
Types for Flexible Objects

Pottayil Harisanker Menon Zachary Palmer Alexander Rozenshteyn Scott Smith
The Johns Hopkins University

{pharisa2, zachary.palmer, arozens1, scott}@jhu.edu

Abstract
Scripting languages are popular in part due to their ex-
tremely flexible objects. Features such as dynamic exten-
sion, mixins, and first-class messages improve programma-
bility and lead to concise code. But attempts to statically
type these features have met with limited success.

Here we present TinyBang, a small typed language in
which flexible object operations can be encoded. We illus-
trate this flexibility by solving an open problem in OO lit-
erature: we give an encoding where objects can be extended
after being messaged without compromising the expressive-
ness of subtyping.

TinyBang’s subtype constraint system ensures that all
types are completely inferred; there are no data declarations
or type annotations. We formalize TinyBang and prove the
type system is sound and decidable; all examples in the paper
run in our most recent implementation.

1. Introduction
Modern scripting languages such as Python and JavaScript
have become popular in part due to the flexibility of their
object semantics. In addition to supporting traditional OO
operations such as inheritance and polymorphic dispatch,
scripting programmers can add or remove members from
existing objects, arbitrarily concatenate objects, represent
messages as first-class data, and perform transformations on
objects at any point during their lifecycle. This flexibility
allows programs to be more concise and promotes a more
separated design.

While a significant body of work has focused on statically
typing flexible object operations [5, 7, 20], the solutions
proposed place significant restrictions on how objects can
be used. The fundamental tension lies in supporting self-
referentiality. For an object to be extensible, “self” must be
exposed in some manner equivalent to a function abstraction
λself . . . so that different “self” values may be used in the
event of extension. But exposing “self” in this way puts it
in a contravariant position; as a result, subtyping on objects
is invalid. The above systems create compromises; [7], for
instance, does not permit objects to be extended after they
are messaged.

Along with the problem of contravariant self, it is chal-
lenging to define a fully first-class object concatenation op-

eration with pleasing typeability properties. The aforemen-
tioned type systems do not support concatenation of arbi-
trary objects. In the related space of typed record concatena-
tion, previous work [18] has shown that general record con-
catenation may be typed but requires considerable machin-
ery including presence/absence types and conditional con-
straints.

In this paper, we present a new programming language
calculus, TinyBang, which aims for significant flexibility in
statically typing flexible object operations. In particular, we
support object extension without restrictions, and we have
simple type rules for a first-class concatenation operation.

TinyBang achieves its expressiveness with very few prim-
itives: the core expressions include only labeled data, con-
catenation, higher-order functions, and pattern matching.
Classes, objects, inheritance, object extension, overloading,
and switch/case can be fully and faithfully encoded with
these primitives. TinyBang also has full type inference for
ease and brevity of programming. It is not intended to be a
programming language for humans; instead, it aims to serve
as a conceptual core for such a language.

1.1 Key Features of TinyBang
TinyBang’s type system is grounded in subtype constraint
type theory [3], with a series of improvements to both ex-
pression syntax and typing to achieve the expressiveness
needed for flexible object encodings.

Type-indexed records supporting asymmetric concatena-
tion TinyBang uses type-indexed records: records for
which content can be projected based on its type
[21]. For example, consider the type-indexed record
{foo = 45; bar = 22; 13}: the untagged element 13 is im-
plicitly tagged with type int, and projecting int from this
record would yield 13. Since records are type-indexed, we
do not need to distinguish records from non-records; 22, for
example, is a type-indexed record of one (integer) field. Vari-
ants are also just a special case of 1-ary records of labeled
data, so ‘Some 3 expresses the ML Some(3). Type-indexed
records are thus a universal data type and lend themselves to
flexible programming patterns in the same spirit as Lisp lists
and Smalltalk objects.

TinyBang records support asymmetric con-
catenation via the & operator; informally,

Types for Flexible Objects 1 2014/3/25

{foo = 45; bar = 22; 13} & {baz = 45; bar = 10; 99}

results in {foo = 45; bar = 22; baz = 45; 13} since the
left side is given priority for the overlap. Asymmetric
concatenation is key for supporting flexible object concate-
nation, as well as for standard notions of inheritance. We
term the & operation onioning.

Dependently typed first-class cases TinyBang’s first-class
functions are written “pattern -> expression”. In this way,
first-class functions are also first-class case clauses. We per-
mit the concatenation of these clauses via & to give multiple
dispatch possibilities. TinyBang’s first-class functions gen-
eralize the first-class cases of [6].

In standard type systems, all case branches are con-
strained to have the same result type, losing the dependency
between the variant input and the output. This problem is
solved in TinyBang by giving compound functions depen-
dent types: application of a compound function can return
a different type based on the variant constructor of its argu-
ment. Additionally, we define a novel notion of slice which
allows the type of bindings in a case arm to be refined based
on which pattern was matched. Dependently typed first-class
cases are critical for typing our object encodings, a topic we
discuss later in this section.

1.2 Object-oriented programming in TinyBang
Contributions of our object encodings include the following.

Objects as variants Objects are commonly encoded as
records of functions; method invocation is achieved by in-
voking a function in the record. While such an encoding
could be made to work in TinyBang, it is much more com-
plex and so we opt to use a variant-based encoding: objects
are message-processing functions which case on the form
of message and method invocation is a simple function call.
The variant-based view of objects is not new; classic Actor
models [2] use an untyped form. But while these models are
traditionally quite challenging to type, TinyBang’s type sys-
tem is well-suited to them. First, variant-based objects rely
on case matching, a traditionally homogeneously-typed con-
struct, to dispatch messages; the type-refining argument slic-
ing and dependently-typed case result types makes them ex-
pressive enough to be useful for encoding objects. Second,
case matching is a monolithic operation in most languages,
making it difficult to compose objects or create extensions;
TinyBang’s first-class case clauses support object concate-
nation and subclassing.

Resealing objects to support object extension A key idea
of [7] is a sealing transformation where an object template
turns into a messageable (but non-extensible) object. Our en-
coding of objects extends that idea by adding a resealing
operation: the type of self is captured in the closure of a
message dispatch function that can be overridden due to the
asymmetric nature of onioning in TinyBang. Our resealer
solves an open problem of making a fully flexible model
where objects can be both extended and messaged whilst

e ::= x | () | Z | l e | ref e | ! e | e & e | expressions

φ -> e | e� e | e e | letx = e in e | x := e in e
φ ::= x | () | int | l φ | φ &φ patterns

� ::= + | - | == | <= | >= operators

l ::= ‘(alphanumeric) labels

Figure 2.1. TinyBang Syntax

being statically typed. Several of the novel features of Tiny-
Bang need to work together to make this encoding work.

Outline In the next section, we give an overview of Tiny-
Bang and how it can encode object features. In Section 3, we
show the operational semantics and type system for a core
subset of TinyBang, trimmed to the key features for read-
ability; we prove soundness and decidability for this system
in the appendices. Related work is in Section 4 and we con-
clude in Section 5.

2. Overview
This section gives an overview of the TinyBang language
and of how it supports flexible object operations and other
scripting features.

2.1 Language Features for Flexible Objects
The TinyBang syntax used in this section appears in Fig-
ure 2.1. The core TinyBang formalized in Section 3 uses a
restricted A-normal form of this grammar. Operator prece-
dence is as follows: labels (e.g. ‘Foo 0) have highest parse
precedence, onioning (e.g. ‘A 0 & ‘B 0) has the next high-
est precedence, and function arrows (e.g. x -> ‘A x) have
the least precedence. Patterns use the same precedence rules.
State and variable binding uses ML-style syntax; reference
constructors are parsed with the same precedence as labels.

Program types take the form of a set of subtype con-
straints [3]. For the purposes of this Overview we will be
informal about type syntax. Our formal type constraint syn-
tax can be viewed as an A-normalized type grammar, and
this grammar implicitly supports (positive) union types by
giving a type variable multiple lower bounds: for example,
int ∪ bool is equivalently expressed as a type α with con-
straints int <: α and bool <: α. So, as we do with the
expression syntax, we will write types in a standard nested
form in this section for presentation clarity. The details of
the type system are presented in Section 3.3.

Simple functions as methods We begin by considering the
oversimplified case of an object with a single method and
no fields or self-awareness. In the variant encoding, such
an object is represented by a function which matches on a
single case. Note that, in TinyBang, all functions are written
φ -> e, with φ being a pattern to match against the function’s
argument. Combining pattern match with function definition
is also possible in ML and Haskell, but we go further: there is
no need for any match syntax in TinyBang since match can
be encoded as a pattern and its application. We call these

Types for Flexible Objects 2 2014/3/25

one-clause pattern-matching functions simple functions. For
instance, consider the following object and its invocation:

1 let obj = (‘twice x -> x + x) in obj (‘twice 4)

The syntax ‘twice 4 is a label constructor similar to an
OCaml polymorphic variant; as in OCaml, the expres-
sion ‘twice 4 has type ‘twice int. The simple function
‘twice x -> x + x is a function which matches on any ar-
gument containing a ‘twice label and binds its contents to
the variable x. Note that the expression ‘twice 4 represents
a first-class message; the object invocation is represented
with its arguments as a variant.

Unlike a traditional match expression, a simple function
is only capable of matching one pattern. To express general
match expressions, functions are concatenated via the onion
operation & to give compound functions. Given two function
expressions e1 and e2, the expression (e1 & e2) conjoins
them to make a compound function with the conjoined pat-
tern, and (e1 & e2) a will apply the function which has a
pattern matching a; if both patterns match a, the leftmost
function (e.g. e1) is given priority. We can thus write a dis-
patch on an object with two methods simply as:

1 let obj = (‘twice x -> x + x) & (‘isZero x -> x == 0) in

2 obj ‘twice 4

The above shows that traditional match expressions can
be encoded using the & operator to join a number of simple
functions: one for each case. Function conjunction general-
izes the first-class cases of [6]; that work does not support
“override” of existing clauses or heterogeneously typed case
branches.
Dependent pattern types The above shows how to encode
an object with multiple methods as an onion of simple func-
tions. But we must be careful not to type this encoding in the
way that match/case expressions are traditionally typed. The
analogous OCaml match/case expression

1 let obj m = (match m with

2 | ‘twice x -> x + x

3 | ‘isZero x -> x == 0) in . . .

will not typecheck; OCaml match/case expressions must
return the same type in all case branches.1 Instead, we
give the function a dependent pattern type that is infor-
mally (‘twice int → int) & (‘isZero int → bool). If
the function is applied in the context where the type of mes-
sage is known, the appropriate result type is inferred; for
instance, invoking this method with ‘isZero 0 always pro-
duces type bool and not type int ∪ bool. Because of this
dependent typing, match expressions encoded in TinyBang
may be heterogeneous; that is, each case branch may have
a different type in a meaningful way. When we present the
formal type system below, we show how these dependent

1 The recent OCaml 4 GADT extension mitigates this difficulty but requires
an explicit type declaration, type annotations, and only works under a closed
world assumption.

pattern types extend the expressiveness of conditional con-
straint types [3, 18] in a dimension critical for typing objects.

This need for dependent typing arises largely from our
desire to accurately type a variant-based object model; a
record-based encoding of objects would not have this prob-
lem. We choose a variant-based encoding because it greatly
simplifies the encodings such as self-passing and overload-
ing, which we describe below.
Onions are records There is no record syntax in Tiny-
Bang; we only require the record concatenation operator &
so we can append values into type-indexed records. We in-
formally call these records onions to signify these proper-
ties. Here is an example of how objects can be encoded with
multi-argument methods:

1 let obj = (‘sum (‘x x & ‘y y) -> x + y)

2 & (‘equal (‘x x & ‘y y) -> x == y)

3 in obj (‘sum (‘x 3 & ‘y 2))

The ‘x 3 & ‘y 2 is an onion of two labels and amounts
to a two-label record. This ‘sum-labeled onion is passed to
the pattern ‘x x & ‘y y. (We highlight the pattern & differ-
ently than the onioning & because the former is a pattern con-
junction operator: the value must match both subpatterns.)
Also observe from this example how there is no hard distinc-
tion in TinyBang between records and variants: there is only
one class of label. This means that the 1-ary record ‘sum 4

is the same as the 1-ary variant ‘sum 4.

2.2 Self-Awareness and Resealable Objects
Up to this point objects have not been able to invoke their
own methods, so the encoding is incomplete. To model self-
reference we build on the work of [7], where an object exists
in one of two states: as a prototype, which can be extended
but not messaged, or as a “proper” object, which can be
messaged but not extended. A prototype may be “sealed” to
transform it into a proper object, at which point it may never
again be extended.

Unlike the aforecited work, our encoding permits sealed
objects to be extended and then resealed. This flexibility of
TinyBang allows the sharp phase distinction between proto-
types and proper objects to be relaxed. All object extension
below will be performed on sealed objects. Object sealing
in TinyBang requires no special metatheory; it is defined di-
rectly as a function seal, which takes an object obj and re-
turns its sealed counterpart. We define seal as follows:

1 let fixpoint =

2 f -> (g -> x -> g g x) (h -> y -> f (h h) y) in

3 let seal = fixpoint (seal -> obj ->

4 (msg -> obj (msg & ‘self (seal obj))) & obj) in

5 let obj = (‘twice x -> x + x) &

6 (‘quad x & ‘self self ->

7 self (‘twice x) + self (‘twice x))

8 let sObj = seal obj in

9 let twenty = sObj ‘quad 5 in // returns 20

The seal function operates by adding a message handler
which captures every message sent to obj. (We still add

Types for Flexible Objects 3 2014/3/25

& obj to this message handler to preserve the non-function
parts of the object.) The message handler adds a ‘self

component (containing seal obj) to the right of the message
and then passes it to the original object. We require fixpoint
to ensure that this self-reference is also sealed. Thus, every
message send to sObj will, in effect, be sent to obj with
‘self sObj attached to the right.
Extending previously sealed objects In the self binding
function above, the value of self is onioned onto the right of
the message; this gives any explicit value of ‘self in a mes-
sage passed to a sealed object priority over the ‘self pro-
vided by the self binding function (onioning is asymmetric
with left precedence). Consider the following continuation
of the previous code:

1 let sixteen = sObj ‘quad 4 in // returns 16

2 let obj2 = (‘twice x -> x) & sObj in

3 let sObj2 = seal obj2 in

4 let eight = sObj2 ‘quad 4 in . . . // returns 8

We can extend sObj after messaging it, here overriding
the ‘twice message; sObj2 represents the (re-)sealed version
of this new object. sObj2 properly knows its “new” self due
to the resealing, evidenced here by how ‘quad invokes the
new ‘twice. To see why this works let us trace the execu-
tion. Expanding the sealing of sObj2, sObj2 (‘quad 4) has
the same effect as obj2 (‘quad 4 & ‘self sObj2), which
has the same effect as sObj (‘quad 4 & ‘self sObj2).
Recall sObj is also a sealed object which adds a ‘self

component to the right; thus this has the same effect
as obj (‘quad 4 & ‘self sObj2 & ‘self sObj). Because
the leftmost ‘self has priority, the ‘self is properly sObj2

here. We see from the original definition of obj that it
sends a ‘twice message to the contents of self (here,
sObj2), which then follows the same pattern as above until
obj (‘twice 4 & ‘self sObj2 & ‘self sObj) is invoked
(two times – once for each side of +).

Sealed and resealed objects obey the desired object sub-
typing laws because we “tie the knot” on self using seal,
meaning there is no contravariant self parameter on object
method calls to invalidate object subtyping. Additionally,
our type system includes parametric polymorphism and so
sObj and the re-sealed sObj2 do not have to share the same
self type, and the fact that & is a functional extension oper-
ation means that there will be no pollution between the two
distinct self types. Key to the success of this encoding is
the asymmetric nature of &: it allows us to override the de-
fault ‘self parameter. This self resealing is possible in the
record model of objects, but is much more convoluted; this
is a reason that we switched to a variant model.
Onioning it all together Onions also provide a natural
mechanism for including fields; we simply concatenate them
to the functions that represent the methods. Consider the
following object which stores and increments a counter:

1 let obj = seal (‘x (ref 0) &

2 (‘inc _ & ‘self self ->

3 (‘x x -> x := !x + 1 in !x) self))

4 in obj ‘inc ()

Observe how obj is a heterogeneous “mash” of a record
field (the ‘x) and a function (the handler for ‘inc). This is
sound because onions are type-indexed [21], meaning that
they use the types of the values themselves to identify data.
For this particular example, invocation obj ‘inc () (note ()
is an empty onion, a 0-ary conjunction) correctly increments
in spite of the presence of the ‘x label in obj.

Here we define a few sugarings which we use in the ex-
amples throughout the remainder of this section, although a
“real” language built on these ideas would include sugarings
for each of the features we are about to mention as well.
o.x ∼= (‘x x -> x) o

o.x = e1 in e2 ∼= (‘x x -> x = e1 in e2) o

if e1 then e2
else e3

∼= ((‘True _ -> e2) &

(‘False _ -> e3)) e1

e1 and e2 ∼= ((‘True _ -> e2) &

(‘False _ -> ‘False ())) e1

Using this sugar, the update in the counter ob-
ject above could be expressed more succinctly as
self.x = self.x + 1 in self.x.

2.3 Flexible Object Operations
Here we cover how TinyBang supports a broad family of
flexible object operations, expanding on the first-class mes-
sages and flexible extension operations covered above. We
show encodings in terms of objects rather than classes for
simplicity; applying these concepts to classes is straightfor-
ward.
Default arguments TinyBang can easily encode default
arguments, arguments which are optional and take on a de-
fault value if missing. For instance, consider:

1 let obj = seal ((‘add (‘x x & ‘y y) -> x + y)

2 & (‘sub (‘x x & ‘y y) -> x - y)) in

3 let dflt = obj -> (‘add a -> obj (‘add (a & ‘x 1))) & obj in

4 let obj2 = dflt obj in

5 obj2 (‘add (‘y 3)) + obj2 (‘add (‘x 7 & ‘y 2)) // 4 + 9

Object dflt overrides obj’s ‘add to make 1 the default
value for ‘x. Because the ‘x 1 is onioned onto the right of
a, it will have no effect if an ‘x is explicitly provided in
the message. This example also shows how the addition of
default behavior is a first-class operation and not just first-
order syntax, giving TinyBang more flexibility than most
implementations of default arguments.
Overloading The pattern-matching semantics of functions
also provide a simple mechanism whereby function (and
thus method and operator) overloading can be defined. We
might originally define negation on the integers as

1 let neg = x & int -> 0 - x in . . .

Here, the conjunction pattern x & int will match the ar-
gument with int and also bind it to the variable x. Later
code could then extend the definition of negation to include

Types for Flexible Objects 4 2014/3/25

boolean values. Because operator overloading assigns new
meaning to an existing symbol, we redefine neg to include
all of the behavior of the old neg as well as new cases for
‘True and ‘False:

1 let neg = (‘True _ -> ‘False ())

2 & (‘False _ -> ‘True ()) & neg in . . .

Negation is now overloaded: neg 4 evaluates to -4, and
neg ‘True () evaluates to ‘False () due to how applica-
tion matches function patterns.
Mixins The following example shows how a simple two-
dimensional point object can be combined with a mixin

providing extra methods:

1 let point = seal (‘x (ref 0) & ‘y (ref 0)

2 & (‘l1 _ & ‘self self -> self.x + self.y)

3 & (‘isZero _ & ‘self self ->

4 self.x == 0 and self.y == 0)) in

5 let mixin = ‘near _ & ‘self self -> self ‘l1 ()) < 4) in

6 let mixPt = seal (point & mixin) in mixPt ‘near ()

Here mixin is a function which invokes the value passed
as self. Because an object’s methods are just functions
onioned together, onioning mixin into point is sufficient to
produce a properly functioning mixPt.

The above example typechecks in TinyBang; parametric
polymorphism is used to allow point, mixin, and mixPt to
have different self-types. The mixin variable has the approx-
imate type “(‘near unit & ‘self α) → bool where α is
an object capable of receiving the ‘l1 message and produc-
ing an int”. mixin can be onioned with any object that satis-
fies these properties. If the object does not have these prop-
erties, a type error will result when the ‘near message is
passed; for instance, (seal mixin) (‘near ()) is not ty-
peable because mixin, the value of self, does not have a
function which can handle the ‘l1 message.

TinyBang mixins are first-class values; the actual mixing
need not occur until runtime. For instance, the following
code selects a weighting metric to mix into a point based
on some runtime condition cond.

1 let cond = (runtime boolean) in

2 let point = (as above) in

3 let w1 = (‘weight _ & ‘self self -> self.x + self.y) in

4 let w2 = (‘weight _ & ‘self self -> self.x - self.y) in

5 let mixPt = seal (point & (if cond then w1 else w2)) in

6 mixPt ‘weight ()

Inheritance, classes, and subclasses Typical object-
oriented constructs can be defined similarly to the above.
Object inheritance is similar to mixins, but a variable super

is also bound to the original object and captured in the clo-
sure of the inheriting objects methods, allowing it to be
reached for static dispatch. The flexibility of the seal func-
tion permits us to ensure that the inheriting object is used
for future dispatches even in calls to overridden methods.
Classes are simply objects that generate other objects, and
subclasses are extensions of those object generating objects.
We forgo examples here for brevity.

e ::= −⇀s expressions

E ::= −−−−⇀x = v environment

s ::= x = v | x =x | x =x x clauses

v ::= () | l x | x &x | φ -> e values

φ ::=
−−−−⇀
x = v̊ patterns

v̊ ::= () | l x | x &x pattern vals

B ::= −−−−⇀x =x bindings

l ::= ‘(alphanumeric) labels

x ::= (alphanumeric) variables

Figure 3.1. TinyBang ANF Grammar

3. Formalization
We now give formal semantics to a subset of TinyBang. For
clarity, features which are not directly related to our conjunc-
tion semantics – integers, state, etc. – are omitted. We will
first translate the TinyBang program to A-normal form; this
allows us to use much simpler definitions and provides a bet-
ter alignment between expressions and types. Section 3.2 de-
fines the operational semantics of the A-normalized version
of restricted TinyBang. Section 3.3 defines the type system
and soundness and decidability properties. We show how the
omitted features can be reintroduced to this formal system in
Appendix D.

Notation For a given construct g, we let [g1, . . . , gn] de-
note an n-ary list of g, often using the equivalent short-
hand

n−⇀g . We elide the n when it is unnecessary. Operator
‖ denotes list concatenation. For sets, we use similar no-
tation:

n⨽−−⨼g abbreviates {g1, . . . , gn} for some arbitrary or-
dering of the set. We sometimes use � to indicate index
positions for clarity. For example,

n−−−⇀
g�/g

′ is shorthand for
[g1/g

′, . . . , gn/g
′].

3.1 A-Translation
In order to simplify our formal presentation, we convert
TinyBang into A-normal form; this brings expressions, pat-
terns, and types into close syntactic alignment which greatly
simplifies the proofs. The grammar of our A-normalized lan-
guage appears in Figure 3.1. For the purposes of discussion,
we will refer to the restriction of the language presented in
Section 2 as the nested language and to the language appear-
ing in Figure 3.1 as the ANF language.

Observe how expression and pattern grammars are nearly
identical. We require that both expressions and patterns de-
clare each variable at most once; expressions and patterns
which do not have this property must be α-renamed such that
they do. The constructions E and B are not directly used in
the A-translation; they define the environment and bindings
for the operational semantics below.

We define the A-translation function HeIx in Figure 3.2.
This function accepts a nested TinyBang expression and pro-
duces the A-normalized form −⇀s in which the final declared
variable is x. We overload this notation to patterns as well.

Types for Flexible Objects 5 2014/3/25

Expressions
H()Ix = [x = ()]
Hl eIx = HeIy ‖[x = l y]

He1 & e2Ix = He1Iy ‖ He2Iz ‖[x = y & z]
Hφ -> eIx = [x = HφIy -> HeIz]
He1 e2Ix = He1Iy ‖ He2Iz ‖[x = y z]

Hletx1 = e1 in e2Ix2 = He1Ix1 ‖ He2Ix2

Hx2Ix1 = [x1 =x2]

Patterns
H()Ix = [x = ()]
Hl φIx = HφIy ‖[x = l y]

Hφ1 &φ2Ix = Hφ1Iy ‖ Hφ2Iz ‖[x = y & z]
Hx2Ix1

= [x2 = ()]

Figure 3.2. TinyBang A-Translation

We use y and z to range over fresh variables unique to that
invocation of the translation function; different recursive in-
vocations use different fresh variables y and z.

Notice that A-translation of patterns is in perfect paral-
lel with the expressions in the above; for example, the ex-
pression ‘A x -> x translates to [y1 = ([x = (), y3 = ‘A x]
-> [y2 = x])]. Using the same A-translation for patterns
and expressions greatly aids the formal development, but it
takes some practice to read these A-translated patterns. Vari-
ables matched against empty onion (x = () here) are un-
constrained and represent bindings that can be used in the
body. Other variables such as the y3 are not bindings; clause
y3 = ‘A x constrains the argument to match a ‘A-labeled
value. The last binding in the pattern, here y3 = ‘A x, is
taken to match the argument when the function is applied;
this is in analogy to how the variable in the last clause of
an expression is the final value. Variable binding is mostly
standard: every clause x = () appearing in the function’s
pattern binds x in the body of the function. In clause lists,
each clause binds the defining variable for all clauses appear-
ing after it; nested function clauses follow the usual lexical
scoping rules. For the remainder of the paper, we assume
expressions are closed unless otherwise noted.

3.2 Operational Semantics
Next, we define an operational semantics for ANF Tiny-
Bang. The primary complexity of these semantics is pattern
matching, for which several auxiliary definitions are needed.

3.2.1 Compatibility
The first basic relation we define is compatibility: is a value
accepted by a given pattern? We define compatibility using
a constructive failure model for reasons of well-foundedness
which are discussed below. We use the symbol � to range
over the two symbols and#, which indicate compatibility
and incompatibility, respectively. We define a simple order-
ing with # < on these symbols.

We write x �
E �Bφ x′ to indicate that the value x is

compatible (if � =) or incompatible (if � = #) with

EMPTY ONION
x0 = v ∈ E x′0 = () ∈ φ B = [x′0 =x0]

x0

E�

B
φ x′0

LABEL

x0 = l x1 ∈ E x′0 = l x
′
1 ∈ φ x1

�
E�

B
φ x′1

x0
�
E�

B
φ x′0

CONJUNCTION PATTERN
x′0 =x

′
1 &x

′
2 ∈ φ

x0
�1

E �
B1

φ x′1 x0
�2

E �
B2

φ x′2

x0
min(�1,�2)
E �B1 ‖B2

φ x′0

ONION VALUE LEFT

x0 =x1 &x2 ∈ E x1

E�

B
φ x′0

x0

E�

B
φ x′0

ONION VALUE RIGHT
x0 =x1 &x2 ∈ E

x′0 =x
′
1 &x

′
2 /∈ φ x1

#
E�

B′

φ x′0 x2
�
E�

B
φ x′0

x0
�
E�

B
φ x′0

LABEL MISMATCH
x0 = l x1 ∈ E x′0 = v̊ ∈ φ v̊ = l′ x2 only if l 6= l′

v̊ not of the form x′ &x′′ or ()

x0
#
E�

[]
φ x′0

Figure 3.3. Pattern compatibility rules

the pattern x′. E represents the environment in which to
interpret the value x while φ represents the environment
in which to interpret the pattern x′. B dictates how, upon
a successful match, the values from E will be bound to
the pattern variables in φ. Compatibility is the least relation
satisfying the rules in Figure 3.3.

The compatibility relation is key to TinyBang’s seman-
tics and bears some explanation. As mentioned above, ev-
ery clause x = () appearing in the pattern binds the variable
x; the Empty Onion rule ensures this by adding a binding
clause to B. The Label rule simply recurses when the value
is a label and the pattern matches that label; the Label Mis-
match rule (which is the base case for failure) applies when
the pattern does not match that label. Conjunction is rela-
tively self-evident; min is used here as a logical “and” over
the two recursive premises.

The onion rules require special attention due to Tiny-
Bang’s asymmetric concatenation semantics. Given a value
x1 &x2, it is possible that both x1 and x2 match the pat-
tern. If so, we must ensure that we take the bindings from
the compatibility of x1 and not those from x2. The Onion
Value Left rule applies when the left side matches; in such a
case, whether the right side matches is irrelevant. The Onion
Value Right rule only applies if the left side doesn’t match;

Types for Flexible Objects 6 2014/3/25

that is, a proof of compatibility may recursively depend on a
proof of incompatibility. This is the reason that our relation
is defined to be constructive for both success and failure:
it is necessary to show that the relation is inductively well-
founded. The premise x′0 =x

′
1 &x

′
2 /∈ φ is used to ensure that

e.g. when matching the value ‘A () & ‘B () to the pattern
‘A () & ‘B (), we decompose the pattern first.2

This relation is designed with a particular goal: to make
compatibility between a value and a pattern unambiguous.
We assert that we have done so in the following lemma:
Lemma 3.1. For any x, E, x′, and φ, there exist unique B
and � such that x �

E�Bφ x′.
The proof is direct by induction: B and � are constructed
from the leaves of the tree up to the root. Similar lemmas
apply for the other relations throughout this section.

For an example, consider matching the pattern
‘A a & ‘B b against the value ‘A 0 & ‘B (). The A-
translations of these expressions are, respectively, the first
and second columns below. Compatibility v5

E �Bφ p3

holds with the bindings B shown in the third column.
E φ B

v1 = ()

v2 = ‘A v1

v3 = ()

v4 = ‘B v3

v5 = v2 & v4

a = ()

p1 = ‘A a

b = ()

p2 = ‘B b

p3 = p1 & p2

a = v1

b = v3

3.2.2 Matching
Compatibility determines if a value matches a single pat-
tern; we next define a matching relation to check if a se-
ries of pattern clauses match. In TinyBang, recall there is
no case/match syntax for pattern matching; individual pat-
tern clauses pattern -> body are expressed as simple func-
tions φ -> e and a series of pattern clauses are expressed by
onioning together simple functions. We thus need to define
an application matching relation x0 x1

�;E e to determine
if an onion of pattern clauses x0 can be applied to argument
x1. This relation is constructive on failure in the same fash-
ion as compatibility, this time to ensure that left precedence
on compound function invocation is correctly enforced.

We define matching as the least relation satisfying the
rules in Figure 3.4. The helper function RV extracts the
return variable from a value, formally defined as follows:
RV(e ‖[x = v]) = x and RV(e ‖[x = v̊]) = x.

The Function rule is the base case of a simple function
application: the argument value x1 must be compatible with
the pattern φ, and if so insert the resulting bindings B at
the top of the function body e. The Onion Left/Right rules
are the inductive cases; notice that the Onion Right rule can
only match successfully if the (higher priority) left side has

2 Interesting semantics arise from these decisions. While it is possible to
add to an onion a label it already contains, this doesn’t necessarily override
that label in the shallow sense; that is, ‘A (‘B ()) & ‘A (‘C ())
still matches the pattern ‘A ‘C (). There is subtle expressiveness in these
semantics; we do not explore them here for reasons of space.

FUNCTION

x0 = (φ -> e) ∈ E x1
�
E�

B
φ RV(φ)

x0 x1
�;E B ‖ e

ONION LEFT
x0 =x2 &x3 ∈ E x2 x1

 ;E e

x0 x1
 ;E e

ONION RIGHT
x0 =x2 &x3 ∈ E

x2 x1
#;E e′ x3 x1

�;E e

x0 x1
�;E e

NON-FUNCTION
x0 = (φ -> e) /∈ E x0 =x2 &x3 /∈ E

x0 x1
#;E e

Figure 3.4. Application matching rules

VARIABLE LOOKUP
x1 = v ∈ E

E ‖[x2 =x1] ‖ e −→1 E ‖[x2 = v] ‖ e

APPLICATION
x0 x1

 ;E e′ α(e′) = e′′

E ‖[x2 =x0 x1] ‖ e −→1 E ‖ e′′ ‖[x2 = RV(e′′)] ‖ e

Figure 3.5. The operational semantics small step relation

failed to match. The Non-Function rule is the base case for
application of a non-function, which fails but in a way which
permits dispatch to continue through the onion.

3.2.3 Operational Semantics
Using the compatibility and matching relations from above,
we now define the operational semantics of restricted Tiny-
Bang as a small step relation e −→1 e′. Our definition uses
an environment-based semantics; it proceeds by acting on
the first unevaluated clause of e. We use an environment-
based semantics (rather than a substitution-based semantics)
due to its suitability to ANF and because it aligns well with
the type system presented in the next section.

We must freshen variables as they are introduced to the
expression to preserve the invariant that the ANF TinyBang
expression uniquely defines each variable; to do so, we take
α(e) to be an α-renaming function which freshens (with
respect to the operational semantics derivation) all variables
in ewhich are not free. We then define the small step relation
as the least relation satisfying the rules given by Figure 3.5.

The application rule simply inlines the (freshened) func-
tion body e′′ in the event that the matching relation reports
that it matched; recall that e′ returned by matching is the
body of the matched function with argument variable bind-

Types for Flexible Objects 7 2014/3/25

C ::= ⨽−−⨼c constraint sets

c ::= τ <: α | α <: α | α α <: α constraint

V ::=
⨽−−−−−−⨼
τ <: α constraint value sets

F ::=
⨽−−−−−−−⨼
α <: α constraint flow sets

τ ::= () | l α | α &α | α\V → α\C types

α type variables

Figure 3.6. The TinyBang type grammar

ings prepended. The variable x2 needing the result of the call
is assigned the return value of the inlined function.

We define e0 −→∗ en to hold when e0 −→1 . . . −→1 en
for some n ≥ 0. Note that e −→∗ E means that computation
has resulted in a final value. We write e X−→1 iff there is no
e′ such that e −→1 e′; observe E X−→1 for any E. When
e X−→1 for some e not of the form E, we say that e is stuck.

3.3 Type System
We base TinyBang’s type system on subtype constraint sys-
tems, which have been shown to be quite expressive [3]
and suitable for complex pattern matching [18] and object-
orientation [24]. We begin by establishing a close syntac-
tic correspondence between expressions and types (which is
made easy by our choice of ANF expression syntax); we then
define type system relations which parallel those from the
operational semantics, including a deductive constraint clo-
sure which parallels the small step relation itself. Our proof
of soundness proceeds by showing that, due to this align-
ment, programs which get stuck always correspond to in-
consistent constraint sets.

3.3.1 Initial Alignment
Figure 3.6 provides a grammar of the type system. Note the
very close alignment between expression and type grammar
elements; E has type V , and variable bindings B have the
type analog F . Expressions e have types α\C; expressions
and type grammars are less different than they appear, since
the expression clauses are a list where the last variable con-
tains the final value implicitly whereas in the type the final
type location α must be explicit. Both v and v̊ have type τ .

We formalize this initial alignment step as a function JeKE

which produces a constrained type α\C; see Figure 3.7.
Initial alignment over a given e picks a single fresh type
variable for each program variable in e; for the variable x0,
we denote this fresh type variable as ?

α0. The function is
simple: each clause x0 = . . . is mapped to a constraint . . . <:
?
α0. Note that functions φ -> e produce types α′\V → α\C:
patterns only contain value constraints V ⊆ C.

3.3.2 Equivalence
Below, we define the type system’s constraint closure rela-
tion. As with the grammars, the type system relations closely
parallel the relations in the evaluation system: there is a type
system analogue for compatibility, matching, and small-step
operational semantics (the latter of which is paralleled by
the constraint closure relation itself). In order to keep the

J
n−⇀s KE = αn\

n⨽−−⨼c where
∀i ∈ {1..n}.JsiKS = αi\ci

J
n−−⇀
x = v̊KP = αn\

n⨽−−⨼c where
∀i ∈ {1..n}.Jxi = v̊iK̊S = αi\ci

Jx0 = ()KS =
?
α0\ () <:

?
α0

Jx0 = l x1KS =
?
α0\ l

?
α1 <:

?
α0

Jx0 =x1 &x2KS =
?
α0\

?
α1 &

?
α2 <:

?
α0

Jx0 =φ -> eKS =
?
α0\ JφKP → JeKE <:

?
α0

Jx0 =x1KS =
?
α0\

?
α1 <:

?
α0

Jx0 =x1 x2KS =
?
α0\

?
α1

?
α2 <:

?
α0

Jx0 = ()K̊S =
?
α0\ () <:

?
α0

Jx0 = l x1K̊S =
?
α0\ l

?
α1 <:

?
α0

Jx0 =x1 &x2K̊S =
?
α0\

?
α1 &

?
α2 <:

?
α0

Figure 3.7. Initial alignment

type system decidable, we define these relations in terms
of a notion of type variable equivalence which represents
type variable unifications. This relation grows monotoni-
cally throughout closure as new unifications are performed.

We use the symbol ∼= to range over type variable equiva-
lences. For notational purposes, we overload these relations
to operate homomorphically on constraint sets. We may also
write∼= in a context where a set is expected (e.g. 〈α, α′〉 ∈ ∼=
or ∼= ⊆ ∼=′); in this case, it is interpreted as the set of pairs
of variables for which the relation holds.

Most of the relations below are explicitly defined as
equivalence-parametric, meaning that they take an equiva-
lence relation ∼= as an implicit parameter. These relations
are defined in a way that respects equivalence: in any place
of the relation other than the equivalence parameter, replac-
ing a type variable with another, equivalent type variable will
not change whether or not the relation holds. In the defini-
tion of equivalence-parametric relations, we assume that ∈
and /∈ are also equivalence parametric; () <: α /∈ C, for
instance, indicates that no constraint () <: α′ appears in C
such that α ∼= α′.

3.3.3 Slicing
When defining type compatibility in TinyBang, two subtle
problems arise which did not appear in the evaluation sys-
tem. Here, we describe those problems and define a new re-
lation, slicing to solve them.

The first problem has to do with soundness. In the eval-
uation system, each variable is guaranteed to have a single
assignment; thus, a premise of value compatibility in Fig-
ure 3.3 such as “x1 = l x0 ∈ E” is unambiguous. This is
not so in the type system: a single type variable may have
multiple lower bounds. Such type variables represent union
types in constraint-based type systems and present subtle
challenges. For instance, consider a direct translation of Fig-
ure 3.3 to the type system (replacing all x with α, all B with
F , all φ with V , and so on). In the resulting relation, the (in-
formally written) type ‘Aα ∪ ‘Bα would appear to match

Types for Flexible Objects 8 2014/3/25

the pattern ‘A _ &‘B _: we can prove that the argument type
variable has a ‘A lower bound and, independently, we can
prove that it has a ‘B lower bound. This is an instance of the
well-known union elimination problem: we must be consis-
tent in our view of how case analysis on unions is performed.
Because TinyBang’s dispatch on functions has weak depen-
dent typing properties, this imprecision is actually unsound
and must be addressed: if the type system erroneously con-
cludes that the argument matches the ‘A _ &‘B _ pattern,
this imprecision may cause it not to consider a lower prior-
ity function which is actually invoked at runtime.

The second challenge in defining type compatibility has
to do with precision. Recall that a key feature of TinyBang
is preserving the dependency between the input and the
output of a function; this is critical to support encodings
such as overloading as presented in Section 2. In particular,
pattern matching in TinyBang does not just bind portions
of the argument; it also refines the types of those bindings.
In essence, TinyBang is resolving application through case
analysis. Consider the following TinyBang code:

1 ((‘CB f -> f (‘Foo ()))

2 & (g -> g ())) arg

In this example, we take arg to be either a callback function
accepting () or the label ‘CB around a callback function
accepting ‘Foo (); in other words, arg is union-typed. The
callback function will be invoked based on whether or not
the label is present. We must be sure, however, that the
second clause only considers the case in which arg is a
function; this is, after all, the only case in which the second
clause can be invoked at runtime. But if we do not perform
this refinement at the type level, g takes on the full union
type and a spurious type error results when we consider a
‘CB label applied to (). (Note that this is different from a
legitimate type error, such as if arg were to have an ‘Oops

type as a third disjunct.)
Both of these problems are caused by the presence of

union types, so we solve them by defining a slicing rela-
tion to eliminate unions before checking compatibility. This
ensures that our union eliminations are consistent (because
they are performed before, not during, compatibility check-
ing) and also provides us with a refined form of the argument
to use in typechecking the function body. In the first problem
above, slicing eliminates the soundness concern because the
argument is first separated into the distinct ‘Aα and ‘Bα
slices and compatibility is checked for each of them sepa-
rately. The second problem above is addressed in the same
way; this process is illustrated in Part A of Figure 3.8. Note
that this union elimination must be complete up to the depth
of the pattern; otherwise, union alignment problems will be-
gin where the elimination stopped.

We write α\V � α′\C to indicate that α\V is a slice
of the constrained type α′\C. The relation is equivalence-
parametric and is defined as follows:

∪

τ1 τ2

‘CB

argument type

‘CB

τ1

τ2

slice

slice

slices

‘CB

αf

αg

 4

 4

4

patterns bindings for

first slice:

αf 7→ τ1

bindings for

second slice:

αg 7→ τ2

Part A Part B

Figure 3.8. How slices refine types

LEAF
α 6∈ V

α\V � α\C

ATOMIC
τ not of the form l α1 or α1 &α2

τ <: α ∈ V τ <: α′ ∈ C
α\V � α′\C

LABEL
l α1 <: α0 ∈ V l α′1 <: α′0 ∈ C α1\V � α′1\C

α0\V � α′0\C

ONION
α1 &α2 <: α0 ∈ V α′1 &α

′
2 <: α′0 ∈ C

α1\V � α′1\C α2\V � α′2\C
α0\V � α′0\C

Figure 3.9. The slice relation for union elimination

Definition 3.2. α\V � α′\C is the least relation defined
by the rules in Figure 3.9. Slicing is equivalence-parametric.
Slices are

• well-formed iff each α′′ in V has at most one lower bound
in V ,
• disjoint iff τ <: α′′ ∈ V implies that α′′ does not appear

in C, and
• minimal iff every upper-bounding α′′ in V is either α or

appears in a lower bound in V .
• acyclic iff there exists a preorder on type variables in V

s.t. α1 < α2 when τ <: α2 ∈ V and α1 appears in τ

Unless otherwise explicitly noted, we assume slices are well-
formed, disjoint, minimal, and acyclic. Since the set V is
minimal, the rules enforce that only one of a choice of unions
in C will be in V , achieving the desired union elimination.

One nuance of slicing is that we require the Leaf rule,
which allows slicing to stop at an arbitrary point, to han-
dle recursive data types. For instance, the recursive type
α\{‘Aα <: α, () <: α} expresses the union of the types
(), ‘A (), ‘A ‘A (), and so on. The above relation can slice
this type into α′\{() <: α′}, α′\{‘Aα′′ <: α′, () <: α′′},
and so on. As there are infinitely many such slices, the Leaf
rule allows us to create “partial” slices which represent (per-
haps infinitely) many complete slices; for instance, the slice
α′\{‘Aα} (where α is from the original type above) repre-
sents all slices other than the simple () case. The use of α,

Types for Flexible Objects 9 2014/3/25

unbounded within the set, indicates a point at which union
elimination has stopped. It is the responsibility of compati-
bility, defined below, to handle partial slices correctly.

3.3.4 Compatibility
Using the above slicing relation, we can now define the type
compatibility relation. Because a slice is a union-free rep-
resentation of a type up to some depth, we can define com-
patibility in much the same way as we did in the evaluation
system. As mentioned above, however, slicing may stop at
an arbitrary point. In fact, it may not perform any real slic-
ing at all; α\∅ is always a legal slice of α!

To handle partial slices, we define the type compatibil-
ity relation to filter out slices which are too shallow. In ad-
dition to being compatible () or incompatible (#), type
compatibility may show that a slice and a pattern are par-
tially compatible (G#), meaning that the slice lines up with
the pattern correctly but is insufficiently deep. We use the
metavariable � to range over this extension to the � gram-
mar. As in value compatibility, we view these symbols as
ordered: # < G# < . We define type system compatibility
as the least (equivalence-parametric) relation satisfying the
rules appearing in Figure 3.10.

Figure 3.11 shows an example of slicing and compatibil-
ity on a recursive type: Peano integers. Here, α is a union
type between a successor and a zero. We consider matching
Peano integers against two patterns (written here in nested
form): ‘Z () and ‘S ‘S (). (Recall that () in patterns means
“match anything.”) The topmost slice matches the first pat-
tern directly. The middle slice is partial after a single ‘S: it
fails to match the ‘Z () pattern (we elide that arrow for vi-
sual clarity) and partially matches the second pattern. The
middle slice is insufficiently deep, indicating neither success
nor failure. The bottommost slice matches the second pat-
tern completely; although it is also a partial slice, it is deep
enough that we can assert it would match that pattern regard-
less of how it might be further expanded. In general, there is
always a point at which we can stop slicing: patterns are of
fixed, finite depth, so every slice fixes as either compatible
or incompatible after a certain depth.

Other than the additional concern of partial slices, type
compatibility is much like value compatibility. It uses a
constructive failure model, allowing for the incompati-
bility premise in Onion Value Right and ensuring well-
foundedness; the handling of onions and pattern conjunc-
tions is also the same. Due to this similarity, readers may
find a review of Section 3.2.1 helpful at this point.

3.3.5 Matching
Type matching directly parallels expression matching. As in
the evaluation system, type matching propagates the result of
compatibility and uses the� place to enforce left precedence
of dispatch. Matching α0 α1

�
V0
;V1

α2\C ′ is defined as the
least relation satisfying the clauses in Figure 3.12; matching
is also equivalence-parametric.

PARTIAL
@τ.τ <: α0 ∈ V
α0

G#
V�
∅
V ′ α′0

EMPTY ONION
τ <: α0 ∈ V

() <: α′0 ∈ V ′ F = {α0 <: α′0}
α0

V�

F
V ′ α′0

LABEL
l α1 <: α0 ∈ V

l α′1 <: α′0 ∈ V ′ α1
�
V�

F
V ′ α′1

α0
�
V�

F
V ′ α′0

CONJUNCTION PATTERN
α′1 &α

′
2 <: α′0 ∈ V ′

α0
�1

V �
F1

V ′ α
′
1 α0

�2

V �
F2

V ′ α
′
2

α0
min(�1,�2)
V �F1∪F2

V ′ α′0

ONION VALUE LEFT

α1 &α2 <: α0 ∈ V α1
�
V�

F
V ′ α′0 � 6= #

α0
�
V�

F
V ′ α′0

ONION VALUE RIGHT
α1 &α2 <: α0 ∈ V α′1 &α

′
2 <: α′0 6∈ V ′

α1
#
V�

F ′

V ′ α′0 α2
�
V�

F
V ′ α′0

α0
�
V�

F
V ′ α′0

LABEL MISMATCH
l α1 <: α0 ∈ V

τ <: α′0 ∈ V ′ τ = l′ α2 only if l 6= l′

τ not of the form α′ &α′′ or ()

α0
#
V�
∅
V ′ α′0

Figure 3.10. Type compatibility: does a type match a pat-
tern?

∪α =

‘S‘Z

()

argument type

‘Z ()

‘S ‘S α

‘S α

slice

slice

slice

some possible slices

‘Z ()

‘S ‘S

()

 4

G#4

 4

patterns

Figure 3.11. Type compatibility example

3.3.6 Constraint Closure
Constraint closure can now be defined; each step of closure
represents one forward propagation of constraint informa-
tion and abstractly models a single step of the operational
semantics. This closure is implicitly defined in terms of an
abstract polymorphism framework defined by two functions.
The first, Φ, is analogous to the α(−) freshening function of
the operational semantics. For decidability, however, we do
not want Φ to freshen every variable uniquely; it only per-
forms some α-substitution on the constrained type. We write
Φ(C,α) to indicate the freshening of the variables in C. The

Types for Flexible Objects 10 2014/3/25

FUNCTION

(α′\V ′ → α\C) <: α0 ∈ V0 α1
�
V1
�FV ′ α′

α0 α1
�
V0
;V1

α\C ∪ F

ONION LEFT
α2 &α3 <: α0 ∈ V0 α2 α1

�
V0
;V1

α\C � 6= #

α0 α1
�
V0
;V1

α\C

ONION RIGHT
α2 &α3 <: α0 ∈ V0

α2 α1
#
V0
;V1

α′\C ′ α3 α1
�
V0
;V1

α\C
α0 α1

�
V0
;V1

α\C

NON-FUNCTION
(α′\V ′ → α\C) <: α0 /∈ V0 α2 &α3 <: α0 /∈ V0

α0 α1
#
V0
;V1

α\C

Figure 3.12. Type application matching

TRANSITIVITY
{τ <: α1, α1 <: α2} ⊆ C
C =⇒1 C ∪ {τ <: α2}

APPLICATION
α0 α1 <: α2 ∈ C

α′0\V0 � α0\C α′1\V1 � α1\C
α′0 α

′
1

V0
;V1

α′\C ′ α′′\C ′′ = Φ(α′\C ′, α2)

C =⇒1 C ∪ V1 ∪ C ′′ ∪ {α′′ <: α2}

Figure 3.13. Type constraint closure single-step relation

additional parameter α describes the call site at which the
polyinstantiation took place; this is useful for some poly-
morphism models. The second function, Υ, unifies type vari-
ables by producing type variable equivalences as described
in Section 3.3.2. In particular, the equivalence is used to
unify variables in certain cases of recursion to avoid arbi-
trary blow-up. The simplest polymorphism model would be
a monomorphic type system given by ΦMONO(C,α) = C and
where the relation given by ΥMONO(−) relates each type vari-
able to itself and no others. We discuss our concrete choice
ΦCR/ΥCR in Section 3.4.

We write C =⇒1 C ′ to indicate a single step of constraint
closure. This relation is defined as the least such that the
rules in Figure 3.13 are satisfied. This relation defines the
equivalence to be used by the relations in its premises (and
is not equivalence-parametric): at each constraint closure
step C =⇒1 C ′, we take the type variable equivalence
relation to be Υ(C). We write C0 =⇒∗ Cn to indicate
C0 =⇒1 . . . =⇒1 Cn for some n ≥ 0.

The operational semantics has a definition for a “stuck”
expression; the type system analogue is the inconsistent con-
straint set, which we define as follows:

Jr = neg argKE = αneg αarg <: αr
JHx & int -> xIiIdKE = {α0\V0 → α1\C1 <: αiId}

where V0 = {() <: αx, int <: α13, αx &α13 <: α0}
and C1 = {αx <: α1}

JH(‘True _ -> ‘False ()) & (‘False _ -> ‘True ()) & iIdInegKE ={
α2\{‘True () <: α2} → α3\{‘False () <: α3} <: α4,
α5\{‘False () <: α5} → α6\{‘True () <: α6} <: α7,
α4 &α7 <: α8, α8 &αiId <: αneg

}
Figure 3.14. Worked example

Definition 3.3 (Inconsistency). A constraint set C is incon-
sistent iff, under the equivalence Υ(C), there exists some
α0 α1 <: α2 ∈ C and α′0\V0 � α1\C and α′1\V1 � α1\C
such that α′0 α

′
1

V0
;V1

α′\C ′. A constraint set which is not
inconsistent is consistent.
Informally, inconsistency captures the cases in which an ex-
pression can get stuck. Here, the only such case is when a
compound function cannot match its argument. Since a slice
represents a set of values which may arrive at runtime, we
declare a constraint set inconsistent if the type of a com-
pound function does not match some slice of its argument.

Given the above, we can now define what it means for a
program to be type correct:
Definition 3.4 (Typechecking). A closed expression e type-
checks iff JeKE = α\C and C =⇒∗ C ′ implies that C ′ is
consistent.
This definition is also implicitly parametric in Φ/Υ.

3.3.7 A worked example
Here we work through a small example to clarify how the
relations interact.3 Recall the overloaded negation example
from Section 2.3. Consider the code r = neg arg where arg

may be either an int or a boolean, depending on user in-
put. Rather than redefine neg as in that example, we use
iId, the integer identity function, in place of integer nega-
tion for simplicity. (To present this simple example, we ex-
tend the above type system with the atomic type int.) See
Figure 3.14 for the A-translation and initial alignment. This
means that the constraint set corresponding to the program
is C =

{
αneg αarg <: αr, int <: αarg, ‘True αeo <:

αarg, () <: αeo, ‘False () <: αarg, α0\V0 → α1\C1 <:
αiId, α2\{‘True () <: α2} → α3\{‘False () <: α3} <:
α4, α5\{‘False () <: α5} → α6\{‘True () <: α6} <:
α7, α4 &α7 <: α8, α8 &αiId <: αneg

}
. We also take Vf to

be the largest set such that αf\Vf � αneg\C (other slices
exist, but we do not need them for this presentation), and
we will use the same names to refer to the variables in the
constraint set and in the slice.

To perform closure on this constraint set, we apply the
Application closure rule on {αneg αarg <: αr}, for which
we need to find a slice α′\V ′ � αarg\C. There are five
such slices (up to alpha equivalence), and we will focus on

3 For ease of presentation, we will use l () <: α as shorthand for the
constraints {l α′ <: α, () <: α′} where α′ does not occur elsewhere in
the overall constraint set.

Types for Flexible Objects 11 2014/3/25

three of them: α\{int <: α}, α\{‘True () <: α′}, and
α\{‘True αeo <: α}. The cases for ‘False are analogous.

Letting V = {int <: α}, we have α4 α
Vf
;V

α′′\C ′′ because we can show α #
V �F

′

V ′ α2 (where V ′ =
{‘True () <: α2}) by inspection. Thus we can apply the
Onion Value Right rule (and again by similar logic on α5).
If we can show that α

V�FV0
α0, we can satisfy the second

premise of the Function match rule and then the third (and
last) premise of the Application closure rule; this is straight-
forward using the Conjunction Pattern, Empty Onion, and
(hypothetical) Integer compatibility rules (in that order).

Letting V = {‘True () <: α′}, we can apply Onion
Left and Function match rules, followed by the Label and
Empty Onion compatibility rules, to satisfy the third premise
of the Application closure rule. Letting {‘True αeo <: α},
however, there is only a partial match and we do not satisfy
the Application closure rule.

3.3.8 Formal Properties
We now state formal assertions regarding our type system.
Proofs of these statements appear in the supplementary ap-
pendices. We begin with soundness which, as discussed
above, we prove by simulation rather than subject reduction;
the A-translation of the program and the careful alignment
between each of the relations in the system makes simulation
a natural choice. We require the polyinstantiation function Φ
to be simulation-preserving in that it maintains this simu-
lation and henceforth discuss only simulation-preserving Φ.
We then state soundness as follows:
Theorem 1 (Soundness). If e −→∗ e′ where e′ is stuck then
e does not typecheck.

A proof appears in Appendix A.
The remainder of this section shows that typechecking is

decidable. Our strategy is to demonstrate that the constraint
closure of a finite constraint set C forms a subset inclusion
lattice and that it is sufficient (and computable) to check the
consistency of the top of that lattice. Because constraint clo-
sure is parametric in the polymorphism model, we must limit
Φ to introduce finitely many variables into any produced
constraint set given an initial constraint set. We define Φ with
this property to be finitely freshening; the full definition ap-
pears in Appendix C. Henceforth, we discuss only finitely
freshening Φ. We now state a critical finiteness lemma:

Lemma 3.5. For any e, there exists a finite set of constraints
C ′′ such that, if JeKE = α\C and C =⇒∗ C ′, then C ′ ⊆ C ′′.

A proof appears in Appendix B.
Because of this finiteness and because constraint closure

is monotonic on the constraint set (by inspection of the
constraint closure rules), we can show that every constraint
closure path is of finite length. We write C =⇒! C ′ to
indicate that C =⇒∗ C ′ and that, for every C ′′ such that
C ′ =⇒1 C ′′, we have C ′ ∼= C ′′ (where ∼= is defined by
Υ(C ′)). We then state:

Lemma 3.6 (Convergence). For any finite C, there exists
some C ′ such that C =⇒! C ′.

This lemma is also proven in Appendix B.
The above shows that, for a given program, constraint clo-

sure will converge after finitely many steps. For this result to
be applicable, however, we would like every path to con-
verge to the same set: the top of our closure lattice. This
proof requires that Υ is equivalence monotone, which is true
when C ⊆ C ′ implies that Υ(C) ⊆ Υ(C ′) – that is, a con-
straint superset induces monotonically more equivalences.
Henceforth, we consider only equivalence monotone Υ. We
assert this confluence property as follows:

Lemma 3.7 (Confluence). If C =⇒∗ C ′ and C =⇒∗ C ′′
then there exists some C ′′′ such that C ′ =⇒∗ C ′′′ and
C ′′ =⇒∗ C ′′′.
This is to say that, although multiple constraint closure paths
exist, any two constraint closure paths with a common origin
can meet again in the future. The proof of this lemma appears
in Appendix B and is relatively simple to show; the key
observation is that the set of constraint closure premises that
hold increases monotonically as the constraint set grows.

These assertions show that constraint closure for a given
program forms a subset inclusion lattice. Because inconsis-
tency is also monotonic with constraint set growth, we need
only check the top constraint set in this lattice for inconsis-
tency. It must be possible to decide the top of that lattice:

Lemma 3.8. C =⇒ C ′ is decidable for finite C.

This decidability is proven in Appendix B and largely fol-
lows from Lemma 3.5 above.

Using the above, we can give an equivalent formulation
of typechecking:

Lemma 3.9. An expression e typechecks if and only if
JeKE = α\C, C =⇒! C ′, and C ′ is consistent.

This lemma follows immediately from the above definitions
and statements. We then use this alternate formulation to
state our second theorem:
Theorem 2 (Decidability). Typechecking is decidable.

Appendix B contains a proof of the above which follows by
inspection of each step of the equivalent formulation.

In summary, TinyBang’s type system is sound and de-
cidable if the polymorphism model is finitely freshening,
simulation-preserving, and equivalence monotone. We call
such a polymorphism model well-behaved. The proof that
ΦMONO/ΥMONO is well-behaved is simple, but the model is
not very useful. We now discuss a much more expressive
well-behaved polymorphism model we use in practice.

3.4 A Useful Polymorphism Model: ΦCR/ΥCR

Our implementation of TinyBang uses a polymorphism
model ΦCR/ΥCR which provides a good trade-off between
expressiveness and efficiency. We choose this model over
more traditional approaches such as let-bound polymor-

Types for Flexible Objects 12 2014/3/25

phism because such models lack the needed expressiveness
needed for common object-oriented programming patterns.
For example, consider:

1 let factory x = (‘get _ -> x) in

2 let mkPair f = ‘A (f 0) & ‘B (f ()) in

3 mkPair factory

Here, factory creates simple polymorphic value container.
In a let-bound model, the type given to f within mkPair

is monomorphic; thus, the best type we can assign to the
argument type of f where it is used is the empty onion
(and not int). The novel seal function in Section 2 also
fails to typecheck using let-bound polymorphism because
obj would be mono-typed from within the catch-all message
handler added by the sealing routine.

To provide sufficient precision, the TinyBang type sys-
tem uses call site polymorphism: rather than polyinstanti-
ating variables where they are named, we polyinstantiate
functions when the function is invoked. We thus view every
function as having a polymorphic type. In order to ensure
maximal polymorphism, every variable bound by the body
of the function should be polyinstantiated. This approach is
inspired by flow analyses [1, 22] and has previously been
ported to a type constraint context [24]. A program can have
an unbounded number of function call sequences so some
compromise must be made for recursive programs; a stan-
dard solution to this problem is to chop off call sequences at
some fixed point. While such arbitrary cutoffs may work for
program analyses, they work less well for type systems: they
make the system hard for users to understand and potentially
brittle to small refactorings.

Our approach is to conservatively model the runtime
stack (as in [14]). In particular, we abstract call sequences
as regular expressions, and a single type variable associated
with a regular expression will represent all runtime variables
whose call strings match the regular expression. This model
is powerful enough to assign useful types to the above code
as well as all of the code in the overview. The full defini-
tion of our ΦCR/ΥCR function appears in Appendix C, along
with a proof that this polymorphism model is well-behaved
as discussed in the previous section.

4. Related Work
We believe that TinyBang is the first language with suffi-
cient features for encoding unrestricted typed object exten-
sion and messaging. Several features of TinyBang are criti-
cal to the success of this encoding, including general asym-
metric record append, dependently-typed case results, slices
to refine the types of case inputs, and a polymorphism model
that generalizes let-polymorphism to support polymorphic
object factories.

TinyBang’s object resealing is inspired by the Bono-
Fisher object calculus [7], in which mixins and other higher-
order object transformations are written as functions. Ob-
jects in this calculus must be “sealed” before they are mes-

saged; unlike our resealing, sealed objects cannot be ex-
tended. Some related works relax this restriction but add oth-
ers. In [20], for instance, the power to extend a messaged
object comes at the cost of depth subtyping. In [5], depth
subtyping is admitted but the type system is nominal rather
than structural.

Typed multimethods [15] perform a dispatch similar to
TinyBang’s dispatch on compound functions, but multi-
method dispatch is nominally typed while compound func-
tion dispatch is structurally typed. First-class cases [6] allow
composition of case branches much like TinyBang. In [6],
however, general case concatenation requires case branches
to be written in CPS and requires a phase distinction between
constructing a case and matching with it. TinyBang has a
form of dependent type which allows different case branches
to return different types; this generalizes the expressiveness
of conditional constraints [3, 18] and is related to support for
typed first-class messages a la [17, 18] – first-class messages
are just labeled data in our encoding.

TinyBang shares several features and goals with CDuce
[10]: both aim to be flexible languages built around con-
straint subtyping. CDuce supports dependently-typed case
results as we do, but it does not have slicing on the pattern
input side because the pattern grammar cannot bind refined
types. CDuce lacks a typed record append operation and so
the object encodings of this paper are not possible there.
CDuce takes a local type inference approach; this has the
advantage of being modular but the disadvantage of not be-
ing complete, requiring type annotations in some cases, and
the decidability of their inference algorithm remains open.

TinyBang’s onions are unusual in that they are a form
of record supporting typed asymmetric concatenation. The
bulk of work on typing record extension addresses symmet-
ric concatenation only [19]. Standard typed record-based en-
codings of inheritance [8] avoid the problem of typing first-
class concatenation by reconstructing records rather than ex-
tending them, but this requires the superclass to be fixed
statically. A combination of conditional constraints and row
types can be used to type record extension [18]; TinyBang
uses a different approach that does not need row types.

Our approach to parametric polymorphism in Section 3.4
is based on flow analysis [22, 24]. In the aforecited, poly-
morphic contours are permanently distinct once instantiated.
In TinyBang, contours are optimistically generated and then
merged when a call cycle is detected; this allows more ex-
pressive polymorphism since call cycles don’t need to be
conservatively approximated up front. Contours are merged
by injection into a restricted space of regular expressions
over call strings, an approach that follows program analyses
[14].

We believe the technical development of this paper is
novel in several interesting ways. Proofs of type soundness
usually proceed by subject reduction, but we can directly
align the operational semantics with the type inference algo-

Types for Flexible Objects 13 2014/3/25

rithm in a simulation relation to produce a direct type sound-
ness proof. As such, TinyBang’s type system can be viewed
as a hybrid between a flow analysis [22] or abstract inter-
pretation [11] and a traditional type system. Without such a
technique, type soundness would be very challenging given
the expressiveness needs of our type system. There is no rea-
sonable regular tree or other form of denotational type model
[4, 9, 23] of TinyBang given the flexibility of pattern match-
ing. For example, polymorphism in TinyBang cannot be con-
vex in the sense of [9] since our pattern matching syntax is
expressive enough to distinguish all top-level forms. Another
novel technical contribution is the nearly perfect unification
of expression, pattern, and type syntax, putting them all in
very similar A-normal forms. This syntax unification greatly
cleans up the metatheory.

One novelty of the type system formalization is how we
deal with the well-known union alignment problem. The root
of this problem is that there may not be a consistent view of
which branch of a union type was taken in different pattern
match clauses. All standard union type systems must make
a compromise union elimination rule; [12] contains a review
of existing approaches. Our novel solution is the notion of
a slice in Section 3.3.3 which can be viewed as a (locally)
complete notion of union elimination.

5. Conclusions
Mixins, dynamic extensions, and other flexible object oper-
ations are making an impact in dynamically-typed object-
oriented scripting languages, and this flexibility is important
to bring to statically-typed languages. To this end, we pre-
sented TinyBang, a core language with a static type infer-
ence system that types such flexible operations without oner-
ous false type errors or the need for manual programmer an-
notation. We believe TinyBang solves a longstanding open
problem: it infers types for object-oriented programs with-
out compromising the expressiveness of object subtyping or
of object extension. This is possible due to a combination of
novel features in TinyBang: asymmetric concatenation, first-
class dependently-typed cases, slicing for type refinement,
and a flexible non-let-based polymorphism model.

TinyBang is proved type sound; the proofs are found in
the supplementary appendices. We have implemented the
type inference algorithm and interpreter for TinyBang to
provide a cross-check on the soundness of our ideas; the
implementation can be downloaded from [13]. Type infer-
ence is decidable but not provably polynomial for the same
reason that let-polymorphism is not: artificial programs ex-
ist which will exhibit exponential runtimes. However, all of
the examples in Section 2 typecheck in our implementation
without exponential blowup, and we have designed the poly-
morphism model with practical performance in mind.

We do not expect programmers to write in TinyBang.
Instead, programmers would write in BigBang, a language

we are developing which includes syntax for objects, classes,
and so on, and which will de-sugar to TinyBang.

TinyBang infers extremely precise types, especially in
conjunction with the context-sensitive polymorphism model
described in Section 3.4. While powerful, these types are by
nature difficult to read and defy modularization. Addressing
the problem of readability is beyond the scope of this paper
but is part of our broader research agenda.

References
[1] O. Agesen. The cartesian product algorithm. In ECOOP, volume 952

of Lecture Notes in Computer Science, 1995.

[2] G. Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, 1985.

[3] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with
conditional types. In POPL 21, pages 163–173, 1994.

[4] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Trans.
Program. Lang. Syst., pages 575–631, Sept. 1993.

[5] L. Bettini, V. Bono, and B. Venneri. Delegation by object composition.
Science of Computer Programming, 76:992–1014, 2011.

[6] M. Blume, U. A. Acar, and W. Chae. Extensible programming with
first-class cases. In ICFP, pages 239–250, 2006.

[7] V. Bono and K. Fisher. An imperative, first-order calculus with object
extension. In ECOOP, pages 462–497. Springer Verlag, 1998.

[8] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encod-
ings. Information and Computation, 155(1-2):108–133, 1999.

[9] G. Castagna and Z. Xu. Set-theoretic foundation of parametric poly-
morphism and subtyping. In ICFP, 2011.

[10] G. Castagna, K. Nguyen, Z. Xu, H. Im, S. Lenglet, and L. Padovani.
Polymorphic functions with set-theoretic types. part 1: Syntax, seman-
tics, and evaluation. In POPL, 2014.

[11] P. Cousot. Types as abstract interpretations, invited paper. In POPL,
Jan. 1997.

[12] J. Dunfield. Elaborating intersection and union types. In ICFP, 2012.

[13] P. H. Menon, Z. Palmer, A. Rozenshteyn, and S. Smith. Tinybang
implementation, Jan 2014. http://pl.cs.jhu.edu/big-bang/

tiny-bang_2014-03-01.tgz.

[14] M. Might and O. Shivers. Environment analysis via ∆CFA. In POPL,
2006.

[15] T. D. Millstein and C. Chambers. Modular statically typed multimeth-
ods. In ECOOP, pages 279–303. Springer-Verlag, 1999.

[16] M. H. A. Newman. On theories with a combinatorial definition of
equivalence. Annals of Mathematics, 43(2), 1942.

[17] S. Nishimura. Static typing for dynamic messages. In POPL, 1998.

[18] F. Pottier. A versatile constraint-based type inference system. Nordic
J. of Computing, 7(4):312–347, 2000.

[19] D. Rémy. Type inference for records in a natural extension of ML.
In Theoretical Aspects Of Object-Oriented Programming. MIT Press,
1994.

[20] J. G. Riecke and C. A. Stone. Privacy via subsumption. Inf. Comput.,
172(1):2–28, Feb. 2002.

[21] M. Shields and E. Meijer. Type-indexed rows. In POPL, pages 261–
275, 2001.

[22] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie-Mellon University, 1991. TR CMU-CS-91-145.

[23] J. Vouillon. Polymorphic regular tree types and patterns. In POPL,
2006.

[24] T. Wang and S. F. Smith. Precise constraint-based type inference for
Java. In ECOOP, pages 99–117, 2001. ISBN 3-540-42206-4.

Types for Flexible Objects 14 2014/3/25

http://pl.cs.jhu.edu/big-bang/tiny-bang_2014-03-01.tgz
http://pl.cs.jhu.edu/big-bang/tiny-bang_2014-03-01.tgz

() 4M ()

l x 4M l α iff x 4M α
x1 &x2 4M α1 &α2 iff x1 4M α1 and x2 4M α2

φ -> e 4M α′\V → α\C iff φ 4M α′\V and e 4M α\C
x 4M α iff M(x) = α

x = v 4M τ <: α iff x 4M α and v 4M τ
x2 =x1 4M α1 <: α2 iff x1 4M α1 and x2 4M α2

x3 =x1 x2 4M α1 α2 <: α3 iff ∀i ∈ {1..3}. xi 4M αi

x = v̊ 4M τ <: α iff x 4M α and v̊ 4M τ

e 4M C iff ∀s ∈ e.∃c ∈ C. s 4M c
e 4M α\C iff RV(e) 4M α and e 4M C

φ 4M V iff ∀x = v̊ ∈ e.∃c ∈ V. x = v̊ 4M c
φ 4M α\V iff RV(φ) 4M α and φ 4M V

Figure A.1. Simulation relation

A. Proof of Soundness
In this appendix, we give the proof for Theorem 1. As stated
in Section 3.3, our strategy is to establish a simulation re-
lation between the original program and the constraint set
obtained by initial alignment. We then show that this simu-
lation is preserved throughout constraint closure and observe
that stuck programs are simulated by inconsistent constraint
sets.

A.1 Initial Alignment
We begin by defining this simulation relation over each
construct in the evaluation grammar and its corresponding
construct in the type grammar. We add a third place to this
relation to represent the variable mapping x → α which
aligns value variables to their representative type variables;
we use M to range over these functions. The simulation
relation is defined as follows:
Definition A.1. The simulation relation 4M is defined as the
least relation satisfying the rules in Figure A.1. The notation
x 4 α is used to denote ∃M.x 4M α; similar notation
holds for other grammatical constructs.

Using this relation, we can now demonstrate that the
initial alignment of an expression produces a constrained
type which simulates it.
Lemma A.2. If e is closed then e 4 JeKE.

Proof. This is to say that, for some M , e 4M JeKE. Suppose
that, for all s, we have s 4M α\{c} when JsKS = α\c. Then
this lemma can be proven by induction on the length of e. So
it suffices to show simulation for clauses.

Consider the case where we must show Z 4 int and
x0 4M

?
α0. The former is true by Definition A.1. The latter

is true by construction: we let M be the function mapping
each value variable xi to its corresponding fresh variable ?

αi.
The same argument holds for all non-application clauses.

For functions, we must show that φ 4M JφKP and that
e′ 4M Je′KE. The latter is true by induction on the size of
e′. The former is shown in much the same fashion as the
above. By induction on the length of φ, it suffices to show

ATOMIC
x′ = v ∈ E′ v not of the form l x1 or x1 &x2

x\[x = v] ≪ x′\E′

LABEL
x0 = l x1 ∈ E′ x1\E ≪ x′1\E′

x0\E ‖[x0 = l x1] ≪ x′0\E′

ONION
x0 =x1 &x2 ∈ E′

x1\E1 ≪ x′1\E′1 x2\E2 ≪ x′2\E′2
x0\E1 ‖E2 ‖[x0 =x1 &x2] ≪ x′0\E′

Figure A.2. Deep copy relation

that for all x = v̊ we have x = v̊ 4M α\{τ <: α} when
Jx = v̊K̊S = α\τ <: α. This can be shown in the same fashion
as the non-application clauses above.

Here, closed has the usual meaning: a variable is not used
before it is defined (either by a clause or by a pattern).

A.2 Deep Copying
In proving soundness, we want to show that each small
step of the expression has a corresponding constraint closure
rule which preserves the simulation. We accomplish this
by showing a one-to-one correspondence between steps of
the evaluation system and steps of the type system. We are
already prepared to do this for most relations – each value
compatibility premise corresponds to a type compatibility
premise, for instance – but there is no evaluation system
relation corresponding to the slicing relation in the type
system. We define such a corresponding relation here to
considerably simplify the overall proof.

Slicing refines a type by union elimination, essentially
copying a union-free subtype into fresh variables. We require
an evaluation system relation which aligns with this behav-
ior as closely as possible. Because values during evaluation
are already union-free – variables may be defined only once
in an expression – this evaluation system relation need only
perform the copying step. We therefore define a deep copy
relation; this relation is later inserted into the operational se-
mantics to make it better align with the constraint closure.
Deep copying is written x\E ≪ x′\E′ when x in environ-
ment E is a deep copy of x′ in environment E′. We define
this relation as the least relation satisfying the rules in Fig-
ure A.2.
Definition A.3. x′\E′ ≪ x\E is the least relation defined
by the rules in Figure A.2. Deep copies are are disjoint iff
x = v ∈ E′ implies that x does not appear in E.
Henceforth we only consider disjoint, minimal deep copies.
It should be noted that E′ may not be closed – variables
appearing within a function are not copied – but the openness
of E′ is not an impediment to this soundness proof.

Types for Flexible Objects 15 2014/3/25

() ≈M ()

l x ≈M l α iff x ≈M α
x1 &x2 ≈M α1 &α2 iff x1 ≈M α1 and x2 ≈M α2

φ -> e ≈M α′\V → α\C iff φ -> e 4M α′\V → α\C
x ≈M α iff M(x) = α and x 6= x′

⇐⇒ M(x′) 6= α

x = v ≈M τ <: α iff x ≈M α and v ≈M τ
x2 =x1 ≈M α1 <: α2 iff x1 ≈M α1 and x2 ≈M α2

x3 =x1 x2 ≈M α1 α2 <: α3 iff ∀i ∈ {1..3}. xi ≈M αi

x = v̊ ≈M τ <: α iff x ≈M α and v̊ ≈M τ
n−⇀s ≈M

n⨽−−⨼c iff ∀1 ≤ i ≤ n. si ≈M ci
e ≈M α\C iff RV(e) ≈M α and e ≈M C

n−−−−⇀
x� = v̊� ≈M

n⨽−−⨼c iff ∀1 ≤ i ≤ n. xi = v̊i ≈M ci
φ ≈M α\V iff RV(φ) ≈M α and φ ≈M V

Figure A.3. Shallow bismulation relation

Note that in contrast with slicing, deep copies do not have
a Leaf rule; the deep copy relation always copies the entire
value. This is possible because values in TinyBang cannot
be cyclic. More formally, we say a variable is well-founded
iff either it has an atomic value (an integer, empty onion,
or simple function) or if it refers only to other well-founded
variables. This leads us to the following lemma.
Lemma A.4. Every variable x in a closed expression e has a
finite deep copy.

Proof. By induction on the length of e, we know that x
is well-founded. By inspection, deep copy is defined for
every form of value. Thus, a finite deep copy proof can be
constructed for any such x.

A.3 Bisimulation of Deep Copying and Slicing
Our objective is to show that each evaluation step has a cor-
responding type system step; we can now show how deep
copying and slicing correspond to each other. But we must
show a stronger property than preservation of the simula-
tion relation from Definition A.1. To understand why, recall
from Section 3.3 that type compatibility is unsound if the
input type contains unions. The simulation relation does not
guarantee that the type side is union-free, so it will be insuffi-
cient in our proofs regarding simulation. We therefore define
a shallow bisimulation relation to capture the union-free na-
ture of the type. The shallow bisimulation is quite powerful:
it guarantees that there is a one-to-one correspondence be-
tween the two systems (except under function bodies: hence
“shallow”). This relation is as given as follows:
Definition A.5. The shallow bisimulation relation ≈M is
defined as the least relation satisfying the rules in Figure A.3.
The notation x ≈ α is used to denote ∃M.x ≈M α; similar
notation holds for other grammatical constructs.

The shallow bisimulation essentially preserves the type
refinement performed by a slice. While we cannot keep this
refinement indefinitely – such a type system would be unde-
cidable – we use the shallow bisimulation to show that, for

our purposes, compatibility holds in the evaluation system
iff compatibility holds in the type system. This condition is
necessary both for soundness and for the dependent type dis-
patch of TinyBang functions. Of course, shallow bisimula-
tion implies simulation, allowing us to shed this information
once it is no longer necessary:
Lemma A.6. If e ≈ C then e 4 C.

Proof. By induction on the size of the proof of e ≈ C.

We can now show that deep copying and slicing together
not only preserve simulation but also create a shallow bisim-
ulation:
Lemma A.7. Let x′ 4M ′ α′ and E′ 4M ′ C ′. Suppose that
x\E ≪ x′\E′ for some (potentially open) E. Then there
exists some α and V such that x ≈M α, E ≈M V , and
α\V � α′\C ′. Furthermore, M ⊇M ′.

Proof. By induction on the size of the proof of x\E ≪
x′\E′. This induction is well-founded for closed E′ by
Lemma A.4. For each deep copy proof rule, we select the
corresponding slice proof rule (e.g. the deep copy label rule
and the slice label rule). Because E′ 4M C ′, each premise
on E′ (e.g. x′0 = l x

′
1 ∈ E′) is simulated by a premise on C ′

(e.g. α′0 = l α
′
1 ∈ C ′). Subproofs (e.g. α1\V � α′1\C ′ are

proven by induction on the size of the proof.
Fresh type variables are selected to correspond to those

variables used in E (e.g. x0 4M α0); the resulting mapping
M is thus exactly M ′ with additional entries for these vari-
ables. Because both x0 and α0 are fresh, these new entries
respects the bijection requirement on M . We then select a V
with the necessary property (e.g. lα1 <: α0 ∈ V) to shal-
lowly bisimulate the extension to the deep copy’s environ-
ment (e.g. E = [. . . , x0 = l x1]) and show by Definition A.5
that bisimulation holds under M . In particular, the bisimu-
lation holds because we select exactly one new constraint at
each step and because we do not descend into functions. This
process applies to each of the deep copy proof rules and is
applied inductively to construct a proof of slicing.

Due to our selection of fresh type variables, the slice is
well-formed. The slice is minimal because the atomic case
of deep copies does not admit superfluous clauses and V
simulates those clauses. The slice is well-formed because
well-formed environmentsE′ only define each variable once
and the deep copy E is well-formed if E′ is well-formed.

A.4 Compatibility and Matching
We now show that the compatibility relation preserves this
shallow bisimulation. In one way, this proof is somewhat
simpler: compatibility introduces no fresh variables, so a
single variable map M is sufficient. But compatibility in-
troduces another challenge. The Onion Right rule relies on a
premise of incompatibility of all potential bindings; we must
not only show that compatibility preserves bisimulation but

Types for Flexible Objects 16 2014/3/25

that incompatibility does as well. This was our motivation
for constructing the bisimulation: because the slice models
the value so precisely, we have a perfect alignment between
the proof trees.
Lemma A.8. Suppose for some (possibly open) E that
E ≈M α0\V , φ ≈M α′0\V ′, x0 ≈M α0, and x′0 ≈M α′0.
Then for all B and �, x0

�
E�Bφ x′0 if and only if there exists

some F such that B ≈M F and α0
�
V0
�FV ′

0
α′0.

Proof. Inspection of Figures 3.3 and 3.10 reveal that value
compatibility and full type compatibility are isomorphic up
to the shallow bisimulation. In particular, whenever a value
compatibility rule applies to evaluation constructs, a type
compatibility rule applies to the bisimulation of those con-
structs (and vice versa).

We begin by showing the forward implication for some
fixed �. In the case where the Label rule of value com-
patibility applies, x2 = ‘A x1 ∈ E and x′2 = ‘A x′1 ∈ φ
and x1

�
E �Bφ x′1. By shallow bisimulation, we have that

α = α2 ≈M x2, that ‘A α1 <: α2 ∈ V , and corresponding
facts hold for the pattern type. This and induction on the size
of the proof of value compatibility give us that the label rule
of type compatibility applies. A similar approach is used for
each other rule in the relation, completing the forward im-
plication.

The reverse implication – that a proof of type compati-
bility evidences a proof of value compatibility – is shown
in the same fashion: using a fixed �, we proceed in each
rule by shallow bisimulation and induction on the size of the
proof tree. Note that nothing is shown for type compatibility
proofs using G# as this is not necessary to satisfy the lemma
statement.

We can likewise demonstrate preservation of bisimulation
by the respective matching relations. We state this property
as follows:
Lemma A.9. Suppose for some (possibly open) E0 and E1

such that E0 ≈M α0\V0, E1 ≈M α1\V1, x0 ≈M α0,
and x1 ≈M α1. Let x0 = RV(E0) and x1 = RV(E1). Let
E = E0 ‖E1. Then for any �, x0 x1

� ;E e if and
only if there exists some α′\C such that e ≈M α′\C and
x0 x1

�
V0
;V1

α′\C.

Proof. By the same strategy as Lemma A.8, using
Lemma A.8 to show the compatibility premises.

A.4.1 An Alternate Operational Semantics
The above lemmas show that we can establish and preserve
a bisimulation starting with a deep copy and continuing
through matching. But the operational semantics of Tiny-
Bang are not defined to make use of deep copying. We con-
struct here an alternate operational semantics which makes
use of the deep copy operation above and argue that it is

VARIABLE LOOKUP
x1 = v ∈ E

E ‖[x2 =x1] ‖ e ˙−→1 E ‖[x2 = v] ‖ e

APPLICATION
x′0\E′0 ≪ x0\E

x′1\E′1 ≪ x1\E x′0 x
′
1
 ;E′

0 ‖E′
1
e′ α(e′) = e′′

E ‖[x2 =x0 x1] ‖ e ˙−→1 E ‖E′1 ‖ e′′ ‖[x2 = RV(e′′)] ‖ e

Figure A.4. Alternative Small Step Relation

equivalent to the operational semantics presented in Sec-
tion 3.2. We define our operational semantics as the least
satisfying the rules in Figure A.4.

We define e0 ˙−→∗ en when ∀1 ≤ i ≤ n. ei−1 ˙−→1 ei.
We say e ˙X−→1 when there exists no e′ such that e ˙X−→1 e′.

The Variable Lookup rule in this alternate relation is
identical to that of the original relation. The Application rule
differs only in that it creates a deep copy of the function and
the argument before performing application. This alternate
relation is “equi-stuck” with the original; each gets stuck
only when the other does. We formalize this property as
follows:
Lemma A.10. Iff e −→∗ e′ and e′ X−→1 where e′ not of
form E, then e ˙−→∗ e′′ and e′′ ˙X−→1 where e′′ not of form
E.

Proof. By inspection of the rule sets, there are only two dif-
ferences, both in the Application rule. First, ˙−→1 performs
a deep copy while −→1 does not; a deep copy is an α-
renaming and no operations condition on the specific name
of a variable. Second, ˙−→1 uses E′0 ‖E′1 in the matching
relation whereas −→1 uses the entire environment E. But
because E′0 ‖E′1 is a deep copy of x0 and x1 and because
neither the matching relation nor any relation it uses depends
on the specific name of a variable, any variables which are
not x′0, x′1, or transitively reachable from those variables are
extraneous and do not affect the relations.

We now show our preservation lemma: for any small
step, there is a corresponding closure step which preserves
simulation.
Lemma A.11 (Preservation). Suppose that e ˙−→1 e′′′ and
that e 4 C. Further, suppose that Φ and Υ are simulation-
preserving. Then there exists some C ′′′ such that C =⇒ C ′

and e′′′ 4 C ′′′.

Proof. In a fashion similar to Lemma A.7, we show that,
given a simulation, each premise of the operational seman-
tics implies a corresponding premise of the constraint clo-
sure. The Transitivity rule demonstrates this immediately
from simulation.

The only other case is when the Application rule applies.
For clarity, we use variable names matching those chosen in

Types for Flexible Objects 17 2014/3/25

the rules in Figures 3.13 and A.4. Then we know that we
have an expression E ‖[x2 =x0 x1] ‖ e; we also have each
premise of small step application. Because e 4M C, we
know that α0 α1 <: α2 ∈ C. By Lemmas A.7 and A.9, we
have that e′ 4 α′\C ′.

Recall that e′′ = α(e′) and that α′′\C ′′ = Φ(α′\C ′, α2).
By the simulation preservation of Φ, we have e′′ 4M ′

α′′\C ′′ for some M ′. All variables in e′′ and α′′\C ′′ are ei-
ther fresh or already appear in M , so we can partition M ′

into two disjoint submaps: M ′1 (which contains only fresh
mappings) and M ′2 (which contains all non-fresh mappings
and is a submap ofM). We letM ′′ = M∪M ′1 and thus have
that e′′ ‖[x2 = RV(e′′)] 4M ′′ C ′′∪{α2 <: α′′}. We union the
original C and the argument slice V1 with this result, which
corresponds to the concatenation of the original environment
E and the deep copy variables E′1 onto the above. This con-
catenation and respective union also preserve simulation, so
we have e′′′ 4M ′′ C ′′′ and so we are finished.

A.5 Stuck Simulation
We require one final lemma before we can prove our sound-
ness theorem: that stuck programs are simulated by incon-
sistent constraint sets:
Lemma A.12. If e 4 C and e is stuck, then C is inconsis-
tent.

Proof. By definition, e of form E is not stuck; therefore,
e = E ‖[s] ‖ e′. By case analysis, s must be of the form
x2 =x0 x1; otherwise, the Variable Lookup rule always ap-
plies (because e is closed and s is of the form x2 =x1). By
Lemma A.4, the deep copy premises always hold for closed
E; furthermore, α-renaming is always possible. Therefore,
because e is stuck, we must have that x′0 x

′
1
#;E′

0 ‖E′
1
e′′.

By Lemma A.9 we have that α′0 α
′
1
#
V0
;V1

α′\C ′. By Defi-
nition 3.3, C is inconsistent.

A.6 Proof of Soundness
Using the above, we can now give a proof of Theorem 1.

Proof. Let JeKE = α\C. Because e is closed, Lemma A.2
gives us that e 4 α\C. We have that e −→∗ e′ where
e′ is stuck; then by Lemma A.10, we have that e ˙−→∗ e′
where e′ ˙X−→1 and e′ not of the form E. By induction on the
number of steps in the proof of e ˙−→∗ e′, Lemma A.11
gives us that that there exists a C ′ such that C =⇒∗ C ′

and e′ 4 C ′. Lemma A.12 gives us that C ′ is inconsistent.
Therefore C closes to an inconsistent constraint set and, by
Definition 3.4, e does not typecheck.

B. Proof of Decidability
We show here that TinyBang typechecking is a computable
function. In particular, we provide a detailed sketch of The-
orem 2. The primary challenge of this proof is showing that
constraint closure is bounded by a finite set (Lemma 3.5 in

Section 3.3.8). We prove this property by a high level count-
ing argument: we define a finite set of constraint forms and
a set of type variables; we then show that closure states C
are always a set of substitutions of the (finite) type variables
into the (finite) forms, of which there are only finitely many
possibilities.

For this appendix we assume we are working over a fixed
expression e, and we take C00 to be the set of all subtype
constraints found in JeKE. C00 includes all constraints under
function types; it is not a sensible set in terms of the closure
process and is only used to bound the size of other sets. Set
C00 is our fixed set of constraint forms; there are only finitely
many because finitely many different labels could be used in
the original program.

B.1 Finite Slices
Intuitively, a slice creating during typechecking only needs
to be deep enough to cover the pattern. The definition of
slicing, however, places no limit on the size of a slice and
also requires variables within a slice to be fresh. Here, we
define a modified form of type inference to restrict the depth
of slices by adjusting the application rule; we then show that
the soundness proof remains valid with this modified rule.

First we characterize the set of all potential slice forms.
Since slices are well-formed, minimal, and acyclic as per
Definition 3.2, and we are only concerned about the structure
of a slice and not the particular type variables used, we can
view a slice α\V as a tree with α at the root, with label
constraint nodes having one child, and onion nodes have
two children, and tree edges being subtyping. We hereafter
write a slice form α\V more simply as V since the head
α will be the unique type variable in V without an upper
bound. The type variables in the leaves of a slice, if any, are
informally considered free; the type variables internal to the
slice (including the root) are considered bound. This follows
the intuition that slice forms are owned by the pattern that
will be used to wire them in.

Viewing slices as trees, we can define the depth of slice
V to be the length n of the longest chain

n−−−−−−−⇀
(τ <: α) in V such

that for each τi for i > 1, αi+1 occurs in τi. We first assert
that given an initial expression e we can place a fixed bound
nmaxslice on the depth of any slice we need to consider in
closure without loss of generality. By inspection of the type
compatibility relation in Figure 3.10, if a slice is not deep
enough the Partial rule will fire and partial compatibility will
never lead to a closure step. By inspection of the Empty
Onion rule (the leaf case of the pattern V ′), any deeper
component of the slice V is ignored. So intuitively, if the
slice reaches the bottom of the pattern, it will be sufficient.

Thus, taking the set of all pattern types in C00 to be
⨽−−⨼
V ′, we would like to define nmaxslice to be nmax-φ =

max({depth(V ′) | V ′ ∈
⨽−−⨼
V ′}), the depth of the deepest

pattern. This is close to serving as our global slice depth
bound, but it is not correct: slices do not line up with pat-

Types for Flexible Objects 18 2014/3/25

terns “one-to-one” because the appearance of a conjunction
in a pattern and the appearance of an onion within a slice
do not necessarily coincide. In particular, the Onion Value
Left and Onion Value Right compatibility rules in Figure
3.10 descend deeper into the slice without descending deeper
into the pattern. So, we must slice deeply enough so that all
underlying label/atom/function structure is reached through
the various data onioning constraints α0 &α1 <: α2. In the
worst case, we may need to go through every onion value
constraint in C00 to find the next deepest structure in the
pattern; we may also have to visit the same onion struc-
ture numerous times (in the case of non-contractive onions
like α1 &α2 <: α2 where each visit allows another lower
bound to be added). But each onion can only yield at most
every lower bound in the constraint set; after this, addi-
tional lower bounds are redundant. In order words, while
non-contractive onions can in principle be “infinitely wide”,
there are finitely many non-onion types to onion together
and, at some point, the data must repeat; since only the left-
most copy matters, the repetitions need not be considered.
So, given that there are n& onion constraints in C00 and nτ
lower bounds in C00, we then need to slice to depth at most
nmaxslice = nmax-φ ∗n& ∗nτ : between each level of pattern we
have n& ∗ nτ levels of onioning in the extreme worst case.

So, we have a bound on the depth of any slice. We also
have a fixed bound on the number of distinct nodes that can
occur in any slice tree, each node must an α-variant of a
constraint inC00. (Note there can be multiple occurrences of
the same constraint form in a given slice, but the restriction
to finitely many forms will still keep the number of possible
slices finite.) Define V Vallslice to be the set of all such slice
tree forms that can be constructed of depth at most nmaxslice,
modulo α-conversion.
Lemma B.1. Set V Vallslice is of finite cardinality.

Proof. Each slice V ∈ V Vallslice is an at most nmaxslice depth
tree of nodes drawn from the finite set C00 of node types;
there are only finitely many finite trees that can be con-
structed over a finite set of nodes.

Now that we have isolated all possible slices that we need
to consider, we can address the issue of the fresh variables
created by the current slicing definition. Before closure be-
gins, we create a personal library of slices for each sim-
ple function; each simple function has a library of slices
not sharing any bound variables with any other function’s
slice library. More precisely, we define function sliceLib(V ′)
which takes as argument the pattern V ′ on any simple func-
tion occurring in C00, and returns an α-renaming of slice
set V Vallslice such that no two libraries share any type vari-
ables. Since there are finite patterns and each library contains
finitely many slices needing finitely many type variables
each, the total number of type variables needed to “stock”
the slice libraries is finite. Then during closure, we pull a
slice from the library when a function is matched.

B.2 Finite type variables
Given that all constraints in any closure state C must be
drawn from the forms in C00, the number of states will be fi-
nite if we can restrict ourselves to drawing all type variables
from some fixed finite set. A particular challenge here is the
slice V1 in the Application closure rule. Slices of the func-
tion are discarded, but slices of the argument value are used
to “wire” the argument into the pattern and so they may ap-
pear in the global constraint setC. (Our implementation uses
deep, tree-shaped types rather than type variables in a slice,
but we use slices here for a more elegant theory.) While this
makes the presentation of soundness simpler, it complicates
the decidability proof since we need to limit the variables
used in these slices so as not to have the constraint set grow
arbitrarily large.

Theorem 2, our decidability theorem, assumes that our
polyinstantiation function ΦCR is finitely freshening. This
property is formally defined in Definition C.8 of Appendix
C. Finite freshening requires the definition of a fixed finite
set of type variables given the original program expression
(this is the output of function f in the definition); with such
a set defined, the definition guarantees there is a fixed finite
set of distinct type variables ⨽−−⨼α that is a superset of the type
variables used in any constraint set C.

So, all that is needed is to define the fixed initial set
of type variables. We define this set to include the initial
type variables α ∈ C00, as well as all variables occurring
in sliceLib, which is also finite as justified above. No other
type variables are needed; additional type variables may be
used by the polymorphism model but Appendix C addresses
how those are also finite. With this restriction we have that
the type variables appearing in any constraint set C being
fed into ΦCR is a subset of ⨽−−⨼α ; thus, polyinstantiation will
also produce variables all in ⨽−−⨼α . Thus, ⨽−−⨼α constitutes all type
variables that may ever appear in any constraint set and that
set is finite, proving finiteness of all paths.

B.3 A restricted Application rule
Two changes are needed to the Application closure rule: we
need to place the aforementioned restriction on accepting
slices of at most a fixed depth nmaxslice, and we cannot simply
place the function argument slice V1 in the constraint set
since it may have arbitrary fresh variables in it. Instead, we
will use one of our fixed slice templates.
Definition B.2 (Modified Application Closure). Revise the
Application closure rule of Figure 3.13 to insert the follow-
ing additional preconditions:

• depth(V0) ≤ nmaxslice

• depth(V1) ≤ nmaxslice.
• V2 ∈ sliceLib(V ′)
• unify(V1, V2) = V3

where

Types for Flexible Objects 19 2014/3/25

• unify(V1, V2) requires V1 and V2 to have the same tree
structure and only be α-variants of one another and oper-
ates by replacing leaf type variables of V2 with the corre-
sponding leaf type variables in V1

• V ′ is the pattern from the successfully matched function
(which needs to be added as a formal argument to the
matching relation so it can propagate to the Application
rule)

In the Application rule conclusion we replace slice V1 with
the (equivalent) V3.

Hereafter we will assume restricted closure is used. Since
a rule has changed we now revisit the soundness proof of
Section A to sketch how it may be adapted to restricted
closure.

First, the deep copy relation of Figure A.2 is modified
to remove the restrictions on v in the Atomic rule: the deep
copy may stop at any point (not just atoms) meaning that it
could be no copy at all, a full deep copy, or any degree in
between.

The bisimulation relation of Figure A.3 remains un-
changed; for a slice and a (partial) deep copy they both must
stop at the same depth for bisimulation to hold. This is the
key to soundness: the exact aligning of the operational se-
mantics deep copy degree with the slice depth.

The alternative small-step relation in Figure A.4 now is
taken to use the modified (partial) deep copy relation; since
there is no restriction on how deep to copy, reduction be-
comes nondeterministic. Fortunately, there is no real differ-
ence in how much copying is done (or not done): an analogy
of Lemma A.10 holds for the revised small-step relation for
all possible nondeterministic paths chosen.

Lastly, Preservation (Lemma A.11) can be shown to
hold by a variant of our previous proof: given a fixed step
e ˙−→1 e′, we perform the analogous C =⇒1 C ′ in the
type constraint system. However, we cannot let the size of
the deep copy dictate the depth of the slice in the case of
Application; instead we let the slice dictate the depth of the
deep copy. In particular choose the slice which picks lower
bounds which line up with the application step taken by e
and such that it is deep enough to be full-compatible. We
know such a slice V exists: by the above reasoning our
bound nmaxslice will suffice to reach the bottom of any pat-
tern. Now, given slice V we can pick a corresponding e′′

such that e ˙−→1 e′′ and e′′ ≈ V . Thus, we may establish
that e′′ 4 C ′ in analogous fashion.

This is a slightly weaker version of preservation since
it changes e′ to e′′ in the result. However, as mentioned
above, all nondeterministic paths are aligned and are equi-
stuck, and so the particular choice of nondeterministic path
is irrelevant. Soundness then follows as before modulo this
change of path.

B.4 Finiteness of Closure
Given the above reformulation of application, we can now
show that closure is finite as stated in Lemma 3.8. We first
show that construction of the initial derivation, slicing, com-
patibility, and matching are all easily decidable.
Lemma B.3. Given well-formed inputs the following func-
tions/relations/properties are computable/decidable:

1. JeKE

2. α\V � α′\C
3. Given potential slice V and pattern type V ′,
∃F,�. α0

�
V�FV ′ α′0

4. Given potential slices V0, V1, ∃α2, C,�. α0 α1
�
V0
;V1

α2\C

Proof. 1. is trivially computable since the definition of Fig-
ure 3.7 is a simple inductive definition.

2.: Since V is required to be an acyclic constraint set and
each subgoal works over a subtype of one of the variables
in V , the potential proof tree structure corresponds to the
structure of V , which is finite; thus the proof search is finite.

3. Inspecting the compatibility rules of Figure 3.10, each
rule subgoal either works on a type variable in a subtype of a
constraint in the pattern, or a type variable in a subtype of a
constraint in the slice. For example, Onion Value Left works
on a variable in a subtype of the slice, and Conjunction
pattern works on a variable in a subtype of the pattern. Thus,
the proof structure is fixed based on the V/V ′ input and so
proof search is finite. Both F and � are deterministically
synthesized up the proof tree, so are easy to compute.

4. follows similarly to 3.; observe here that α2\C is
deterministically synthesized up the proof tree.

We now prove part of our finiteness lemma: that there are
finitely many closure steps which may be taken from a given
set.
Lemma B.4. Given JeKE =⇒∗ C , it is possible to compute
the set {C ′ | C =⇒1 C ′} (which is thus a finite set of finite
C ′).

Proof. Since C is inductively finite, there are finitely many
different matches of the constraints to the Transitivity and
Application closure rule preconditions. Transitivity pro-
duces one possible output per matching input so only finitely
many distinct transitivity steps are possible fromC. Applica-
tion is additionally parameterized by slices V0 and V1; given
such slices, matching will produce a single output α′\C ′
since these slices bisimulate expressions which are deter-
ministic. Freshening function ΦCR/ΥCR is a function so it
will also produce a single output. So, the only nondetermin-
ism in Application is in the slices. By the above construction
we argued it suffices to only consider slices in the (finite) set
V Vallslice; each such pair of potential slices can decidably be
verified to be slices and checked for matching by the previ-
ous Lemma, leading to computation of a finite set of match

Types for Flexible Objects 20 2014/3/25

outputs for each application rule and thus finitely many re-
sults overall.

Taking the above, we can now show our
finiteness lemma (restated here for convenience).
Lemma 3.5. For any e, there exists a finite set of constraints
C ′′ such that, if JeKE = α\C and C =⇒∗ C ′, then C ′ ⊆ C ′′.

Proof. All constraints introduced by constraint closure have
a form appearing in the finite set C00 and are restricted to
variables from the finite set ⨽−−⨼α . Thus, the set of all per-
mutations of these variables in each of these constraint
forms (which is finite) is the upper bound of any constraint
set reachable by constraint closure. The remainder of this
lemma is immediate from Lemma B.4

The above lemmas allow us to show two of the lemmas
appearing in Section 3.3.8 with minimal effort.

Lemma 3.6 (Convergence). For any finite C, there exists
some C ′ such that C =⇒! C ′.

Proof. By inspection of Figure 3.13, constraint closure is
monotonic; if C =⇒1 C ′ then C ⊆ C ′. Because subset
inclusion is transitive, this holds for =⇒∗ as well. Ignoring
superfluous closure steps (C =⇒1 C), we can thus bound ev-
ery constraint closure sequence by the number of constraints
constructable from C00 and the variables from the finite set
⨽−−⨼α , which is shown to be finite in Lemma 3.5.

Lemma 3.8. C =⇒ C ′ is decidable for finite C.

Proof. Immediate from Lemmas B.3 and B.4.

B.5 Confluence
While not strictly necessary to show the decidability of type-
checking, constraint closure confluence is a necessary prop-
erty for the TinyBang type system to be usable in any sense.
The above lemmas show that constraint closure is finite, but
we must show that the results are always the same (up to
the equivalence of Υ). We use the usual diamond property-
driven approach to proving confluence of constraint closure,
beginning with a proof of the single reduction diamond. We
begin by showing a supplementary lemma:
Lemma B.5. IfC =⇒1 C∪C ′ thenC∪C ′′ =⇒1 C∪C ′∪C ′′
for any C ′′; that is, the number of ways in which to satisfy
the constraint closure rules increases monotonically with the
size of the constraint set.

Proof. If the closure step involved is transitivity, this prop-
erty is trivial. For application, we show that the ways in
which a premise can be satisfied increases monotonically
with the size of the constraint set (either directly or indi-
rectly). For clarity, we describe a relation as monotonic in
some set if the number of ways to satisfy it increases mono-
tonically with the size of that set; we describe a relation as

monotonic in another relation if the number of ways to sat-
isfy the relation increases monotonically with the number
ways in which that other relation holds.

The first premise of application is a simple set contain-
ment check, which is trivially monotonic in C.

The second and third premises are slicing. The number of
slices (e.g. α′0\V) which allow this relation to hold increases
with the number of constraints in C; thus, slicing is mono-
tonic in C.

The fourth premise (matching) is monotonic in full com-
patibility, incompatibility, and in the number of constraints
in V0. (Note that partial compatibility is irrelevant here.)
Since V0 is a slice and slicing is monotonic inC, it suffices to
show for this case that both full compatibility and incompat-
ibility are monotonic in C. By inspection of Figure 3.10, we
observe that every rule for full compatibility and for incom-
patibility tests for the presence (not absence) of a constraint
in V .

The fifth premise (polyinstantiation) is the result of invok-
ing a total function on the result of matching; this premise
always holds.

Because each premise of application is monotonic in C,
closure is monotonic in C; additional constraints do not
prevent a constraint closure rule from being applicable (al-
though they may cause it to be redundant, which is why
Lemma 3.6 is not a contradiction).

This allows us to prove the single reduction diamond
property on constraint closure, which we state as follows:
Lemma B.6. If C =⇒1 C ∪ C ′ and C =⇒1 C ∪ C ′′ then
C ∪ C ′ =⇒1 C ∪ C ′ ∪ C ′′ and C ∪ C ′′ =⇒1 C ∪ C ′ ∪ C ′′.

Proof. We observe that there is some conjunction of
premises P which holds true of C such that C =⇒1 C ∪C ′;
we also observe that there is some conjunction of premisesQ
which holds true of C such that C =⇒1 C ′′. By Lemma B.5,
P is still true of C ∪C ′′ and Q is still true of C ∪C ′, so both
of these sets will close to C ∪ C ′ ∪ C ′′.

We can then prove our general confluence property.

Lemma 3.7 (Confluence). If C =⇒∗ C ′ and C =⇒∗ C ′′
then there exists some C ′′′ such that C ′ =⇒∗ C ′′′ and
C ′′ =⇒∗ C ′′′.

Proof. By Lemma B.6, Lemma 3.6, and Newman’s Lemma
[16].

B.6 Computable Typechecking
We are nearly prepared to prove that the typechecking of an
expression is computable. We must first show an equivalence
between our original formulation of typechecking (in Defi-
nition 3.4) and our alternative formulation (in Lemma 3.9).
This in turn depends upon a property of inconsistency:
Lemma B.7. If C is inconsistent, then C∪C ′ is inconsistent
for any C ′.

Types for Flexible Objects 21 2014/3/25

Proof. By the same argument as Lemma B.5.

We then show our alternative typechecking formulation
to be correct:
Lemma 3.9. An expression e typechecks if and only if
JeKE = α\C, C =⇒! C ′, and C ′ is consistent.

Proof. Let JeKE = α\C. This is to say that C =⇒! C ′ with
inconsistent C ′ if and only if there exists some inconsistent
C ′′ such that C =⇒∗ C ′′. If the former holds, then the latter
clearly holds – we select C ′′ = C ′. If the latter holds, then
the former holds by Lemma B.7.

Finally, we show that typechecking is computable.

Theorem 2 (Decidability). Typechecking is decidable.

Proof. Initial alignment is a computable function by induc-
tion on the size of e. Complete closure (=⇒!) is a computable
function because it is both convergent (Lemma 3.6) and con-
fluent (Lemma 3.7) and because closure itself is decidable
(Lemma 3.8). Inconsistency is computable by the same argu-
ment. Therefore, whether a program e typechecks is a com-
putable function.

C. Polymorphism in TinyBang
This appendix details properties of polymorphism in Tiny-
Bang. We give a definition of the polymorphism model sum-
marized in Section 3.4. We then prove both that it preserves
the simulation relation defined in Appendix A and that it
produces finitely many type variables as required by Ap-
pendix B.

C.1 Definition of ΦCR/ΥCR

The ΦCR/ΥCR polymorphism model functions by creating
fresh polyinstantiations of every variable at every call site
and then merging these variables when recursion is detected.
More precisely, a type variable merging occurs if (1) two
type variables represent the type of the same variable from
the original program and (2) they do so in the context of the
same call site in the original program. In order to track this
information, we define a bijection⇔ between type variables
and type variable descriptors for a given typechecking pass.

A type variable descriptor represents two pieces of infor-
mation. The first is the type variable ?

α that was decided for
the program variable during initial alignment. The second is
a contour representing the set of call strings at which this
type variable applies. (We give a precise definition of con-
tours below.) For instance, suppose 〈αx, αy〉 ⇔ α where αy
is a contour representing just the call string “αy”; then α is
the polyinstantiation of αx when it is reached by a call site
αy appearing at the top level of the program. For example,
in the program

1 i = { p = () } -> { x = p };

2 v = 4;

3 y = i i;

4 z = i 4;

the function i is the identity function. The type variable
〈αx, αy〉 ⇔ α represents the type of x when it is expanded
into the call site at y; it does not represent the type of x when
it is expanded into the call site at z.

More formally, we define contours as follows:
Definition C.1. A contour C is a regular expression with the
following restrictions:

• The contour C is composed of a disjunction of contour
strands S,
• Each strand is a concatenation only of literals and Kleene

closures over disjunctions of literals, and
• Each literal is the initial type variable of a call site dec-

laration variable (e.g. the initial type of x2 in the clause
x2 =x0 x1)

We use ε to denote the contour matching only the empty
call string. We use ∅ to denote the contour matching no call
strings.

As stated above, contours could be arbitrarily long. For
decidability, we provide the following refinement on con-
tours which we maintain inductively through each closure
step:
Definition C.2. A contour C is well-formed if each call site
declaration variable appears at most once within it.

For example, the contour α0(α1α2)∗ is well-formed but
the contour α0α1α0 is not. The bijection only admits de-
scriptors with well-formed contours.

For the purposes of the definitions below, we define sim-
ple notation on contours. We write C ‖ C′ to indicate the con-
catenation on contours in the sense of regular expressions;
note that while contours are closed under this operation (by
cross product over the outermost union), well-formed con-
tours are not. We also write C ≤ C′ to denote that the set
of call strings matched by C is a subset of the call strings
matched by C′.

For notational convenience, the remainder of this ap-
pendix often uses a type variable’s descriptor in place of the
type variable. For instance, we use int <: 〈α,∅〉 as short-
hand for “int <: α′ such that 〈α,∅〉 ⇔ α′”.
C.1.1 Polyinstantiation
We begin our management of polymorphism with initial
alignment. In particular, we always choose the type vari-
able bijection such that each fresh type variable ?

α chosen
by initial alignment has a fixed mapping. If the variable x
represented by ?

α is defined within a pattern or the body of
a function, then 〈 ?α,∅〉 ⇔ ?

α. Otherwise, 〈 ?α, ε〉 ⇔ ?
α (to re-

flect the fact that α represents x at top level, in the empty
call string).

Other than this initial set, new type variables enter closure
in one of two ways: by being introduced by a slice or by
polyinstantiation. We view variables introduced by slicing
in the same way that we view the variables introduced by

Types for Flexible Objects 22 2014/3/25

initial alignment; they are “original” variables in a sense and
not part of polymorphism. That is, if a slice introduces a
fresh variable α′1 for a variable α1 and 〈α2, C〉 ⇔ α1, then
〈α′2, C〉 ⇔ α2 for some α′2 describing the original variable
of that slice. This is not a problem for our system because, as
illustrated in Appendix B, only finitely many original slice
variables will be used during a given typecheck.

The other manner in which type variables can be intro-
duced is through the ΦCR function. We define ΦCR to instan-
tiate variables appearing in a constraint set as follows:
Definition C.3. For some 〈α′, C′〉, let C be the least well-
formed contour such that, if some call string s is accepted
by C′, then s ‖α′ is accepted by C. Then ΦCR(α\C, 〈α′, C′〉)
is the substitution of type variables in α\C such that (1) each
〈α′′,∅〉 which is the upper bound of some c ∈ C is replaced
with 〈α′′, C〉 everywhere it appears in C and (2) all other
type variables remain unchanged.
Calling ΦCR creates a fresh version of each uninstantiated
type variable free in the constraint set. Note that type vari-
ables which already have a contour – which have been pre-
viously instantiated – are unaffected.
C.1.2 Unification
The second function, ΥCR, is used to unify variables already
appearing in the constraint set with the newly polyinstanti-
ated ones from ΦCR. In particular, ΥCR is used to unify type
variables whose responsibilities overlap. This is necessary to
ensure that type variables are unified correctly when recur-
sion is detected. For instance, imagine that C in the definition
above was α1(α2)∗. Then a type variable 〈α3, C〉 represents
the polyinstantiation of α3 for the call stack is composed of
call site α1 followed by any number of recursive calls to call
site α2. But when α2 was first reached, it may not be known
to be recursive; there may be variables such as 〈α3, α1α2〉
already in the constraint set. These variables must then be
unified.

Before defining our unification function, we rely on some
simple supporting definitions:
Definition C.4. Two variables 〈α, C〉 and 〈α′, C′〉 overlap iff
α = α′ and there exists a call string matched by both C and
C′. For some constraint set C, two variables α and α′ are
connected in C iff either α and α′ overlap or there exists
some α′′ appearing in C such that α overlaps with α′′ and
α′′ and α′ are connected in C.

The purpose of this definition is to cluster type variables
which have overlapping contours for the same program vari-
able. These are the variables which should be unified under a
contour which covers all of the contours in that cluster. (Ob-
serve that every α with a non-empty contour overlaps itself
and connects with itself.) Using the above, we can give the
following definition of ΥCR:
Definition C.5. For a set of constraints C, ΥCR(C) is the
least equivalence relation conforming to the following re-
quirements:

• Reflexivity, and
• If any two variables 〈α, C〉 and 〈α, C′〉 are connected in
C then all variables 〈α′, C〉 and 〈α′, C′〉 are equivalent.

C.2 Soundness of ΦCR/ΥCR

To show that the TinyBang type system is sound when using
ΦCR/ΥCR as a polymorphism model, we must show that
it is well-behaved. This entails showing three properties:
the simulation preservation of ΦCR, the finite freshening of
ΦCR, and the monotonicity of ΥCR. We show each of those
properties below.

C.2.1 Simulation Preservation
An informal discussion of simulation preservation is given
in Section 3.3.6. We formalize it here as follows:
Definition C.6 (Simulation Preservation). A polyinstantia-
tion function Φ is simulation-preserving iff e 4 α\C implies
that α(e) 4 Φ(α\C,α) for any α in C.

We then assert that our polymorphism model has this
property:
Lemma C.7. ΦCR is simulation-preserving.

Proof. Let C ′ = ΦCR(C,α). We have that e 4M C and that
C ′ is a capture avoiding substitution of variables in C. We
consider each type variable α appearing in C being replaced
by some other α′. If α only appears free or only appears
captured in C, then this is an α-substitution of α; thus, if e.g.
τ <: α ∈ C then τ <: α′ ∈ C ′ such that α was replaced by
α′. If we subject M to the same α-substitution as C, we can
show by induction on the size of e 4M C that e 4M ′ C ′.

If α appears both free and captured in C, then suppose
that each variable x in e for which M(x) = α appears ei-
ther only captured or only free in e. In this case, the corre-
sponding instances of α can be substituted (or not) and an
alternate mapping M ′ can be defined as M ′(x) = α′ (resp.
M ′(x) = α) such that simulation still holds.

The only remaining case is that some x appears both free
and captured in e such that M(x) = α. But if this is the
case, then any expression in which e is a subexpression is
either not closed or contains a duplicate definition of x; in
either case, this violates the assumptions made either by the
typechecking algorithm or by the well-formedness of ANF
expressions. Therefore, this case does not exist and we are
finished.

C.2.2 Finite Freshening
The decidability proof requires that the polyinstantiation
function used with the TinyBang type system is finitely
freshening. This property is outlined in Section 3.3. Infor-
mally, the property we want is that the polymorphism model
will only incur finitely many polyinstantiations (even when
presented with variables it has polyinstantiated). Formally,
we state this property as follows:

Types for Flexible Objects 23 2014/3/25

Definition C.8 (Finitely Freshening Φ). A polyinstantiation

function Φ is finitely freshening iff ∀f : ⨽−−⨼e →
⨽−−⨼
⨽−−⨼α .∃g : ⨽−−⨼e →

⨽−−⨼
I .∀e. we have all of the following:

• ⨽−−⨼α is a finite set of type variables isomorphic to f(e) ×
g(e),
• f(e) ⊆ ⨽−−⨼α ,
• For any α appearing inC, if the set of variables appearing

in C is a subset of ⨽−−⨼α then the set of variables appearing
in Φ(C,α) is a subset of ⨽−−⨼α , and

By this definition, we argue that ΦCR is finitely freshen-
ing using contours as indices and the type variable bijection
as the basis for ⨽−−⨼α . We begin by defining a function to deter-
mine all of the contours which will be used in a typechecking
pass; this function will be used as the basis for the g function
required by the above definition.
Definition C.9. Let ALLCONTOURS(−) be a function taking a
set of type variables ⨽−−⨼α and producing the set

⨽−−⨼
C of all well-

formed contours which can be constructed using only those
type variables as literals.

We then state the following simple lemma regarding this
function:
Lemma C.10. For a finite set of type variables, the
ALLCONTOURS(−) function is computable and produces a fi-
nite set of contours.

Proof. Trivial by the grammar of regular expressions and
because well-formed contours have a length bounded on the
order of the number of type variables in the set.

Using this property, we can easily show our polymor-
phism model to be finitely freshening:
Lemma C.11. The polymorphism model ΦCR is finitely
freshening.

Proof. We are given a function f as described in Def-
inition C.8. We choose the corresponding g(e) =
ALLCONTOURS(f(e)). For a given e, we select the bijection
⇔ as described above – α ∈ f(e) =⇒ α ⇔ 〈α, C〉
where C is either ∅ or ε – and leave the remainder of the
bijection unconstrained. Since neither ∅ and ε require lit-
erals, they are in ALLCONTOURS(f(e)). We therefore define
⨽−−⨼α = {〈α′, C〉 | α′ ∈ f(e) ∧ C ∈ g(e)}.

It remains to show that, given C with variables in ⨽−−⨼α ,
the resulting C ′ has only variables in ⨽−−⨼α . We observe that
ΦCR performs a substitution on some variables in the set.
This substitution is such that a variable 〈α′, C〉 is always
substituted with another variable 〈α′, C′〉 such that C′ is a
well-formed contour. Because 〈α′, C′〉 was in C, we know
that α′ ∈ f(e); because C′ is a well-formed contour, we
know that C′ ∈ g(e). Each variable is therefore in ⨽−−⨼α and so
this property holds.

We must also show that ΦCR itself is computable.

Lemma C.12. ΦCR is computable.

Proof. Whether two variables α and α′ overlap in a finite
constraint set C is decidable by enumeration of all possible
paths between those variables. For a given e, we have a
finite set of well-formed contours and the inclusion problem
on regular expressions is decidable, so finding a least well-
formed contour which subsumes a set of other contours is
decidable. Finally, ΦCR is an α-substitution on a finite set
and so is trivially decidable.

C.2.3 Monotonicity
Our next step is to show that ΥCR is monotonic in its equiv-
alences: that each additional constraint only increases the
number of equivalences which hold over the set. This is
stated as follows (recalling that we view equivalences as sets
of equivalent pairs):
Lemma C.13. If C ⊆ C ′ then ΥCR(C) ⊆ ΥCR(C ′).

Proof. By Definition C.4, if two variables are connected in
C then they are also connected in C ′. Definition C.5 defines
equivalence directly in terms of (1) the variables appearing
in C (all of which appear in C ′) and (2) the connections
between variables in C (all of which appear in C ′), so we
are finished.

We must then show ΥCR to be computable.
Lemma C.14. ΥCR is computable.

Proof. The regular expression intersection problem is de-
cidable, so the connectedness of two variables α and α′ in
a finite C is decidable. Determining disjoint sets of con-
nected variables is decidable by enumeration of all possi-
ble pairs. By the argument in Lemma C.12, finding a least
well-formed contour is decidable. The resulting equivalence
performs tests based either on (1) identity or (2) regular ex-
pression inclusion, which is also decidable.

C.2.4 Well-Behaved Polymorphism
Finally, we can formally state the well-behaved nature of our
polymorphism model:
Theorem 3. The polymorphism model ΦCR/ΥCR is well-
behaved.

Proof. Immediate from Lemmas C.7, C.11, C.12, C.13, and
C.14.

D. Built-Ins
In this appendix, we extend TinyBang with a generic frame-
work for introducing built-in operations. We also show how
to use the framework to introduce integer operations and ref-
erence cells.

Types for Flexible Objects 24 2014/3/25

s ::= x =� −⇀x | . . . clauses

� ::= + | . . . built-ins

BUILTIN

�(E,
n−⇀
x′) = 〈E′, v〉

〈E, [x0 =�
n−⇀
x′] ‖ e〉 −→1 〈E′, [x0 = v] ‖ e〉

Figure D.1. Built-In Framework Operational Semantics
Additions

c ::= �−⇀α <: α | . . . constraints

Jx0 =�
n−⇀x KS =

?
α0\�

n−⇀?
α <:

?
α0

BUILTIN

�
n−⇀α <: α′ �(C,

n−⇀α) = 〈C ′,⨽−−⨼τ 〉
C =⇒1 C ′ ∪ {τ ′ <: α′ | τ ′ ∈ ⨽−−⨼τ }

Figure D.2. Built-In Framework Type System Additions

D.1 Environment
To ensure that the framework is sufficiently general to prop-
erly handle state, which makes it possible to create cyclic
data, we need an environment that supports cyclic scope. To
this end, we amend the scoping rules such that an expression
e is closed iff ∃E. e = E ‖ e0 and every variable occurring
in e is bound either by some clause before it or by some
clause in E. We represent such closed e as 〈E, e0〉.

D.2 Framework
The built-in framework makes additions to the language
grammar and operational semantics; these additions appear
in Figure D.1. Each individual built-in operator is repre-
sented by a symbol in the grammar �. We define for each
builtin a metatheoretic function �(−,−) that defines the op-
erator’s behavior; this function is from an environment and
a list of operand variables onto a pair between a resulting
environment and value.

The contents of Figure D.2 parallel these modifications
at the type system level. We also overload our operator
function: we define a metatheoretic function �(−,−) from
a constraint set and list of operand type variables onto a pair
between a resulting constraint set and a set of resulting types.
This set represents all possible resulting types; any runtime
result must be in the union of these types.

To create a built-in operator, it is then sufficient to define
the value and type level metatheoretic functions. Note that
these functions may be partial; not every built-in can accept
every variable. If the value level built-in function is partial,
then evaluation becomes stuck. Correspondingly, we modify
the definition of inconsistency in the following way:

v ::= Z | . . . values

v̊ ::= int | . . . pattern vals

τ ::= int | . . . types

Figure D.3. Integer Additions

π ::= int | l | ref projectors

Figure D.4. Projectors

Eπ(x) =

E(x) when E(x) is non-onion, E(x) ∈ Z, π = int

E(x) when E(x) is non-onion, E(x) = l x′, π = l

E(x) when E(x) is non-onion, E(x) = ref x′, π = ref

Eπ(x1) when E(x) = x1 &x2, Eπ(x1) is defined
Eπ(x2) when E(x) = x1 &x2, Eπ(x1) is undefined

Figure D.5. Value Projection

Definition D.1 (Inconsistency). A constraint set C is inconsistent
either as indicated in Definition 3.3 or iff there exists some �

n−⇀α <:
α′ ∈ C such that �(C,

n−⇀α) is undefined.

D.3 Integers
For simplicity, we left integers out of the main body of the
paper; we introduce integer values, patterns, and types (but
not operations) here to help illustrate built-ins. The changes
to the operational semantics and the type system are shown
in Figure D.3; note that they are entirely syntactic.

D.4 Projection
Built-in operations commonly act as destructors, extracting
values from onions to act upon them. To formalize this pro-
cess, we define a notion of projection to extract the highest
priority value of a given form from an onion. In the evalua-
tion system, this is written as a function Eπ(x) = v where π
is a projector from the grammar in Figure D.4. The function
itself is defined in Figure D.5. Note that this function is un-
defined when the projection is not possible (e.g. when int

is projected from a variable containing the empty onion).
We also define projection in the type system. Because

the type system may have multiple lower bounds on a given
type variable due to information loss, we must define a type
projection relation. Further, we must explicitly address the
cases in which projection may fail. For type projection, we
writeC ` α π−_ τ̇ where τ̇ is either a τ or the special symbol
Z. We elide C when it is understood. This relation is defined
as the least relation satisfying the rules in Figure D.6. The
decidability of this relation is subtle in the non-contractive
case (e.g. {‘Aα1 &α2 <: α2} ∪ C ` α2

ref−_ τ̇), and an
occurrence check is required.

Using this relation, we then define the partial function
Cπ(α) = ⨽−−⨼τ such that α π−_ τ ′ ⇔ τ ′ ∈ ⨽−−⨼τ and also that

Types for Flexible Objects 25 2014/3/25

INTEGER PROJECTION
int <: α ∈ C
α int−_ int

LABEL PROJECTION
l α′ <: α ∈ C
α l−_ lα′

REFERENCE PROJECTION
refα′ <: α ∈ C
α ref−_ refα′

INTEGER FAILURE
τ <: α ∈ C τ /∈ {int , α′1 &α′2}

α int−_ Z

LABEL FAILURE
τ <: α ∈ C τ /∈ {l α′, α′1 &α′2}

α l−_ Z

REFERENCE FAILURE
τ <: α ∈ C τ /∈ {refα′, α′1 &α′2}

α ref−_ Z

ONION LEFT PROJECTION
α1 &α2 <: α ∈ C α1

π−_ τ

α π−_ τ

ONION RIGHT PROJECTION
α1 &α2 <: α ∈ C α1

π−_ Z α2
π−_ τ̇

α π−_ τ̇

Figure D.6. Type Projection

α π−_ Z does not hold. This is to say that Cπ(α) is defined
as the set of types which may be projected by π from α
only when all such projections are successful. We use this
function in the specification of the built-ins below to ensure
that failed projections result in undefined type functions (and
thus are recognized as type errors).

D.5 Arithmetic Built-In Example
We define two arithmetic operations, addition and integer
comparison, in TinyBang as follows:

D.5.1 Addition
• + (E, [x1, x2]) = 〈E, v3〉 where v3 is the sum of
Eint(x1) and Eint(x2)

• + (C, [α1, α2]) = 〈C, {int}〉 when Cint(α1) = {int}
and Cint(α2) = {int}

D.5.2 Integer Less Than or Equal To
• <= (E, [x1, x2]) = 〈E′, v3〉 where

x<= is globally unique,

E′ = E ‖ [x<= = ()], and

v3 is ‘True x<= when Eint(x1) ≤ Eint(x2) and
‘False x<= otherwise

v ::= . . . | refx values

v̊ ::= . . . | refx pattern vals

τ ::= . . . | refα types

Figure D.7. State Grammar Modifications

REFERENCE CELL

E(x0) = ref x1 x′0 = ref x
′
1 ∈ φ x1

�
E�

B
φ x′1

x0
�
E�

B
φ x′0

Jx0 = ref x1KS =
?
α0\ ref

?
α1 <:

?
α0

REFERENCE CELL
ref α′1 <: α0 ∈ V ref α′1 <: α′0 ∈ C

α0\V � α′0\C

REFERENCE CELL
ref α1 <: α0 ∈ V

ref α′1 <: α′0 ∈ V ′ α1
�
V�

F
V ′ α′1

α0
�
V�

F
V ′ α′0

Figure D.8. State Rule Modifications

• <= (C, [α1, α2]) = 〈C ′, {‘True α<=, ‘False α<=}〉
where

α<= is globally unique,

C ′ = C ∪ {() <: α<=}, and

Cint(α1) = {int} and Cint(α2) = {int}

Other operations like subtraction and equality can be de-
fined analagously.

D.6 State
We add state to TinyBang via explicit reference cells. This
involves modifying the language and type grammars to in-
clude the reference cell construct and then modifying the
appropriate relations accordingly. The grammar modifica-
tions appear in Figure D.7. Grammatically, reference cells
are very similar to labels.

We also restrict the definition of a well-formed expres-
sion: to be well-formed, pattern matches beneath refs must
be trivial; that is, if x2 = ref x1 appears in a pattern, then
x1 = () must also appear in that pattern.

Because state defines additional forms of value and type,
it must also augment the definitions of slicing and pattern
matching. Pattern matching on reference cells is quite like
pattern matching on labels. Upon matching a reference cell
variable, its contents are read and bound to the pattern vari-
able. The corresponding rules appear in Figure D.8.

The restriction on the grammar of reference pattern
matching is a way of avoiding the aliasing problem which
arises on reference cells. If slicing were permitted to act on a
reference cell variable, there would be two mechanisms for

Types for Flexible Objects 26 2014/3/25

accessing it: the sliced variable and the pre-slice variable. By
closure capture, the scape could access both; if their types
are not identical (e.g. due to slicing), then an unsoundness
can arise by writing to one cell and then reading from the
other. The restriction we choose to impose is somewhat dra-
conian and not entirely necessary, but we choose it for its
simplicity and its clear soundness properties.

Because pattern matching provides a mechanism for
reading from cells, we only need to define a builtin to up-
date them. That builtin is as follows:

• := (E, [x1, x2]) = 〈E1 ‖ [x′ = v2] ‖E2, ()〉 where

E1 ‖[x′ = v′] ‖E2 = E

Eref(x1) = ref x′, and

E(x2) = v2

• := (C, [α1, α2]) = 〈C ′, {()}〉 where

C ′ = C ∪ {α2 <: α′ | refα′ ∈ Cref(α1)}

Observe that the type-level metatheoretic function
:= (−,−) introduces a transitivity constraint for each ref

lower bound, at least one of which corresponds to the as-
signment in the expression rule. This means that each set ex-
pression (transitively) introduces a lower bound on the ref

type variable. Every pattern match on the same ref will need
to handle the type of anything that could have been assigned
to it.

Types for Flexible Objects 27 2014/3/25

	Introduction
	Key Features of TinyBang
	Object-oriented programming in TinyBang

	Overview
	Language Features for Flexible Objects
	Self-Awareness and Resealable Objects
	Flexible Object Operations

	Formalization
	A-Translation
	Operational Semantics
	Compatibility
	Matching
	Operational Semantics

	Type System
	Initial Alignment
	Equivalence
	Slicing
	Compatibility
	Matching
	Constraint Closure
	A worked example
	Formal Properties

	A Useful Polymorphism Model: CR/CR

	Related Work
	Conclusions
	Proof of Soundness
	Initial Alignment
	Deep Copying
	Bisimulation of Deep Copying and Slicing
	Compatibility and Matching
	An Alternate Operational Semantics

	Stuck Simulation
	Proof of Soundness

	Proof of Decidability
	Finite Slices
	Finite type variables
	A restricted Application rule
	Finiteness of Closure
	Confluence
	Computable Typechecking

	Polymorphism in TinyBang
	Definition of CR/CR
	Polyinstantiation
	Unification

	Soundness of CR/CR
	Simulation Preservation
	Finite Freshening
	Monotonicity
	Well-Behaved Polymorphism

	Built-Ins
	Environment
	Framework
	Integers
	Projection
	Arithmetic Built-In Example
	Addition
	Integer Less Than or Equal To

	State

