
Overview
Union elimination
Polymorphism

Summary

20/1

Inferred function polymorphism

let-polymorphism ignores call context

Program analyses have polyvariance, e.g. nCFA
but are brittle to refactoring
—arbitrary cutoff at n depth

Our approach: polyvariance approach with
regular expression call strings

Limits polymorphism of recursion but nothing else
Similar to DCPA and ∆CFA, but optimistic

21/1

Inferred function polymorphism

let-polymorphism ignores call context

Program analyses have polyvariance, e.g. nCFA
but are brittle to refactoring
—arbitrary cutoff at n depth

Our approach: polyvariance approach with
regular expression call strings

Limits polymorphism of recursion but nothing else
Similar to DCPA and ∆CFA, but optimistic

21/1

Inferred function polymorphism

let-polymorphism ignores call context

Program analyses have polyvariance, e.g. nCFA
but are brittle to refactoring
—arbitrary cutoff at n depth

Our approach: polyvariance approach with
regular expression call strings

Limits polymorphism of recursion but nothing else
Similar to DCPA and ∆CFA, but optimistic

21/1

Inferred function polymorphism

let-polymorphism ignores call context

Program analyses have polyvariance, e.g. nCFA
but are brittle to refactoring
—arbitrary cutoff at n depth

Our approach: polyvariance approach with
regular expression call strings

Limits polymorphism of recursion but nothing else

Similar to DCPA and ∆CFA, but optimistic

21/1

Inferred function polymorphism

let-polymorphism ignores call context

Program analyses have polyvariance, e.g. nCFA
but are brittle to refactoring
—arbitrary cutoff at n depth

Our approach: polyvariance approach with
regular expression call strings

Limits polymorphism of recursion but nothing else
Similar to DCPA and ∆CFA, but optimistic

21/1

Outline

Semantics
Powerful records and record combinators
First-class match clauses
Object encoding using variants

Static typing
Overview
Union elimination
Polymorphism

Summary

22/1

Summary

Existing scripting languages are fundamentally
untypeable

So, start with ML and add “principled flex”

TinyBang is our initial result
—supports flex but more safely/declaratively

23/1

Summary

Existing scripting languages are fundamentally
untypeable

So, start with ML and add “principled flex”

TinyBang is our initial result
—supports flex but more safely/declaratively

23/1

Summary

Existing scripting languages are fundamentally
untypeable

So, start with ML and add “principled flex”

TinyBang is our initial result
—supports flex but more safely/declaratively

23/1

Bigger Picture: BigBang

TinyBang is the currently implemented core

Building a larger language: code in it

Also developing compile-time dispatch
methodology

http://big-bang-lang.org

24/1

http://big-bang-lang.org

Bigger Picture: BigBang

TinyBang is the currently implemented core

Building a larger language: code in it

Also developing compile-time dispatch
methodology

http://big-bang-lang.org

24/1

http://big-bang-lang.org

Bigger Picture: BigBang

TinyBang is the currently implemented core

Building a larger language: code in it

Also developing compile-time dispatch
methodology

http://big-bang-lang.org

24/1

http://big-bang-lang.org

Bigger Picture: BigBang

TinyBang is the currently implemented core

Building a larger language: code in it

Also developing compile-time dispatch
methodology

http://big-bang-lang.org

24/1

http://big-bang-lang.org

Related Work

Re-sealing objects generalizes [Fisher Bono ’98]

Unifying records and variants from [Pottier ’00]

Type-indexed records [Shields Meijer ’01]

First-class match generalizes [Blume et. al. ’06]

CDuce [Castagna et. al. ’14]

Similar expressiveness in several dimensions
CDuce: type checking; TinyBang: type inference

25/1

Questions?

26/1

