
Types for Flexible Objects

Pottayil Harisanker Menon, Zachary Palmer, Alexander Rozenshteyn, and
Scott Smith

Department of Computer Science
The Johns Hopkins University

{pharisa2, zachary.palmer, arozens1, scott}@jhu.edu

Abstract. Scripting languages are popular in part due to their ex-
tremely flexible objects. Features such as dynamic extension, mixins, and
first-class messages improve programmability and lead to concise code.
But attempts to statically type these features have met with limited
success.

We present TinyBang, a small typed language, in which flexible ob-
ject operations can be encoded. Our encodings center around a novel,
asymmetric data conjoiner which is used to concatenate records and to
construct dependently-typed functions. TinyBang’s subtype constraint
system ensures that all types are inferred; there are no data declara-
tions or type annotations. We show that the previously mentioned op-
erations can be seamlessly encoded in TinyBang. TinyBang also solves
an open problem in OO literature: objects can be extended after being
messaged without compromising on the expressiveness of subtyping. We
prove TinyBang’s type system both sound and decidable; all examples
run in our most recent implementation.

1 Introduction

Modern scripting languages such as Python and JavaScript have become popular
in part due to the flexibility of their object semantics. In addition to supporting
traditional OO operations such as inheritance and polymorphic dispatch, script-
ing programmers can add or remove members from existing objects, arbitrarily
concatenate objects, represent messages as first-class data, and perform trans-
formations on objects at any point during their lifecycle. This flexibility allows
programs to be more concise and promotes a more separated design.

While a significant body of work has focused on statically typing flexible
object operations [BF98,RS02,BBV11], the solutions proposed place significant
restrictions on how objects can be used. The fundamental tension lies in sup-
porting self-referentiality. For an object to be extensible, “self” must be exposed
in some manner equivalent to a function abstraction λself . . . so that differ-
ent “self” values may be used in the event of extension. But exposing “self” in
this way puts it in a contravariant position; as a result, subtyping on objects is
invalid. The above systems create compromises; [BF98], for instance, does not
permit objects to be extended after they are messaged.

Along with the problem of contravariant self, it is challenging to define a
fully first-class object concatenation operation with pleasing typeability proper-
ties. The aforementioned type systems do not support concatenation of arbitrary
objects. In the related space of typed record concatenation, previous work [Pot00]
has shown that general record concatenation may be typed but requires consid-
erable machinery including presence/absence types and conditional constraints.

In this paper, we present a new programming language calculus, TinyBang,
which aims for significant flexibility in statically typing flexible object operations.
In particular, we support object extension without restrictions, and we have
simple type rules for a first-class concatenation operation.

TinyBang achieves its expressiveness with very few primitives: the core ex-
pressions include only labeled data (‘a 5, for example, labels 5 with ‘a), con-
catenation (‘a 5 & ‘b 1), higher-order functions, and pattern matching. Classes,
objects, inheritance, object extension, overloading, and switch/case can be fully
and faithfully encoded with these primitives. TinyBang also has full type infer-
ence for ease and brevity of programming. It is not intended to be a programming
language for humans; instead, it aims to serve as a conceptual core for such a
language.

1.1 Key Features of TinyBang

TinyBang’s type system is grounded in subtype constraint type theory [AWL94],
with a series of improvements to both expression syntax and typing to achieve
the expressiveness needed for flexible object encodings.

Type-indexed records supporting asymmetric concatenation TinyBang uses type-
indexed records: records for which content can be projected based on its type
[SM01]. For example, consider the type-indexed record {foo = 45; bar = 22; 13}:
the untagged element and 13 is implicitly tagged with type int, and projecting
int from this record would yield 13. Since records are type-indexed, we do not
need to distinguish records from non-records; 22, for example, is a type-indexed
record of one (integer) field. Variants are also just a special case of 1-ary records
of labeled data, so ‘Some 3 expresses the ML/Haskell Some(3). Type-indexed
records are thus a universal data type and lend themselves to flexible program-
ming patterns in the same spirit as what lists did for Lisp and objects did for
Smalltalk.

TinyBang records support asymmetric concatenation via the & opera-
tor; informally, {foo = 45; bar = 22; 13} & {baz = 45; bar = 10; 99} results
in {foo = 45; bar = 22; baz = 45; 13} since the left side is given priority for
the overlap (on bar and the int field here). Asymmetric concatenation is key
for supporting flexible object concatenation, as well as for standard notions of
inheritance. We term the & operation onioning. We need not include any record
syntax in core TinyBang since we may simply write e.g. ‘foo 45 & ‘bar 22 & 13,
the onioning of a sequence of labeled data, to express the above record. Our type
formalism is built around onioning and this leads to a simple formalization of
concatenation.

Dependently typed first-class cases TinyBang’s first-class functions are written
“pattern -> expression”. In this way, first-class functions are also first-class case
clauses. We permit the concatenation of these clauses via & to give multiple
dispatch possibilities. We refer to a single clause as a simple function, and the
conjunction of multiple clauses is a compound function. TinyBang’s first-class
functions generalize the first-class cases of [BAC06].

In standard type systems all case branches are constrained to have the same
result type, losing the dependency between the variant input and the output.
This problem is solved in TinyBang by giving compound functions dependent
types: application of a compound function can return a different type based on
the variant constructor of its argument. The type theory remains simple because
the dependency is only on the variant. Dependently typed first-class cases are
critical for typing our object encodings, a topic we discuss later in this section.

Alignment of expressions, patterns, and types Programming languages typically
have quite distinct syntax for expressions, pattern matching, and their types,
but we have found it beneficial to align them. The core TinyBang syntax uni-
fies the expression and pattern syntax. The difference is in the interpretation:
expressions are read “forward” to construct values while patterns are read “back-
wards” to destruct them. We use a nested expression (and pattern) grammar in
our examples for readability, but the TinyBang core language is in A-translated
form; this is particularly important because it leads to a very strong alignment
between the expression and type grammars. Consider for example a single func-
tion application in A-normal form, expressed as x1 = x2 x3; our corresponding
subtype constraint is α2α3 <: α1 (also commonly notated as α3 → α1 <: α2). A
similar strong notational analogy holds for TinyBang’s labeling and concatena-
tion operations.

This alignment allows the formal definition of the operational semantics and
type inference to be compact in spite of the expressiveness of the language. The
alignment of expression and type grammars also allows for us to prove type
soundness by an approach different from subject reduction: a simple functor
from expressions to types can be shown to provably achieve a stepwise simulation
between the operational semantics and the type inference closure process. In the
language of category theory, we can establish an adjunction between this functor
and its inverse.

1.2 Object-oriented programming in TinyBang

Contributions of our object encodings include the following.

Objects as variants Objects are commonly encoded as records of functions;
method invocation is achieved by invoking a function in the record. While such
an encoding would work in TinyBang, we opt to use a variant-based encoding:
objects are message-processing functions which case on the form of message and
method invocation is a simple function call. The variant-based view of objects
is not new; classic Actor models [Agh85] use an untyped form of variant-based
objects. Although, these models are traditionally quite challenging to type, Tiny-
Bang’s type system is well-suited to them. First, variant-based objects rely on

case matching, a traditionally homogeneously-typed construct, to dispatch mes-
sages; the dependent types we use for cases solves this problem. Second, case
matching is a monolithic operation in most languages, making it difficult to
compose objects or create extensions. But, as mentioned above, TinyBang sup-
ports concatenation of case clauses; this is the root feature needed to support
object concatenation and subclassing is easily encoded in this way.

Resealing objects to support object extension A key idea of [BF98] is a sealing
transformation where an object template turns into a messageable (but non-
extensible) object. Our encoding of objects extends that idea by adding a reseal-
ing operation: the type of self is captured in the closure of a message dispatch
function that can be overridden due to the asymmetric nature of onioning in
TinyBang. Capturing self in a positive position – as a value bound in the mes-
sage dispatch function – makes it covariant and so subtyping is not compromised.

A broad collection of supported features TinyBang also supports simple encod-
ings of other standard object features: in the next section we cover object ex-
tension, subclassing and inheritance, mixins, default arguments, and operator
overloading.

Outline In the next section, we give an overview of how TinyBang can encode
object features. In Section 3, we show the operational semantics and type system
for a core subset of TinyBang, trimmed to the key features for readability; we
prove soundness and decidability for this system in the appendices. Section 4
then illustrates how this core can be extended to the full semantics of TinyBang;
this includes state and primitive operators. We conclude in Section 6.

2 Overview

This section gives an overview of the TinyBang language and of how it supports
flexible object operations and other scripting features.

2.1 Language Features for Flexible Objects

The TinyBang syntax used in this section appears in Figure 1. The core Tiny-
Bang that is formalized is an A-normalized version of this grammar. The ex-
pression grammar contains the key features mentioned above: simple functions
(written φ -> e), onioning (written e & e), and labeled data (written ‘Foo e for a
label constructor ‘Foo). State is also explicit and ML-style syntax is used.

e ::= () | Z | l e | ref e | ! e | e & e | φ -> e | e� e | e e | expressions

letx = e in e | x := e in e | x
φ ::= () | int | l φ | φ &φ | x patterns

� ::= + | - | == | <= | >= operators

l ::= ‘(alphanumeric) labels

Fig. 1. TinyBang Syntax

Program types take the form of a set of subtype constraints [AWL94]. For
the purposes of this Overview we will be informal about type syntax. Our type

constraint syntax can be viewed as an A-normalized type grammar, and this
grammar implicitly supports (positive) union types by giving a type variable
multiple lower bounds: for example, int ∪ bool is equivalently expressed as a
type α with constraints int <: α and bool <: α. So, as we do with the syntax,
we will write types in a standard nested form in this section for presentation
clarity. The details of the type system are presented in Section 3.3.

Simple functions as methods We begin by considering the oversimplified case of
an object with a single method and no fields or self-awareness. In the variant
encoding, such an object is represented by a function which matches on a single
case. Note that, in TinyBang, all functions are written φ -> e, with φ being a
pattern to match against the function’s argument. Combining pattern match
with function definition is also possible in ML and Haskell, but we go further:
there is no need for any match syntax in TinyBang since match can be encoded as a
pattern and its application. We call these one-clause pattern-matching functions
simple functions. For instance, consider the following object and its invocation:

1 let obj = (‘double x -> x + x) in obj (‘double 4)

The syntax ‘double 4 is a label constructor similar to an OCaml polymorphic
variant; as in OCaml, the expression ‘double 4 has type ‘double int. The sim-
ple function ‘double x -> x + x is a function which matches on any argument
containing a ‘double label and binds its contents to the variable x. Note that
the expression ‘double 4 represents a first-class message; the object invocation
is represented with its arguments as a variant.

Unlike a traditional match expression, a simple function is only capable of
matching one pattern. To express general match expressions, functions are ap-
pended via the onion operation & to give compound functions. Given two func-
tion expressions e1 and e2, the expression (e1 & e2) conjoins them to make a
compound function with the conjoined pattern, and (e1 & e2) a will apply the
function which has a pattern matching a; if both patterns match a, the leftmost
function (e.g. e1) is given priority. We can thus write a dispatch on an object
with two methods simply as:

1 let obj = (‘double x -> x + x) & (‘isZero x -> x == 0) in obj ‘double 4

The above shows that traditional match expressions can be encoded using
the & operator to join a number of simple functions: one for each case. Function
conjunction generalizes the first-class cases of [BAC06]; the aforecited work only
supports adding one clause to the end and so does not allow “override” of an
existing clause or “mixing” of two arbitrary sets of clauses.

Dependent pattern types The above shows how to encode an object with multiple
methods as an onion of simple functions. But we must be careful not to type
this encoding in the way that match/case expressions are traditionally typed.
The analogous OCaml match/case expression

1 let obj m = (match m with

2 | ‘double x -> x + x

3 | ‘isZero x -> x == 0) in . . .

will not typecheck; OCaml match/case expressions must return the same type in
all case branches.1 Instead, we give the function a dependent pattern type that
is informally (‘double int → int) & (‘isZero int → bool). If the function is
applied in the context where the type of message is known, the appropriate
result type is inferred; for instance, invoking this method with ‘isZero 0 always
produces type bool and not type int ∪ bool. Because of this dependent typing,
match expressions encoded in TinyBang may be heterogeneous; that is, each case
branch may have a different type in a meaningful way. When we present the
formal type system below, we show how these dependent pattern types extend
the expressiveness of conditional constraint types in a dimension critical for
typing objects. These dependent pattern types generalize conditional constraint
types [AWL94,Pot00].

Onions are records There is no record syntax in TinyBang; we only require
the record concatenation operator & so we can append values into type-indexed
records. We informally call these records onions to signify these properties. Here
is an example of how objects can be encoded with multi-argument methods:

1 let obj = (‘sum (‘x x & ‘y y) -> x + y)

2 & (‘equal (‘x x & ‘y y) -> x == y)

3 in obj (‘sum (‘x 3 & ‘y 2))

The ‘x 3 & ‘y 2 is an onion of two labels and amounts to a two-label record.
This ‘sum-labeled onion is passed to the pattern ‘x x & ‘y y. (We highlight
the pattern & differently than the onioning & because the former is a pattern
conjunction operator: the value must match both subpatterns.) Also observe
from this example how there is no hard distinction in TinyBang between records
and variants: there is only one class of label. This means that the 1-ary record
‘sum 4 is the same as the 1-ary variant ‘sum 4.

2.2 Self-Awareness and Resealable Objects

Up to this point objects have not been able to invoke their own methods, so
the encoding is incomplete. To model self-reference we build on the work of
[BF98], where an object exists in one of two states: as a prototype, which can
be extended but not messaged, or as a “proper” object, which can be messaged
but not extended. A prototype may be “sealed” to transform it into a proper
object, at which point it may never again be extended.

Unlike the aforecited work, our encoding permits sealed objects to be ex-
tended and then resealed. This flexibility of TinyBang allows the sharp phase
distinction between prototypes and proper objects to be relaxed. All object ex-
tension below will be performed on sealed objects. Object sealing in TinyBang
requires no special metatheory; it is defined directly as a function seal:

1 let fixpoint = f -> (g -> x -> g g x) (h -> y -> f (h h) y) in

2 let seal = fixpoint (seal -> obj ->

1 The recent OCaml 4 GADT extension mitigates this difficulty but requires an explicit
type declaration, type annotations, and only works under a closed world assumption.

3 (msg -> obj (msg & ‘self (seal obj))) & obj) in

4 let obj = (‘double x -> x + x) &

5 (‘quad x & ‘self self -> self (‘double x) + self (‘double x))

6 let sObj = seal obj in . . .

The seal function is an object transformer which adds ‘self ... as an implicit
additional argument to all obj methods, “sealing” the self within the object.
Looking at the code, the result msg -> ... is a new message handler onioned
onto the left of obj. This message handler matches every message sent to obj,
adds a ‘self component to the message, and sends it on to obj. This message
handler also recursively ensures that the value in ‘self is itself a sealed object;
this is the subtle reason why fixpoint is needed.

Extending previously sealed objects In the self binding function above, the value
of self is onioned onto the right of the message; this gives any explicit value of
‘self in a message passed to a sealed object priority over the ‘self provided by
the self binding function (onioning is asymmetric with left precedence). Consider
the following continuation of the previous code:

1 let sixteen = sObj ‘quad 4 in // returns 16

2 let obj2 = (‘double x -> x) & sObj in

3 let sObj2 = seal obj2 in

4 let four = sObj2 ‘quad 4 in ... // returns 4

We can extend sObj after messaging it, here overriding the ‘double message;
sObj2 represents the (re-)sealed version of this new object. sObj2 properly knows
its “new” self due to the resealing, evidenced here by how ‘quad invokes the new
‘double. To see why this works let us trace the execution. Expanding the sealing
of sObj2, sObj2 (‘quad 4) has the same effect as obj2 (‘quad 4 & ‘self sObj2),
which has the same effect as sObj (‘quad 4 & ‘self sObj2). Recall sObj is also
a sealed object which adds a ‘self component to the right ; thus this has the
same effect as obj (‘quad 4 & ‘self sObj2 & ‘self sObj). Because the leftmost
‘self has priority, the ‘self is properly sObj2 here.

Sealed and resealed objects obey the desired object subtyping laws because
we “tie the knot” on self using seal, meaning there is no contravariant self pa-
rameter on object method calls to invalidate object subtyping. Additionally, our
type system includes parametric polymorphism and so sObj and the re-sealed
sObj2 do not have to share the same self type, and the fact that & is a functional
extension operation means that there will be no pollution between the two dis-
tinct self types. Key to the success of this encoding is the asymmetric nature
of &: it allows us to override the default ‘self parameter. This self resealing is
possible in the record model of objects, but is much more convoluted; this is a
reason that we switched to a variant model.

Onioning it all together Onions also provide a natural mechanism for including
fields; we simply concatenate them to the functions that represent the methods.
Consider the following object which stores and increments a counter:

1 let obj = seal (‘x (ref 0) &

2 (‘inc _ & ‘self self -> (‘x x -> x := !x + 1 in !x) self))

3 in obj ‘inc ()

Observe how obj is a heterogeneous “mash” of a record field (the ‘x) and a
function (the handler for ‘inc). This is sound because onions are type-indexed
[SM01], meaning that they use the types of the values themselves to identify
data. For this particular example, invocation obj ‘inc () (note () is an empty
onion, a 0-ary conjunction) correctly increments in spite of the presence of the
‘x label in obj.

Here we define a few sugarings which we use in the examples throughout the
remainder of this section, although a “real” language built on these ideas would
include sugarings for each of the features we are about to mention as well.

o.x ∼= (‘x v -> !v) o

o.x = e1 in e2
∼= (‘x v -> v := e1 in e2) o

if e1 then e2 else e3
∼= ((‘True _ -> e2) & (‘False _ -> e3)) e1

e1 and e2
∼= ((‘True _ -> e2) & (‘False _ -> ‘False ())) e1

Using this sugar, the update in the counter object above could be expressed
more succinctly as self.x = self.x + 1 in self.x.

2.3 Flexible Object Operations

Here we cover how TinyBang supports a broad family of flexible object oper-
ations, expanding on the first-class messages and flexible extension operations
covered above. We show encodings in terms of objects rather than classes for
simplicity; applying these concepts to classes is straightforward.

Default arguments TinyBang can easily encode default arguments, arguments
which are optional and take on a default value if missing. For instance, consider:

1 let obj = seal ((‘add (‘x x & ‘y y) -> x + y)

2 & (‘sub (‘x x & ‘y y) -> x - y)) in

3 let dflt = obj -> (‘add a -> obj (‘add (a & ‘x 1))) & obj in

4 let obj2 = dflt obj in

5 obj2 (‘add (‘y 3)) + obj2 (‘add (‘x 7 & ‘y 2)) // returns 4 + 9

Object dflt overrides obj’s ‘add to make 1 the default value for ‘x. Because
the ‘x 1 is onioned onto the right of a, it will have no effect if an ‘x is explicitly
provided in the message. This example also shows how the addition of default be-
havior is a first-class operation and not just first-order syntax, giving TinyBang
more flexibility than most implementations of default arguments.

Overloading The pattern-matching semantics of functions also provide a simple
mechanism whereby function (and thus method and operator) overloading can
be defined. We might originally define negation on the integers as

1 let neg = x & int -> 0 - x in . . .

Here, the conjunction pattern x & int will match the argument with int and
also bind it to the variable x. Later code could then extend the definition of

negation to include boolean values. Because operator overloading assigns new
meaning to an existing symbol, we redefine neg to include all of the behavior of
the old neg as well as new cases for ‘True and ‘False:

1 let neg = (‘True _ -> ‘False ()) & (‘False _ -> ‘True ()) & neg in . . .

Negation is now overloaded: neg 4 evaluates to -4, and neg ‘True () evaluates
to ‘False () due to how application matches function patterns. Note that one
may prefer to disallow override of an existing overloading; defining an operator
&! with this behavior is simple since it can simply check whether the patterns
overlap.

Mixins The following example shows how a simple two-dimensional point object
can be combined with a mixin providing extra methods:

1 let point = seal (‘x (ref 0) & ‘y (ref 0)

2 & (‘l1 _ & ‘self self -> self.x + self.y)

3 & (‘isZero _ & ‘self self -> self.x == 0 and self.y == 0)) in

4 let mixin = ((‘near _ & ‘self self -> (self ‘l1 ()) < 4)) in

5 let mixedPoint = seal (point & mixin) in mixedPoint ‘near ()

Here mixin is a function which invokes the value passed as self. Because an
object’s methods are just functions onioned together, onioning mixin into point

is sufficient to produce a properly functioning mixedPoint.
The above example typechecks in TinyBang; parametric polymorphism is

used to allow point, mixin, and mixedPoint to have different self-types. The mixin

variable, has the approximate type “(‘near unit & ‘self α) → bool where α is
an object capable of receiving the ‘l1 message and producing an int”. mixin can
be onioned with any object that satisfies these properties. If the object does not
have these properties, a type error will result when the ‘near message is passed;
for instance, (seal mixin) (‘near ()) is not typeable because mixin, the value
of self, does not have a function which can handle the ‘l1 message.

TinyBang mixins are first-class values; the actual mixing need not occur until
runtime. For instance, the following code selects a weighting metric to mix into
a point based on some runtime condition cond.

1 let cond = (runtime boolean) in

2 let point = (as above) in

3 let w1 = (‘weight _ & ‘self self -> self.x + self.y) in

4 let w2 = (‘weight _ & ‘self self -> self.x - self.y) in

5 let mixedPoint = seal (point & (if cond then w1 else w2)) in

6 mixedPoint ‘weight ()

Inheritance, classes, and subclasses Typical object-oriented constructs can be
defined similarly to the above. Object inheritance is similar to mixins, but a
variable super is also bound to the original object and captured in the closure of
the inheriting objects methods, allowing it to be reached for static dispatch. The
flexibility of the seal function permits us to ensure that the inheriting object is
used for future dispatches even in calls to overridden methods. Classes are simply
objects that generate other objects, and subclasses are extensions of those object
generating objects. We forgo examples here for brevity.

3 Formalization

We now give formal semantics to a subset of TinyBang. This subset includes
functions, onions, and labels as described in Section 2; state and primitive oper-
ators are added in Section 4. Here, we will first translate the TinyBang program
to A-normal form. This allows us to use much simpler definitions and provides a
better alignment between expressions and types. Section 3.2 defines the opera-
tional semantics of the A-normalized version of restricted TinyBang. Section 3.3
defines the type system and soundness and decidability properties.

Notation For a given construct g, we let [g1, . . . , gn] denote an n-ary list of g,
often using the equivalent shorthand

n−⇀g . We elide the n when it is unnecessary.
Operator ‖ denotes list concatenation. For sets, we use similar notation:

n⨽−−⨼g
abbreviates {g1, . . . , gn} for some arbitrary ordering of the set. We sometimes

use � to indicate index positions for clarity. For example,
n−−−⇀
g�/g

′ is shorthand for
[g1/g

′, . . . , gn/g
′].

3.1 A-Translation

In order to simplify our formal presentation, we convert TinyBang into A-normal
form; this brings expressions, patterns, and types into close syntactic alignment.
The grammar of our A-normalized language appears in Figure 2. For the pur-
poses of discussion, we will refer to the restriction of the language presented in
Section 2 as the nested language and to the language appearing in Figure 2 as
the ANF language.

e ::= −⇀s expressions φ ::=
−−−−⇀
x = v̊ patterns

s ::= x = v | x =x | x =x x clauses

E ::= −−−−⇀x = v environment B ::= −−−−⇀x =x bindings

v ::= Z | () | l x | x &x | φ -> e values v̊ ::= int | () | l v̊ | v̊ & v̊ pattern vals

l ::= ‘(alphanumeric) labels x ::= (alphanumeric) variables

Fig. 2. TinyBang ANF Grammar

Observe how expression and pattern grammars are nearly identical. We re-
quire that both expressions and patterns declare each variable at most once;
expressions and patterns which do not have this property must be α-renamed
such that they do.

We now define the A-translation function HeIx. This function accepts a nested
TinyBang expression and produces the A-normalized form −⇀s in which the final
declared variable is x. We overload this notation to operate on patterns as well.
We use y and z to range over fresh variables unique to that invocation of the
translation function; different recursive invocations use different fresh variables
y and z. Using this notation, our definition of this translation function appears
in Figure 3.

The A-translation of e is defined as HeIy for some fresh y. The definition
is straightforward in most respects. Notice that A-translation of patterns is in
perfect parallel with the expressions in the above; for example, the expression

Expressions

HZIx = [x =Z]
H()Ix = [x = ()]
Hl eIx = HeIy ‖[x = l y]

He1 & e2Ix = He1Iy ‖ He2Iz ‖[x = y & z]
Hφ -> eIx = [x = HφIy -> HeIz]
He1 e2Ix = He1Iy ‖ He2Iz ‖[x = y z]

Hletx1 = e1 in e2Ix2 = He1Ix1 ‖ He2Ix2
Hx2Ix1 = [x1 =x2]

Patterns

HintIx = [x = int]
H()Ix = [x = ()]
Hl φIx = HφIy ‖[x = l y]

Hφ1 &φ2Ix = Hφ1Iy ‖ Hφ2Iz ‖[x = y & z]

Hx2Ix1 = [x2 = ()]
Fig. 3. TinyBang A-Translation

‘A x -> x translates to [y1 = [x = (), y3 = ‘A x] -> [y2 = x]]. Using the same A-
translation for patterns and expressions greatly aids the formal development, but
it takes some practice to read these A-translated patterns. Variables matched
against empty onion (x = () here) are unconstrained and represent bindings
that can be used in the body; other variables such as the y3 are not bindings;
clause y3 = ‘A x constrains the argument to match a ‘A-labeled value. The last
binding in the pattern is taken to match the argument when the function is
applied, in analogy to how the variable in the last clause of an expression is the
final value. Variable binding is mostly standard: every clause x = () appearing
in the function’s pattern binds x in the body of the function. In clause lists,
each clause binds the defining variable for all clauses appearing after it; nested
function clauses follow the usual lexical scoping rules. For the remainder of the
paper, we assume expressions are closed unless otherwise noted.

3.2 Operational Semantics

Next, we define an operational semantics for ANF TinyBang. The primary com-
plexity is pattern matching, for which several auxiliary definitions are needed.

Compatibility The first basic relation we define is compatibility : is a value
accepted by a given pattern? We write x E�Bφ x′ to indicate that the value
x is compatible with the pattern variable x′. E represents the environment in
which to interpret the value x while φ represents the environment in which to
interpret the pattern x′. B dictates how, upon this successful match, the values
from E will be bound to the pattern variables in φ. Compatibility is the least
relation satisfying the rules in Figure 4. B additionally must be minimal; that
is, x E�Bφ x′ only holds if there exists no strict sublist B′ such that x E�B

′

φ x′.

We write x0 E 6�φ x′0 to indicate that x0 E�Bφ x′0 does not hold for any B.

To better understand this relation, consider matching the pattern
‘A a & ‘B b against the value ‘A 0 & ‘B (). The A-translations of these ex-
pressions are, respectively, the first and second columns below. Compatibility
v5 E�Bφ p3 holds with the bindings B shown in the third column.

Integer
x0 =n ∈ E,n ∈ Z x′0 = int ∈ φ

x0 E�Bφ x′0

Empty Onion
x0 = v ∈ E x′0 = () ∈ φ x′0 =x0 ∈ B

x0 E�Bφ x′0

Label
x0 = l x1 ∈ E x′0 = l x

′
1 ∈ φ x1 E�Bφ x′1

x0 E�Bφ x′0

Conjunction Pattern
x′0 =x

′
1 &x

′
2 ∈ φ x0 E�Bφ x′1 x0 E�Bφ x′2

x0 E�Bφ x′0

Onion Value Left
x0 =x1 &x2 ∈ E x1 E�Bφ x′0

x0 E�Bφ x′0

Onion Value Right
x0 =x1 &x2 ∈ E x′0 =x

′
1 &x

′
2 6∈ φ x2 E�Bφ x′0 x1 E 6�φ x′0

x0 E�Bφ x′0

Fig. 4. Pattern compatibility rules

E φ B
v1 = 0

v2 = ‘A v1

v3 = ()

v4 = ‘B v3

v5 = v2 & v4

a = ()

p1 = ‘A a

b = ()

p2 = ‘B b

p3 = p1 & p2

a = v1

b = v3

Matching Compatibility determines if a value matches a single pattern; we
next define a matching relation to check if a series of pattern clauses match. In
TinyBang, recall there is no case/match syntax for pattern matching, individual
pattern clauses pattern -> body are expressed as simple functions φ -> e and a
series of pattern clauses are expressed by onioning together simple functions. We
thus need to define an application matching relation x0 x1 ;E e to determine if
an onion of pattern clauses x0 can be applied to argument x1. Matching is defined
as the least relation satisfying the rules in Figure 5; helper function RV extracts
the return variable from a value, formally defined as follows: RV(−⇀e ‖[x = v]) = x,
and RV(−⇀e ‖[x = v̊]) = x. We use the notation x0 x1 6;E to mean that there exists
no e such that x0 x ;E e.

Function
x0 = (φ -> e) ∈ E x1 E�Bφ RV(φ)

x0 x1 ;E B ‖ e

Onion Left
x0 =x2 &x3 ∈ E x2 x1 ;E e

x0 x1 ;E e

Onion Right
x0 =x2 &x3 ∈ E x2 x1 6;E x3 x1 ;E e

x0 x1 ;E e

Fig. 5. Application matching rules

The Function rule is the base case of a simple function application: the ar-
gument value x1 must be compatible with the pattern φ, and if so insert the
resulting bindings B at the top of the function body e. The Onion Left/Right
rules are the inductive cases; notice that the Onion Right rule can only match
if the (higher priority) left side has failed to match.

Operational Semantics Using the compatibility and matching relations from
above, we now define the operational semantics of restricted TinyBang as a small
step relation e −→1 e′. We must freshen variables as they are introduced to the
expression to preserve the invariant that the ANF TinyBang expression uniquely
defines each variable; to do so, we take α(e) to be an α-renaming function which
freshens all variables in e which are not free. We then define the small step
relation as the least relation satisfying the rules given by Figure 6.

Variable Lookup
x1 = v ∈ E

E ‖[x2 =x1] ‖ e −→1 E ‖[x2 = v] ‖ e

Application
x0 x1 ;E e′ α(e′) = e′′

E ‖[x2 =x0 x1] ‖ e −→1 E ‖ e′′ ‖[x2 =RV(e′′)] ‖ e

Fig. 6. The operational semantics small step relation

The application rule simply inlines the (freshened) function body e′′ in the
event that the matching relation reports that it matched; recall that e′ returned
by matching is the body of the matched function with argument variable bindings
prepended. The variable x2 needing the result of the call is assigned the return
value of the inlined function.

We define e0 −→∗ en to hold when e0 −→1 . . . −→1 en for some n ≥ 0. Note
that e −→∗ E means that computation has resulted in a final value. We write
e X−→1 iff there is no e′ such that e −→1 e′; observe E X−→1 for any E. When
e X−→1 for some e not of the form E, we say that e is stuck.

3.3 Type System

We base TinyBang’s type system on subtype constraint systems, which have
been shown to be quite expressive [AW93] and suitable for complex pattern
matching [Pot00] and object-orientation [WS01].

Constraint sets have been used previously to reason about program variables
as sets of potential runtime values [Hei94]. We adopt this strategy and take it
a few steps further. First, we build in a close syntactic correspondence between
program expressions and types. Second, we do not take the standard approach
of presenting a declarative ruleset for typing and an independent type inference
algorithm for that ruleset; instead, we only present the inference algorithm, in
the form of a constraint closure process which deductively closes on a set of
subtyping constraints. Operational semantics single-stepping then has a close
alignment to a single step of this constraint closure process, so close that a
formal simulation relationship is not hard to establish: there is a functor from
expressions to types that is a simulation.

C ::= ⨽−−⨼c constraint sets

c ::= τ <: α | α <: α | α α <: α constraint

V ::=
⨽−−−−−−⨼
τ <: α constraint value sets

F ::=
⨽−−−−−−−⨼
α <: α constraint value sets

τ ::= int | () | l α | α &α | α\V → α\C types

α type variables

Fig. 7. The TinyBang type grammar

Initial Alignment Figure 7 provides a grammar of the type system.
There is a very close alignment between expression and type grammar ele-

ments; E has type V , and B has type F . Expressions e have types α\C; these
are less different than they appear, since the expression clauses are a list the
last variable contains the final value implicitly whereas in the type the final
type location α must be explicit. Both v and v̊ have type τ ; this is because,
while the correspondence from v is lossy (all Z map to int, for example), the
correspondence from v̊ is not: all patterns are singleton-typed.

We formalize this initial alignment step as a function JeKe which produces
a constrained type α\C; see Figure 8. Initial alignment over a given e picks a
single fresh type variable for each program variable in e; for the variable x0, we
denote this fresh type variable as

?
α0. The function is simple: each clause x0 = . . .

is mapped to a corresponding constraint . . . <:
?
α0. Note that functions φ -> e

produce types α′\V → α\C, patterns only contain value constraints V ⊆ C.

J
n−⇀s Ke = αn\

n⨽−−⨼c where ∀i ∈ {1..n}.JsiKs = αi\ci
J
n−−⇀
x = v̊Kp = αn\

n⨽−−⨼c where ∀i ∈ {1..n}.Jxi = v̊iK̊s = αi\ci
Jx0 =ZKs =

?
α0\ int <:

?
α0 Jx0 = intK̊s =

?
α0\ int <:

?
α0

Jx0 = ()Ks =
?
α0\ () <:

?
α0 Jx0 = ()K̊s =

?
α0\ () <:

?
α0

Jx0 = l x1Ks =
?
α0\ l ?

α1 <:
?
α0 Jx0 = l x1K̊s =

?
α0\ l ?

α1 <:
?
α0

Jx0 =x1 &x2Ks =
?
α0\ ?

α1 &
?
α2 <:

?
α0 Jx0 =x1 &x2K̊s =

?
α0\ ?

α1 &
?
α2 <:

?
α0

Jx0 =φ -> eKs =
?
α0\ JφKp → JeKe <:

?
α0

Jx0 =x1Ks =
?
α0\ ?

α1 <:
?
α0

Jx0 =x1 x2Ks =
?
α0\ ?

α1
?
α2 <:

?
α0

Fig. 8. Initial alignment

Next, we must define the type system constraint closure relation. At a high
level, the type system formalization contains relations paralleling the operational
semantics: below we define compatibility, matching, and single-step closure re-
lations which are close analogues of the operational semantics versions of the
previous section. There is however one novel relation not found in the opera-
tional semantics, the slicing relation; we now discuss the need for that relation
and present its definition.

Slicing Any type system must conservatively approximate runtime behavior for
typechecking to be decidable. The particular places our system loses information
is individual integers are approximated by int in the type system; and, the call

stack must somehow be finitely approximated. A result of these imprecisions
is that some type variables will have more than one lower bound. For example,
execution of clause x1 = x2 == x3 in the operational semantics will store only one
of ‘True or ‘False in x1, whereas the corresponding constraint set is the union
α1\{‘True α2 <: α1, ‘False α2 <: α1, () <: α2}. Now, consider the pattern
‘True _ & ‘False _, which should match values with both labels. It seems like
the type variable α1 should match this pattern if it has both a ‘True lower bound
and a ‘False lower bound, but a constraint set like the one above represents a
union, not an intersection. So, a näıve porting of the definitions in the operational
semantics will fail on this account.

The solution we take is to perform union elimination before making the
compatibility check. This way, compatibility is guaranteed union-free input. We
call these union-free subsets a slice of the original type. Slices solve the above
problem because we would first consider the slice of the α1 type containing just
the ‘True part of the union, and then just the ‘False part.

Slices are for the most part easy to define, but there is a subtlety for the
case that the value has been collapsed to a recursive data type (an effect of
the finitization of the call stack as alluded to above); for instance, α\{‘A α <:
α, int <: α} expresses the union of the types int, ‘A α, ‘A ‘A α, and so on.
Fortunately, there is always a limit to how deeply a type must be sliced in order
to determine if a pattern matches it.

We write α\V � α′\C to indicate that α\V is a slice of the constrained type
α′\C. The relation is defined as follows:

Leaf
α 6∈ V

α\V � α\C

Atomic
τ ∈ {int , () , α1\V ′ → α2\C′} τ <: α ∈ V τ <: α′ ∈ C

α\V � α′\C

Label
l α1 <: α0 ∈ V l α′

1 <: α′
0 ∈ C α1\V � α′

1\C
α0\V � α′

0\C

Onion
α1 &α2 <: α0 ∈ V α′

1 &α
′
2 <: α′

0 ∈ C α1\V � α′
1\C α2\V � α′

2\C
α0\V � α′

0\C

Fig. 9. The slice relation for union elimination

Definition 1. α\V � α′\C is the least relation defined by the rules in Figure 9.
Slices are

– well-formed iff each α′′ in V has at most one lower bound in V ,
– disjoint iff τ <: α′′ ∈ V implies that α′′ does not appear in C, and
– minimal iff every upper-bounding α′′ in V is either α or appears in a lower

bound in V .
– acyclic iff there exists a preorder on the type variables of V such that α1 < α2

when τ <: α2 ∈ V and α1 appears in τ

Unless otherwise explicitly noted, we assume slices are well-formed, disjoint,
minimal, and acyclic. Since the set V is minimal, the rules enforce that only one
of a choice of unions in C will be in V , achieving the desired union elimination.

Compatibility With slicing defined, it is now possible to define the type sys-
tem compatibility relation in parallel with how expression compatibility was
defined. Type compatibility relates a slice α\V to a pattern α′\V ′ in the context
of some bindings F . Slicing imposes one more detail on compatibility: slices may
be variable in depth, and it is possible for the slice to be too shallow. For in-
stance, consider the type α0\{‘A α1 <: α0, ‘B α2 <: α1, ‘C α2 <: α1, int <: α2}
(which is informally ‘A (‘B int ∪ ‘C int)). When matching the nested pattern
‘A (‘B int & ‘C int), it is possible that a slice of α0 may not be deep enough
to eliminate the union; for instance, the slice α′0\{‘A α1 <: α′0} has picked a
lower bound for α0 but not for α1. There is no problem of insufficient depth
in the expression evaluation system; expression function application is only at-
tempted when the function and argument are values already. But the constraint
closure (below) is not so linearly ordered and the value types may not yet be
fully formed.

To address this problem, the compatibility relation here has an additional
place indicating whether the match was “complete” (represented) or “partial”
(represented #). We use metavariable G# to range over these two values. The
relation of compatibility is only partial when the slice is insufficiently deep. We
define type system compatibility α

V�FV ′ α′ to be the least relation such that
(1) it satisfies the rules appearing in Figure 10 and (2) the binding set F is
minimal. In the case of conjunction, we let G#1 ∩ G#2 be when G#1 = G#2 =
and let it be # otherwise.

Compatibility failure α0 V 6 6�V ′ α′0 holds when neither partial nor full compat-
ibility holds for any set of bindings: ∀F,G#.¬(α0

G#
V�FV ′ α′0). We let α0 V�FV ′ α′0

abbreviate α0

V�FV ′ α′0. The failure case is subtle: we only want to fail when we

have a deep enough slice to know we completely checked all possibilities. Partial
matching was introduced to ensure that too-shallow slices are considered neither
a failure nor a full match.

Matching Type matching directly parallels expression matching. A match is
either partial or full based on whether the underlying compatibility check was
partial or full. Matching α0 α1

G#
V0
;V1

α2\C ′ is defined as the least relation

satisfying the clauses in Figure 11. We write α0 α1 V0
6 6;V1

when there exist no

G#, α, and C ′ such that α0 α1
G#
V0
;V1

α′\C ′.

Constraint Closure Constraint closure can now be defined; each step of clo-
sure represents one forward propagation of constraint information and abstractly
models a single stop of the operational semantics. This closure is implicitly de-
fined in terms of a polymorphism model represented by two functions. The first,
Φ, is analogous to the α(−) freshening function of the operational semantics.
For decidability, however, we do not want Φ to freshen every variable uniquely;
it only performs some α-substitution on the constrained type. We write Φ(C,α)

Partial
@τ.τ <: α0 ∈ V
α0

#
V�

F
V ′ α′

0

Integer
int <: α0 ∈ V int <: α′

0 ∈ V ′

α0

V�

F
V ′ α′

0

Empty Onion
τ <: α0 ∈ V () <: α′

0 ∈ V ′ α0 <: α′
0 ∈ F

α0

V�

F
V ′ α′

0

Label
l α1 <: α0 ∈ V l α′

1 <: α′
0 ∈ V ′ α1

G#
V�

F
V ′ α′

1

α0
G#
V�

F
V ′ α′

0

Conjunction Pattern
α′

1 &α
′
2 <: α′

0 ∈ V ′ α0
G#1
V �

F
V ′ α′

1 α0
G#2
V �

F
V ′ α′

2

α0
G#1∩G#2
V �FV ′ α′

0

Onion Value Left
α1 &α2 <: α0 ∈ V α1

G#
V�

F
V ′ α′

0

α0
G#
V�

F
V ′ α′

0

Onion Value Right
α1 &α2 <: α0 ∈ V α′

1 &α
′
2 <: α′

0 6∈ V ′ α2
G#
V�

F
V ′ α′

0 α1 V 6 6�V ′ α′
0

α0
G#
V�

F
V ′ α′

0

Fig. 10. Type compatibility: does a value type match a pattern?

to indicate the freshening of the variables in C. The additional parameter α
describes the call site at which the polyinstantiation took place; this is useful for
some polymorphism models. The second function, Υ , is a merging function; it
is used to unify type variables from different polyinstantiations when recursion
is detected. Our closure is parametric in the pair of functions Φ/Υ ; the simplest
model would be a monomorphic type system given by ΦMono(C,α) = C and
ΥMono(C) = C. We discuss our concrete choice ΦCR/ΥCR in Section 3.4.

We write C =⇒1 C ′ to indicate a single step of constraint closure. This
relation is defined as the least such that the rules in Figure 12 are satisfied. We
write C0 =⇒∗ Cn to indicate C0 =⇒1 . . . =⇒1 Cn for some n ≥ 0.

The operational semantics has a definition for a “stuck” expression; the type
system analogue is the inconsistent constraint set, which we define as follows:

Definition 2 (Inconsistency). A constraint set C is inconsistent iff there ex-
ists some α0 α1 <: α2 ∈ C and α′0\V0 � α1\C and α′1\V1 � α1\C such that
α′0 α

′
1 V0
6 6;V1

. A constraint set which is not inconsistent is consistent.

Like constraint closure, inconsistency is also implicitly parametric in Φ/Υ . The
intention of this definition is to capture the cases in which an expression can
get stuck. The only case in which application will not evaluate is when the
compound function cannot match the argument. Since a slice represents a set of

Function
(α′\V ′ → α\C) <: α0 ∈ V0 α1

G#
V1
�FV ′ α′

α0 α1
G#
V0
;V1

α\C ∪ F

Onion Left
α2 &α3 <: α0 ∈ V0 α2 α1

G#
V0
;V1

α\C
α0 α1

G#
V0
;V1

α\C

Onion Right
α2 &α3 <: α0 ∈ V0 α2 α1 V0

6 6;V1
α3 α1

G#
V0
;V1

α\C
α0 α1

G#
V0
;V1

α\C

Fig. 11. Type application matching

Transitivity
{τ <: α1, α1 <: α2} ⊆ C
C =⇒1 C ∪ {τ <: α2}

Application
α0 α1 <: α2 ∈ C α′

0\V0 � α0\C α′
1\V1 � α1\C α′

0 α
′
1

V0
;V1

α′\C′

C =⇒1 Υ (Φ(C′ ∪ {α′ <: α2}, α2) ∪ C ∪ V1)

Fig. 12. Type constraint closure single-step relation

values which may arrive at runtime, we declare a constraint set inconsistent if
the type of a compound function does not match some slice of its argument.

Given the above, we can now define what it means for a program to be type
correct:

Definition 3 (Typechecking). A closed expression e typechecks iff JeKe =
α\C and C =⇒∗ C ′ implies that C ′ is consistent.

This definition is also, of course, implicitly parametric in Φ/Υ .

A worked example Here we work through a small example to clarify how the
relations interact.2 Recall the overloaded negation example from Section 2.3.
Consider the code r = neg arg where arg may be either an int or a boolean,
depending on user input. Rather than redefine neg as in that example, we use
iId, the integer identity function, in place of integer negation for simplicity.
See Figure 13 for the A-translation and initial alignment. This means that the
constraint set corresponding to the program is C =

{
αneg αarg <: αr, int <:

αarg, ‘True αeo <: αarg, () <: αeo, ‘False () <: αarg, α0\V0 → α1\C1 <:
αiId, α2\{‘True () <: α2} → α3\{‘False () <: α3} <: α4, α5\{‘False () <:
α5} → α6\{‘True () <: α6} <: α7, α4 &α7 <: α8, α8 &αiId <: αneg

}
. We also

take Vf to be the largest set such that αf\Vf � αneg\C (our system will consider

2 For ease of presentation, we will use l () <: α as shorthand for the constraints
{l α′ <: α, () <: α′} where α′ does not occur elsewhere in the overall constraint set.

Jr = neg argKe = αneg αarg <: αr
JHx & int -> xIiIdKe = {α0\V0 → α1\C1 <: αiId}

where V0 = {() <: αx, int <: α13, αx &α13 <: α0} and C1 = {αx <: α1}
JH(‘True -> ‘False ()) & (‘False -> ‘True ()) & iIdInegKe ={

α2\{‘True () <: α2} → α3\{‘False () <: α3} <: α4,
α5\{‘False () <: α5} → α6\{‘True () <: α6} <: α7,
α4 &α7 <: α8, α8 &αiId <: αneg

}
Fig. 13. Worked example

other such sets, but we do not need them for this presentation), and we will use
the same names to refer to the variables in the constraint set and in the slice.

To perform closure on this constraint set, we apply the Application closure
rule on {αneg αarg <: αr}, for which we need to find a slice α′\V ′ � αarg\C.
There are five such slices (up to alpha equivalence), and we will focus on three
of them: α\{int <: α}, α\{‘True () <: α′}, and α\{‘True αeo <: α}. The cases
for ‘False are analogous.

Letting V = {int <: α}, we can demonstrate that α4 α Vf
6 6;V because

we can demonstrate that α V 6 6�V ′ α2 (where V ′ = {‘True () <: α2}) by
inspection. This allows us to apply the onion right match rule (and once again
by similar logic on α5) If we can show that α

V�FV0
α0, we can satisfy the second

premise of the Function match rule and then the third (and last) premise of the
Application closure rule; this is straightforward using the Conjunction Pattern,
Empty Onion, and Integer compatibility rules (in that order).

Letting V = {‘True () <: α′}, we can apply Onion Left and Function match
rules, followed by the Label and Empty Onion compatibility rules, to satisfy the
third premise of the Application closure rule. Letting {‘True αeo <: α}, however,
there is only a partial match and we do not satisfy the Application closure rule.

Soundness and Decidability of Typing We now give the formal assertions of
type soundness and the decidability of type inference. Proofs of these theorems
appear in the appendices of our supplementary material. As discussed above, we
prove soundness by simulation rather than subject reduction; the A-translation
of the program and the careful alignment between each of the relations in the
system makes simulation a natural choice. Informally, we write e 4 C to indicate
that e is simulated by C. This simulation is the alignment we have discussed
throughout this section; for instance, 5 4 int and, for initial alignment, x0 4 ?

α0.
Given this relation, soundness is asserted as follows.

Theorem 1 (Soundness). Given simulation-preserving functions Φ and Υ , if
e −→∗ e′ where e′ is stuck then e does not typecheck.

We say that Φ is simulation-preserving if e 4 C implies e 4 Φ(C,α) for any α.
We define simulation preservation over Υ similarly.

The proof strategy is direct. We show the result of initial alignment is a
simulation, and that simulation is preserved through each of the relations in
the evaluation and type systems, in particular through single-step operational
semantics and constraint closure. A full proof appears in Appendix A.

The second formal property is decidability. This theorem requires that Φ and
Υ be constrained to introduce a fixed number of variables into any produced
constraint set given an initial constraint set. We define Φ/Υ with this property
to be finitely freshening ; the full definition appears in Appendix C. We state our
decidability theorem as follows:

Theorem 2 (Decidability). For any fixed, finitely freshening, computable Φ
and Υ , typechecking is decidable.

A proof of this theorem appears in Appendix B.

3.4 A Useful Polymorphism Model: ΦCR/ΥCR

Here we take a brief detour to describe our polymorphism model ΦCR/ΥCR which
provides a good trade-off between expressiveness and efficiency. We choose this
model over more traditional approaches such as let-bound polymorphism be-
cause such models lack the needed expressiveness needed for common object-
oriented programming patterns. For example, consider:

1 let factory x = (‘get _ -> x) in

2 let mkPair f = ‘A (f 0) & ‘B (f ()) in

3 mkPair factory

In the above code, factory creates simple polymorphic value container. In a let-
bound model, the type given to f in the scope of mkPair is monomorphic; thus,
the best type we can assign to the argument type of f where it is used is the
empty onion (and not int).

The TinyBang type system uses call site polymorphism; rather than polyin-
stantiating variables where they are named, we polyinstantiate functions when
the function is invoked. We thus view every function as having a polymorphic
type. In order to ensure maximal polymorphism, every variable bound by the
body of the function should be polyinstantiated. This approach is inspired by
flow analyses [Shi91,Age95] and has previously been ported to a type constraint
context [WS01]. A program can have an unbounded number of function call se-
quences so some compromise must be made for recursive programs; a standard
solution to this problem is to chop off call sequences at some fixed point. While
such arbitrary cutoffs may work for program analyses, they work less well for
type systems: they make the system hard for users to understand and potentially
brittle to small refactorings.

Our approach is to conservatively model the runtime stack as regular expres-
sions [MS06]. In particular, we abstract call sequences as regular expressions,
and a single type variable associated with a regular expression will represent all
runtime variables whose call strings match the regular expression. We call the
regular expressions contours. The full definition of our ΦCR/ΥCR function ap-
pear in Appendix C, along with a proof that this polymorphism model is finitely
freshening as discussed in the previous section.

4 Extended Features

Here, we present a few straightforward extensions to the TinyBang ANF which
support primitive operators and state.

4.1 Builtins

We begin with builtin operators for primitive data. These operators are intro-
duced to the language via a generic framework; we introduce that framework
and then give an example of its use by defining the builtin for integer addition.
The framework itself involves small modifications to the language grammar, the
A-translation process, and the operational semantics as depicted in Figure 14.

In particular, the operational semantics merely evaluates the newly added
builtin clause by deferring to a metatheoretic function (�(−,−,−)) that defines
the each operator’s behavior. Rather than A-translating builtin clauses directly,
we translate them to applications of a curried binary function bound to the vari-
able x�, which is expected to pattern match on the arguments before evaluating
the builtin with them.

s ::= x =�(x, x) | . . . clauses

� ::= + | . . . builtins

He1 � e2Ix = Hx� e1 e2Ix

Builtin
x1 = v1 ∈ E x2 = v2 ∈ E �(E, v1, v2) = 〈E′, v〉

E ‖x0 =�(x1, x2) ‖ e −→1 E′ ‖x0 = v ‖ e

Fig. 14. Generic TinyBang builtin extensions

As a concrete case, we now consider extending the system to support addition
on integers; this is defined in Figure 15 in three parts. The first part defines the
metatheoretic function for the behavior of this operation; a redex x = y + z

will be reduced by the Builtin rule above using this definition. We choose to
“hide” the binary operation inside of a simple function definition (the second
part of Figure 15) which we assume to be bound in the environment; we can
then model this function in the type system using a fabricated type (the third
part of Figure 15) which we ensure is part of the initial constraint set in closure.

+ (E, v1, v2) = 〈E, v3〉 where v3 is the sum of the integer projections of v1 and v2

x+ =
[
x+1 = int

]
->

[
x+2 = [x+3 = int] -> [x+4 = +(x+1, x

+
3)]

]
α+

1\
{
int <: α+

1

}
→ α+

2\
{
α+

3\{int <: α+
3} → α+

4\{int <: α+
4} <: α+

2

}
<: α+

Fig. 15. Addition-specific TinyBang builtin extensions

4.2 State

Adding state to TinyBang is only slightly more involved than adding addition. As
seen in Figure 16, we use the label ref to create cells, and we add assignment as
a builtin operator following Section 4.1. We do not need builtins for reading from
or creating a ref; labels and pattern matching do this. Note that the constraint
α<-

4 <: α<-
2 corresponds to the addition of the new binding to the environment.

Grammar l ::= ref | . . . labels

� ::= <- | . . . builtins

Behavior <-(E, v1, v2) = 〈E′, ()〉 where v1 has a projection ref x,
E = E1 ‖x = v ‖E2, and E′ = E1 ‖E2 ‖x = v2

Function x<- =
[
x<-1 = () , x<-2 = ref x<-1

]
->

[
x<-3 = [x<-4 = ()] -> [x<-5 = <-(x<-2 , x

<-
4)]

]
Type α<-

1 \
{
() <: α<-

2 , ref α
<-
2 <: α<-

1

}
→ α<-

3 \C <: α<-

where C = α<-
4 \{() <: α<-

4 } → α<-
5 \{() <: α<-

5 , α
<-
4 <: α<-

2 } <: α<-
3

Fig. 16. Ref grammar and semantics

We need to make one more change to the system. We amend the slice defini-
tion from Figure 9 to include the rule in Figure 17, which triggers instead of the
existing label rule. This rule only permits trivial pattern matching under a ref;
less restrictive models exist, but we choose this one to simplify presentation.

Ref
ref α1 <: α0 ∈ V ref α1 <: α′

0 ∈ C α1\V � α1\C
α0\V � α′

0\C

Fig. 17. Ref slice rule extending Figure 9

To see why this rule is necessary, consider the code below on the left. If this
program were run, it would get stuck evaluating the fourth line on an addition
of 0 to a non-integer value.

Without the slice rule, the constraint that x can contain () will not be
properly added to the global constraint set; instead, the constraint set would
only observe that x contains () within the body of the set function on line 3.
The slice rule effectively mandates that constraints applied to local ref variables
also apply to their external sources.

With the slice rule, our state model would correctly reject this program,
because we would eventually conclude that {ref α1 <: αx, () <: α1, int <:
α1, α

+ α1 <: α2} That is to say that there is a call to the addition function with
an empty onion argument, which results in a failed pattern match. On the other
hand, consider the code on the right in the following example:

1 let x = ref 0 in

2 let f = (() -> !x + 1) in

3 let _ = x <- () in

4 f ()

1 let x = ref () in

2 let f = (() -> !x + 1) in

3 let _ = x <- 0 in

4 f ()

While this code would execute correctly, we have chosen a flow-insensitive model
of state and the code is rejected because we reach the same conclusion as above.

5 Related Work

We believe that TinyBang offers the first high-level algebraic case composi-
tion operator which can directly support object inheritance for a variant en-
coding of objects. The key type system requirement is for different branches
of a conditional or case clause to be typed differently; this property is called

path-sensitivity in program analyses. Our approach is a generalization of con-
ditional constraints [AWL94,Pot00]; conditional constraints can partly capture
path sensitivity, but fail to track the dependencies through side effects.

TinyBang’s object resealing is inspired by the Bono-Fisher object calculus
[BF98], in which mixins and other higher-order object transformations are writ-
ten as functions. Objects in this calculus must be “sealed” before they are mes-
saged; unlike our resealing, sealed objects cannot be extended. Some related
works relax this restriction but add others. In [RS02], for instance, the power
to extend a messaged object comes at the cost of depth subtyping. In [BBV11],
depth subtyping is admitted but the type system is nominal rather than struc-
tural.

Typed multimethods [CGL95,MC99] perform a dispatch similar to Tiny-
Bang’s dispatch on compound functions, but multimethod dispatch is nominally
typed while compound function dispatch is structurally typed. The first-class
cases in [BAC06] allow composition of case branches much in the same fashion
as TinyBang. In [BAC06], however, cases may only be extended by adding a
clause to the end of the list; it is not possible to concatenate two arbitrary case
blocks or to prepend a case onto the beginning of a block. TinyBang generalizes
this work by making the previous two operations possible; these operations are
necessary for the encoding of e.g. method override, which must intercept a call
and so must be a prepended case.

TinyBang’s onions are unusual in that they are a form of record supporting
typed asymmetric concatenation. Wand initially proposed asymmetric record
concatenation for modeling inheritance [Wan91] but the inference algorithm was
fundamentally exponential. Standard typed record-based encodings of inheri-
tance [BCP99] avoid the problem of typing first-class concatenation by recon-
structing records rather than extending them, but this requires the superclass to
be fixed statically. A combination of conditional constraints and row types can
be used to type record extension [Pot00]; TinyBang uses a different approach
that does not need row typing and that we believe is simpler.

Our approach to parametric polymorphism in Section 3.4 is based on flow
analysis [Shi91,WS01]. In the aforecited, polymorphic contours are permanently
distinct once instantiated. In TinyBang, contours are optimistically generated
and then merged when a call cycle is detected; this allows for more expressive
polymorphism since call cycles don’t need to be conservatively approximated up
front. Contours are merged by their injection into a restricted space of regular
expressions over call strings, an approach that follows program analyses [MS06].

We believe the technical development of this paper is novel in several in-
teresting ways. Proofs of type soundness usually proceed by subject reduction,
but we can directly align the operational semantics with the type inference al-
gorithm in a simulation relation to produce a direct type soundness proof. As
such, TinyBang’s type system can be viewed as a hybrid between a flow analysis
[Shi91,Age95,MS06] and a traditional type system. Without such a technique,
type soundness can be very challenging given how expressive the type constraints
are; subject reduction would require significant machinery and there is no reason-

able regular tree or other form of denotational type model [AC93,Vou06,CX11]
of TinyBang given the flexibility of pattern matching. For example, polymor-
phism in TinyBang cannot be convex in the sense of [CX11] since our pattern
matching syntax is expressive enough to distinguish between all top-level forms.

One novelty of the type system formalization is how we deal with the well-
known union alignment problem. The root of this problem is that there may
not be a consistent view of which branch of a union type was taken in different
pattern match clauses. All standard union type systems must make a compromise
union elimination rule; [Dun12] contains a review of existing approaches. Our
novel solution is the notion of a slice in Section 3.3 which can be viewed as a
(locally) complete notion of union elimination; since each slice embodies only one
disjunct relative to the patterns being matched, there is nothing to mis-align.

While there are many programming language designs to which we could
compare TinyBang, we offer TinyBang more as a calculus to showcase novel
typing ideas (such as the object extension typing problem we address here). A
comparison of TinyBang with languages that have real-world implementations
is well outside of the scope and focus of this paper.

6 Conclusions

Mixins, dynamic extensions, and other flexible object operations are making
an impact in dynamically-typed object-oriented scripting languages, and this
flexibility is important to bring to statically-typed languages. To this end, we
presented TinyBang, a core language with a static type inference system that
types such flexible operations without onerous false type errors or the need
for manual programmer annotation. We believe TinyBang solves a longstanding
open problem: it infers types for object-oriented programs without compromising
the expressiveness of object subtyping or of object extension. This is possible
due to the semantics of the onion operator & which permits both asymmetric
concatenation (for default parameters) and generalized extensible case matching
(for capturing messages as they are dispatched).

We do not expect programmers to write in TinyBang. Instead, programmers
would write in BigBang, a language we are developing which includes syntax
for objects, classes, and so on, and we would de-sugar that code to TinyBang.
While the fundamental ideas in this paper could be used to give types and
runtime semantics to BigBang directly, we focus on encodings for objects and
other features because they yield a few benefits. First: TinyBang’s object calculus
operations can be defined as in-language functions, avoiding the need for object-
specific metatheory. Second: our encoding is simple enough to be translucent in
that it will be possible, though atypical, to “work under the hood” to manipulate
objects on a lower level when necessary. Third: this translucency ensures an
elegant encoding and attests to the expressiveness of the underlying language
constructs.

TinyBang infers extremely precise types, especially in conjunction with the
context-sensitive polymorphism model described in Section 3.4. While powerful,
these types are by nature difficult to read and defy modularization. Address-

ing the problem of readability is beyond the scope of this paper but is part of
our broader research agenda. We are currently developing a means to support
dynamic loading and separate compilation when lightweight, approximate type
signatures are placed on module boundaries.

Our appendices include proofs for the soundness (Appendix A) and decid-
ability (Appendix B) of our type inference system as well as our polymorphism
model (Appendix C). We have implemented the type inference algorithm and in-
terpreter for an older version of the TinyBang formalism to provide a cross-check
on the soundness of our ideas. We believe that inference is not only decidable
but, in practice, polynomial based on our experience to date. It is not provably
polynomial for the same reason that let-polymorphism is not: artificial programs
exist which will exhibit exponential runtimes. All of the examples in Section 2
typecheck in our implementation without exponential blowup.

References

AC93. Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans. Program.
Lang. Syst., pages 575–631, September 1993.

Age95. Ole Agesen. The cartesian product algorithm. In ECOOP, volume 952 of Lecture Notes
in Computer Science, 1995.

Agh85. G.A. Agha. Actors: a model of concurrent computation in distributed systems. MIT
Press, 1985.

AW93. A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. In FPCA,
pages 31–41, 1993.

AWL94. A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with conditional types. In
POPL 21, pages 163–173, 1994.

BAC06. Matthias Blume, Umut A. Acar, and Wonseok Chae. Extensible programming with first-
class cases. In ICFP, pages 239–250, 2006.

BBV11. Lorenzo Bettini, Viviana Bono, and Betti Venneri. Delegation by object composition.
Science of Computer Programming, 76:992–1014, 2011.

BCP99. Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. In-
formation and Computation, 155(1-2):108–133, 1999.

BF98. Viviana Bono and Kathleen Fisher. An imperative, first-order calculus with object exten-
sion. In ECOOP’98, pages 462–497. Springer Verlag, 1998.

CGL95. G. Castagna, G. Ghelli, , and G. Longo. A calculus for overloaded functions with subtyping.
Information and Computation, 117(1):115–135, 1995.

CX11. Giuseppe Castagna and Zhiwu Xu. Set-theoretic foundation of parametric polymorphism
and subtyping. In ICFP, 2011.

Dun12. Joshua Dunfield. Elaborating intersection and union types. In ICFP, 2012.
Hei94. Nevin Heintze. Set-based analysis of ML programs. In LFP, pages 306–317. ACM, 1994.
MC99. Todd D. Millstein and Craig Chambers. Modular statically typed multimethods. In

ECOOP, pages 279–303. Springer-Verlag, 1999.
MS06. Matthew Might and Olin Shivers. Environment analysis via ∆CFA. In POPL, 2006.
Pot00. François Pottier. A versatile constraint-based type inference system. Nordic J. of Com-

puting, 7(4):312–347, 2000.
RS02. Jon G. Riecke and Christopher A. Stone. Privacy via subsumption. Inf. Comput., 172(1):2–

28, February 2002.
Shi91. Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie-

Mellon University, 1991. TR CMU-CS-91-145.
SM01. Mark Shields and Erik Meijer. Type-indexed rows. In POPL, pages 261–275, 2001.
Vou06. Jérôme Vouillon. Polymorphic regular tree types and patterns. In POPL, 2006.
Wan91. Mitchell Wand. Type inference for record concatenation and multiple inheritance. Infor-

mation and Computation, 93(1):1–15, July 1991.
WS01. Tiejun Wang and Scott F. Smith. Precise constraint-based type inference for Java. In

ECOOP, pages 99–117, 2001.

A Proof of Soundness

In this appendix, we give the proof for Theorem 1. As stated in Section 3.3,
our strategy is to establish a simulation relation between the original program
and the constraint set obtained by initial alignment. We then show that this
simulation is preserved throughout constraint closure and observe that stuck
programs are simulated by inconsistent constraint sets.

A.1 Initial Alignment

We begin by defining this simulation relation over each construct in the evalu-
ation grammar and its corresponding construct in the type grammar. We add
a third place to this relation to represent the variable mapping x → α which
aligns value variables to their representative type variables; we use M to range
over these functions. The simulation relation is defined as follows:

Definition 4. The simulation relation 4M is defined as the least relation satis-
fying the rules in Figure 18. The notation x 4 α is used to denote ∃M.x 4M α;
similar notation holds for other grammatical constructs.

Z 4M int

() 4M ()

l x 4M l α iff x 4M α
x1 &x2 4M α1 &α2 iff x1 4M α1 and x2 4M α2

φ -> e 4M α′\V → α\C iff φ 4M α′\V and e 4M α\C
x 4M α iff M(x) = α
int 4M int

x = v 4M τ <: α iff x 4M α and v 4M τ
x2 =x1 4M α1 <: α2 iff x1 4M α1 and x2 4M α2

x3 =x1 x2 4M α1 α2 <: α3 iff x1 4M α1 and x2 4M α2 and x3 4M α3

x = v̊ 4M τ <: α iff x 4M α and v̊ 4M τ

e 4M C iff ∀s ∈ e.∃c ∈ C. s 4M c
e 4M α\C iff RV(e) 4M α and e 4M C

φ 4M V iff ∀x = v̊ ∈ e.∃c ∈ V. x = v̊ 4M c
φ 4M α\V iff RV(φ) 4M α and φ 4M V

Fig. 18. Simulation relation

Using this relation, we can now demonstrate that the initial alignment of an
expression produces a constrained type which simulates it.

Lemma 1. If e is closed then e 4 JeKe.

Proof. This is to say that, for some M , e 4M JeKe. Suppose that, for all s, we
have s 4M α\{c} when JsKs = α\c. Then this lemma can be proven by induction
on the length of e. So it suffices to show simulation for clauses.

Consider the case where we must show Z 4 int and x0 4M
?
α0. The former is

true by Definition 4. The latter is true by construction: we let M be the function

mapping each value variable xi to its corresponding fresh variable
?
αi. The same

argument holds for all non-application clauses.

For functions, we must show that φ 4M JφKp and that e′ 4M Je′Ke. The
latter is true by induction on the size of e′. The former is shown in much the
same fashion as the above. By induction on the length of φ, it suffices to show
that for all x = v̊ we have x = v̊ 4M α\{τ <: α} when Jx = v̊K̊s = α\τ <: α. This
can be shown in the same fashion as the non-application clauses above.

Here, closed has the usual meaning: a variable is not used before it is defined
(either by a clause or by a pattern).

A.2 Deep Copying

In proving soundness, we want to show that each small step of the expression
has a corresponding constraint closure rule which preserves the simulation. We
accomplish this by showing a one-to-one correspondence between steps of the
evaluation system and steps of the type system. We are already prepared to
do this for most relations – each value compatibility premise corresponds to
a type compatibility premise, for instance – but there is no evaluation system
relation corresponding to the slicing relation in the type system. We define such
a corresponding relation here to considerably simplify the overall proof.

Slicing refines a type by union elimination, essentially copying a union-free
subtype into fresh variables. We require an evaluation system relation which
aligns with this behavior as closely as possible. Because values during evaluation
are already union-free – variables may be defined only once in an expression –
this evaluation system relation need only perform the copying step. We therefore
define a deep copy relation; this relation is later inserted into the operational
semantics to make it better align with the constraint closure. Deep copying
is written x\E ≪ x′\E′ when x in environment E is a deep copy of x′ in
environment E′. We define this relation as the least relation satisfying the rules
in Figure 19.

Atomic
x′ = v ∈ E′ v ∈ {Z, () , φ -> e}

x\[x = v] ≪ x′\E′

Label
x0 = l x1 ∈ E′ x1\E ≪ x′1\E′

x0\E ‖[x0 = l x1] ≪ x′0\E′

Onion
x0 =x1 &x2 ∈ E′ x1\E1 ≪ x′1\E′

1 x2\E2 ≪ x′2\E′
2

x0\E1 ‖E2 ‖[x0 =x1 &x2] ≪ x′0\E′

Fig. 19. Deep copy relation

Definition 5. x′\E′ ≪ x\E is the least relation defined by the rules in Fig-
ure 19. Deep copies are are disjoint iff x = v ∈ E′ implies that x does not appear
in E.

Henceforth we only consider disjoint, minimal deep copies. It should be noted
that E′ may not be closed – variables appearing within a function are not copied
– but the openness of E′ is not an impediment to this soundness proof.

Note that in contrast with slicing, deep copies do not have a Leaf rule; the
deep copy relation always copies the entire value. This is possible because values
in TinyBang cannot be cyclic. More formally, we say a variable is well-founded
iff either it has an atomic value (an integer, empty onion, or simple function) or
if it refers only to other well-founded variables. This leads us to the following
lemma.

Lemma 2. Every variable x in a closed expression e has a finite deep copy.

Proof. By induction on the length of e, we know that x is well-founded. By
inspection, deep copy is defined for every form of value. Thus, a finite deep copy
proof can be constructed for any such x.

A.3 Bisimulation of Deep Copying and Slicing

Our objective is to show that each evaluation step has a corresponding type
system step; we can now show how deep copying and slicing correspond to each
other. But we must show a stronger property than preservation of the simulation
relation from Definition 4. To understand why, recall from Section 3.3 that type
compatibility is unsound if the input type contains unions. The simulation rela-
tion does not guarantee that the type side is union-free, so it will be insufficient
in our proofs regarding simulation. We therefore define a shallow bisimulation
relation to capture the union-free nature of the type. The shallow bisimulation is
quite powerful: it guarantees that there is a one-to-one correspondence between
the two systems (except under function bodies: hence “shallow”). This relation
is as given as follows:

Definition 6. The shallow bisimulation relation ≈M is defined as the least re-
lation satisfying the rules in Figure 20. The notation x ≈ α is used to denote
∃M.x ≈M α; similar notation holds for other grammatical constructs.

The shallow bisimulation essentially preserves the type refinement performed
by a slice. While we cannot keep this refinement indefinitely – such a type system
would be undecidable – we use the shallow bisimulation to show that, for our
purposes, compatibility holds in the evaluation system iff compatibility holds
in the type system. This condition is necessary both for soundness and for the
dependent type dispatch of TinyBang functions. Of course, shallow bisimulation
implies simulation, allowing us to shed this information once it is no longer
necessary:

Lemma 3. If e ≈ C then e 4 C.

Proof. By induction on the size of the proof of e ≈ C.

We can now show that deep copying and slicing together not only preserve
simulation but also create a shallow bisimulation:

Z ≈M int

() ≈M ()

l x ≈M l α iff x ≈M α
x1 &x2 ≈M α1 &α2 iff x1 ≈M α1 and x2 ≈M α2

φ -> e ≈M α′\V → α\C iff φ -> e 4M α′\V → α\C
x ≈M α iff M(x) = α and x 6= x′ ⇐⇒M(x′) 6= α
int ≈M int

x = v ≈M τ <: α iff x ≈M α and v ≈M τ
x2 =x1 ≈M α1 <: α2 iff x1 ≈M α1 and x2 ≈M α2

x3 =x1 x2 ≈M α1 α2 <: α3 iff x1 ≈M α1 and x2 ≈M α2 and x3 ≈M α3

x = v̊ ≈M τ <: α iff x ≈M α and v̊ ≈M τ
n−⇀s ≈M

n⨽−−⨼c iff ∀1 ≤ i ≤ n. si ≈M ci
e ≈M α\C iff RV(e) ≈M α and e ≈M C

n−−−−⇀
x� = v̊� ≈M

n⨽−−⨼c iff ∀1 ≤ i ≤ n. xi = v̊i ≈M ci
φ ≈M α\V iff RV(φ) ≈M α and φ ≈M V

Fig. 20. Shallow bismulation relation

Lemma 4. Let x′ 4M ′ α′ and E′ 4M ′ C ′. Suppose that x\E ≪ x′\E′ for
some (potentially open) E. Then there exists some α and V such that x ≈M α,
E ≈M V , and α\V � α′\C ′. Furthermore, M ⊇M ′.

Proof. By induction on the size of the proof of x\E ≪ x′\E′. This induction is
well-founded for closed E′ by Lemma 2. For each deep copy proof rule, we select
the corresponding slice proof rule (e.g. the deep copy label rule and the slice label
rule). Because E′ 4M C ′, each premise on E′ (e.g. x′0 = l x

′
1 ∈ E′) is simulated

by a premise on C ′ (e.g. α′0 = l α
′
1 ∈ C ′). Subproofs (e.g. α1\V � α′1\C ′ are

proven by induction on the size of the proof.
Fresh type variables are selected to correspond to those variables used in E

(e.g. x0 4M α0); the resulting mapping M is thus exactly M ′ with additional
entries for these variables. Because both x0 and α0 are fresh, these new entries
respects the bijection requirement on M . We then select a V with the necessary
property (e.g. lα1 <: α0 ∈ V) to shallowly bisimulate the extension to the deep
copy’s environment (e.g. E = [. . . , x0 = l x1]) and show by Definition 6 that
bisimulation holds under M . In particular, the bisimulation holds because we
select exactly one new constraint at each step and because we do not descend
into functions. This process applies to each of the deep copy proof rules and is
applied inductively to construct a proof of slicing.

Due to our selection of fresh type variables, the slice is well-formed. The slice
is minimal because the atomic case of deep copies does not admit superfluous
clauses and V simulates those clauses. The slice is well-formed because well-
formed environments E′ only define each variable once and the deep copy E is
well-formed if E′ is well-formed.

A.4 Compatibility and Matching

We now show that the compatibility relation preserves this shallow bisimulation.
In one way, this proof is somewhat simpler: compatibility introduces no fresh

variables, so a single variable map M is sufficient. But compatibility introduces
another challenge. The Onion Right rule relies on a premise of incompatibility
of all potential bindings; we must not only show that compatibility preserves
bisimulation but that incompatibility does as well. This was our motivation for
constructing the bisimulation: because the slice models the value so precisely,
we have a perfect alignment between the proof trees.

Lemma 5. Suppose for some (possibly open) E that E ≈M α0\V , φ ≈M α′0\V ′,
x0 ≈M α0, and x′0 ≈M α′0. Then for all B, x0 E�Bφ x′0 if and only if there exists

some F such that B ≈M F and α0

V�FV ′ α′0

Proof. Inspection of Figures 4 and 10 reveal that value compatibility and full
type compatibility are isomorphic up to the shallow bisimulation. In particular,
whenever a value compatibility rule applies to evaluation constructs, a type
compatibility rule applies to the bisimulation of those constructs (and vice versa).

In the case where the Label rule of value compatibility applies, x2 = ‘A ∈ x1

and x′2 = ‘A x
′
1 ∈ φ and x1 E�Bφ x′1. By shallow bisimulation, we have that α =

α2 ≈M x2, that ‘A α1 <: α2 ∈ V , and corresponding facts hold for the pattern
type. This and induction on the size of the proof of value compatibility give us
that the label rule of type compatibility applies. A similar approach is used for
each rule in the relation. The same approach is used in the contrapositive to show
that a proof of full type compatibility evidences a proof of value compatibility,
thus completing the equivalence.

The remaining cases of compatibility are proven likewise.

We can likewise demonstrate preservation of bisimulation by the respective
matching relations. We state this property as follows:

Lemma 6. Suppose for some (possibly open) E0 and E1 such that E0 ≈M
α0\V0, E1 ≈M α1\V1, x0 ≈M α0, and x1 ≈M α1. Let x0 = RV(E0) and
x1 = RV(E1). Let E = E0 ‖E1. Then x0 x1 ;E e if and only if there exists
some α′\C such that e ≈M α′\C and α0 α1

V0
;V1

α′\C.

Proof. By the same strategy as Lemma 5, using Lemma 5 to show the compat-
ibility premises.

An Alternate Operational Semantics The above lemmas show that we can
establish and preserve a bisimulation starting with a deep copy and continuing
through matching. But the operational semantics of TinyBang are not defined to
make use of deep copying. We construct here an alternate operational semantics
which makes use of the deep copy operation above and argue that it is equivalent
to the operational semantics presented in Section 3.2. We define our operational
semantics as the least satisfying the rules in Figure 21.
We define e0 ˙−→∗ en when ∀1 ≤ i ≤ n. ei−1 ˙−→1 ei. We say e ˙X−→1 when there
exists no e′ such that e ˙X−→1 e′.

The Variable Lookup rule in this alternate relation is identical to that of the
original relation. The Application rule differs only in that it creates a deep copy

Variable Lookup
x1 = v ∈ E

E ‖[x2 =x1] ‖ e ˙−→1 E ‖[x2 = v] ‖ e

Application
x′0\E′

0 ≪ x0\E x′1\E′
1 ≪ x1\E x′0 x

′
1 ;E′

0 ‖E′
1
e′ α(e′) = e′′

E ‖[x2 =x0 x1] ‖ e ˙−→1 E ‖E′
1 ‖ e′′ ‖[x2 =RV(e′′)] ‖ e

Fig. 21. Alternative Small Step Relation

of the function and the argument before performing application. This alternate
relation is “equi-stuck” with the original; each gets stuck only when the other
does. We formalize this property as follows:

Lemma 7. Iff e −→∗ e′ and e′ X−→1 where e′ not of form E, then e ˙−→∗ e′′
and e′′ ˙X−→1 where e′′ not of form E.

Proof. By inspection of the rule sets, there are only two differences, both in the
Application rule. First, ˙−→1 performs a deep copy while −→1 does not; a deep
copy is an α-renaming and no operations condition on the specific name of a
variable. Second, ˙−→1 uses E′0 ‖E′1 in the matching relation whereas −→1 uses
the entire environment E. But because E′0 ‖E′1 is a deep copy of x0 and x1 and
because neither the matching relation nor any relation it uses depends on the
specific name of a variable, any variables which are not x′0, x′1, or transitively
reachable from those variables are extraneous and do not affect the relations.

We now show our preservation lemma: for any small step, there is a corre-
sponding closure step which preserves simulation.

Lemma 8 (Preservation). Suppose that e ˙−→1 e′ and that e 4 C. Further,
suppose that Φ and Υ are simulation-preserving. Then there exists some C ′ such
that C =⇒ C ′ and e′ 4 C ′.

Proof. In a fashion similar to Lemma 4, we show that, given a simulation, each
premise of the operational semantics implies a corresponding premise of the
constraint closure. The Transitivity rule demonstrates this immediately from
simulation.

Otherwise, the Application rule applies. For clarity, we use variable names
matching those chosen in the rules in Figures 12 and 21. Then we know that we
have an expression E ‖[x2 =x0 x1] ‖ e; we also have each premise of small step
application. Because e 4M C, we know that α0 α1 <: α2 ∈ C. By Lemmas 4
and 6, we have that e′ 4 α′\C ′.

Because α-renaming does not prevent simulation, we have that e′′ 4M ′ α′\C ′
and so e′′ 4M ′ C ′. Because all variables in e′′ are fresh, we know that M and M ′

are disjoint; thus, we can let M ′′ = M ∪M ′ and all previous simulations are in
terms of this new mapping. We also have that x2 =RV(e′′) 4M ′′ α′ <: α2 from
previous simulations. Because of this and because Φ is simulation-preserving,

e′′ ‖[x2 =RV(e′′)] 4M ′′ Φ(C ′ ∪ {α′ <: α2}, α2). Because Υ is simulation preserv-
ing, we union original C and the argument slice V1 with this result; this corre-
sponds with the concatenation of the original environment E and the deep copy
variables E′1 onto the above. This concatenation and union are also simulation
preserving and so we are finished.

A.5 Stuck Simulation

We require one final lemma before we can prove our soundness theorem: that
stuck programs are simulated by inconsistent constraint sets:

Lemma 9. If e 4 C and e is stuck, then C is inconsistent.

Proof. By definition, e of form E is not stuck; therefore, e = E ‖[s] ‖ e′. By case
analysis, s must be of the form x2 =x0 x1; otherwise, the Variable Lookup rule
always applies (because e is closed and s is of the form x2 =x1). By Lemma 2, the
deep copy premises always hold for closed E; furthermore, α-renaming is always
possible. Therefore, because e is stuck, we must have that x′0 x

′
1 6;E′

0 ‖E′
1
. By

Lemma 6 we have that α′0 α
′
1 V0
6 6;V1

. By Definition 2, C is inconsistent.

A.6 Proof of Soundness

Using the above, we can now give a proof of Theorem 1.

Proof. Let JeKe = α\C. Because e is closed, Lemma 1 gives us that e 4 α\C. We
have that e −→∗ e′ where e′ is stuck; then by Lemma 7, we have that e ˙−→∗ e′
where e′ ˙X−→1 and e′ not of the form E. By induction on the number of steps in
the proof of e ˙−→∗ e′, Lemma 8 gives us that that there exists a C ′ such that
C =⇒∗ C ′ and e′ 4 C ′. Lemma 9 gives us that C ′ is inconsistent. Therefore C
closes to an inconsistent constraint set and, by Definition 3, e does not typecheck.

B Proof of Decidability

We show here that TinyBang typechecking is decidable, in particular we provide
a detailed sketch of Theorem 2.

The primary challenge of this proof is showing type closure is finite, more
precisely that there are only finitely many constraint sets C which can be the
global closure state. We prove this property by a high level counting argument:
we define a finite set of constraint forms and a set of type variables, and show
that closure states C are always a set of substitutions of the (finite) type variables
into the (finite) forms, of which there are only finitely many possibilities.

For this appendix we assume we are working over a fixed expression e, and
we take C00 to be the set of all subtype constraints found in JeKe. C00 includes
all constraints under function types; it is not a sensible set in terms of the closure
process and is only used to bound the size of other sets. Set C00 is our fixed set
of constraint forms; there are only finitely many because finitely many different
labels could be used in the original program.

Slices intuitively need to be only so deep as to cover the pattern, but the
definition of slicing placed no limit on the size of a slice and also required all

variables in a slice to be fresh. So, we need to modify type inference to restrict
the depth of slices. These changes will be made to the application closure rule,
and then we need to verify that the soundness proof remains valid with this
modified rule.

First we characterize the set of all potential slice forms. Since slices are well-
formed, minimal, and acyclic as per Definition 1, and we are only concerned
about the structure of a slice and not the particular type variables used, we can
view a slice α\V as a tree with α at the root, with label constraint nodes having
one child, and onion nodes have two children, and tree edges being subtyping. We
hereafter write a slice form α\V more simply as V since the head α will be the
unique type variable in V without an upper bound. In a slice the type variables in
the leaves, if any, are informally considered free, and the type variables internal
to the slice as well as the root are considered bound. This follows the intuition
that slice forms are owned by the pattern that will be used to wire them in.

Viewing slices as trees, we can define the depth of slice V to be the length n

of the longest chain
n−−−−−−−⇀
(τ <: α) in V such that for each τi for i > 1, αi+1 occurs in

τi. We first assert that given an initial expression e we can place a fixed bound
nmaxslice on the depth of any slice we need to consider in closure without loss of
generality. By inspection of the type compatibility relation in Figure 10, if a slice
is not deep enough the Partial rule will fire and partial compatibility will never
lead to a closure step. By inspection of the Empty Onion and Integer rules (the
leaf cases of the pattern V ′), any deeper component of the slice V is ignored.
So, intuitively if the slice reaches the bottom of the pattern it makes sense that
it will be sufficient.

Thus, taking the set of all pattern types in C00 to be
⨽−−⨼
V ′, we would like to

define nmaxslice to be nmax-φ = max({depth(V ′) | V ′ ∈
⨽−−⨼
V ′}), the depth of the

deepest pattern. This is close to serving as our global slice depth bound, but it
is not correct: slices do not line up structurally 1-1 with patterns because pat-
terns have conjunctions in them which are not directly matching with onions. In
particular, the Onion Value Left and Onion Value Right compatibility rules in
Figure 10 descend deeper into the slice without descending deeper into the pat-
tern. So, we must slice deeply enough so that all underlying label/atom/function
structure is reached through the various data onioning constraints α0 &α1 <: α2.
In the worst case, we may need to go through every onion value constraint in
C00 to find the next deepest structure in the pattern; we may also have to visit
the same onion structure numerous times (in the case of non-contractive onions
like α1 &α2 <: α2 where each visit allows another lower bound to be added).
But each onion can only yield at most every lower bound in the constraint set;
after this, additional lower bounds are redundant. In order words, while non-
contractive onions can in principle be “infinitely wide”, there are finitely many
non-onion types to onion together and, at some point, the data must repeat;
since only the leftmost copy matters, the repetitions need not be considered. So,
given that there are n& onion constraints in C00 and nτ lower bounds in C00, we
then need to slice to depth at most nmaxslice = nmax-φ ∗ n& ∗ nτ : between each
level of pattern we have n& ∗ nτ levels of onioning in the extreme worst case.

So, we have a bound on the depth of any slice. We also have a fixed bound on
the number of distinct nodes that can occur in any slice tree, each node must an
α-variant of a constraint in C00. (Note there can be multiple occurrences of the
same constraint form in a given slice, but the restriction to finitely many forms
will still keep the number of possible slices finite). Define V Vallslice to be the set
of all such slice tree forms that can be constructed of depth at most nmaxslice,
modulo α-conversion.

Lemma 10. Set V Vallslice is of finite cardinality.

Proof. Each slice V ∈ V Vallslice is an at most nmaxslice depth tree of nodes drawn
from the finite set C00 of node types; there are only finitely many finite trees
that can be constructed over a finite set of nodes.

Now that we have isolated all possible slices that we need to consider, we
can address the issue of the fresh variables created by the current slicing defini-
tion. Before closure begins, we create a personal library of slices for each simple
function; each simple function has a library of slices not sharing any bound vari-
ables with any other function’s slice library. More precisely, we define function
sliceLib(V ′) which takes as argument the pattern V ′ on any simple function oc-
curring in C00, and returns an α-renaming of slice set V Vallslice such that no
two libraries share any type variables. Since there are finite patterns and each
library contains finitely many slices needing finitely many type variables each,
the total number of type variables needed to “stock” the slice libraries is finite.
Then during closure, we pull a slice from the library when a function is matched.

B.1 Finite type variables

Given that all constraints in any closure state C must be drawn from the forms in
C00, the number of states will be finite if we can restrict ourselves to drawing all
type variables from some fixed finite set. A particular challenge here is the slice
V1 in the Application closure rule. Slices of the function are discarded, but slices
of the argument value are used to “wire” the argument into the pattern, so they
may appear in the global constraint set C. In our type inference implementation,
we directly wire in the argument without adding any new type variables to
the set, but we use slices here for a more elegant theory. While it makes the
presentation of soundness simpler, it complicates the decidability proof since we
need to limit the variables used in these slices so as not to have the constraint
set grow arbitrarily large.

The assertion of decidability, Theorem 2, assumes that our renaming function
ΦCR/ΥCR is finitely freshening. This property is formally defined in Definition
13 of Appendix C. Finite freshening requires the definition of a fixed finite set
of type variables given the original program expression (this is the output of
function f in the definition); with such a set defined, the definition guarantees
there is a fixed finite set of distinct type variables ⨽−−⨼α that is a superset of the
type variables used in any constraint set C.

So, all that is needed is to define the fixed initial set of type variables. We
define this set to include the initial type variables α ∈ C00, as well as all variables

occurring in sliceLib, which is also finite as justified above. No other type vari-
ables are needed; additional type variables may be used by the polymorphism
model but Appendix C addresses how those are also finite. With this restriction
we have that any constraint set C being fed into ΦCR/ΥCR is a subset of ⨽−−⨼α ,
thus the renaming and merging will also produce variables all in ⨽−−⨼α . Thus, ⨽−−⨼α
constitutes all type variables that may ever appear in any constraint set and
that set is finite, proving finiteness of all paths.

B.2 A restricted Application rule

Two changes are needed to the Application closure rule: we need to place the
aforementioned restriction on accepting slices of at most a fixed depth nmaxslice,
and we cannot simply place the function argument slice V1 in the constraint set
since it may have arbitrary fresh variables in it. Instead, we will use one of our
fixed slice templates.

Definition 7 (application closure). Revise the Application closure rule of
Figure 12 to insert the following additional preconditions:

– depth(V0) ≤ nmaxslice

– depth(V1) ≤ nmaxslice.
– V2 ∈ sliceLib(V ′)
– unify(V1, V2) = V3

where unify(V1, V2) requires V1 and V2 to have the same tree structure and only
be α-variants of one another, and replaces leaf type variables of V2 with the
corresponding leaf type variables in V1. In the Application rule conclusion we
additionally replace slice V1 with the (equivalent) V3. (Note that V ′ is the pattern
from the function successfully matched on, it formally needs to be added as an
additional argument to that relation so it can propagate to the Application rule.)

Hereafter we will assume restricted closure is used. Since a rule has changed
we now revisit the soundness proof of Section A to sketch how it may be adapted
to restricted closure.

First, the deep copy relation of Figure 19 is modified to remove the restric-
tions on v in the Atomic rule: the deep copy need not stop only at atoms, it can
stop at any point, meaning it could be no copy at all or it could be a full deep
copy, or it could be any degree in between.

The bisimulation relation of Figure 20 can remain unchanged; for a slice and
a (partial) deep copy they both must stop at the same depth for bisimulation to
hold. This is the key to soundness, the exact aligning of the operational semantics
deep copy degree with the slice depth.

The alternative small-step relation in Figure 21 now is taken to use the
modified (partial) deep copy relation; since there is no restriction on how deep to
copy, reduction becomes nondeterministic. Fortunately, there is no real difference
in how much copying is done (or none): an analogy of Lemma 7 holds for the
revised small-step relation for all possible nondeterministic paths chosen.

Lastly, Preservation (Lemma 8) can be shown to hold by a variant of our
previous proof: given a fixed step e ˙−→1 e′, we perform the analogous C =⇒1 C ′

in the type constraint system. However, we cannot let the size of the deep copy
dictate the depth of the slice in the case of Application; instead we let the slice
dictate the depth of the deep copy. In particular choose the slice which picks
lower bounds which line up with the application step taken by e and such that it
is deep enough to be full-compatible. We know such a slice V exists: by the above
reasoning our bound nmaxslice will suffice to reach the bottom of any pattern.
Now, given slice V we can pick a corresponding e′′ such that e ˙−→1 e′′ and
e′′ ≈ V . Thus, we may establish that e′′ 4 C ′ in analogous fashion.

This is a slightly weaker version of preservation since it changes e′ to e′′ in the
result. However, as mentioned above, all nondeterministic paths are aligned and
are equi-stuck, and so the particular choice of nondeterministic path is irrelevant.
Soundness then follows as before modulo this change of path.

B.3 Decidability

Given the above reformulation of application, we can now show that there are
only finitely many closure states, and closure is thus a finite state machine.

We first show that construction of the initial derivation, slicing, compatibility,
and matching are all easily decidable.

Lemma 11. Given well-formed inputs the following functions/relations/prop-
erties are computable/decidable:

1. JeKe
2. α\V � α′\C
3. Given potential slice V and pattern type V ′, ∃F.α0

G#
V�FV ′ α′0

4. Given potential slice V and pattern type V ′, α0 V 6 6�V ′ α′0
5. Given potential slices V, V ′, ∃α2, C

′.α0 α1
G#
V;V ′ α2\C ′

6. α0 α1 V 6 6;V ′

Proof. 1. is trivially computable since the definition of Figure 8 is a simple
inductive definition.

2.: Since V is required to be an acyclic constraint set and each subgoal works
over a subtype of one of the variables in V , the potential proof tree structure
corresponds to the structure of V which is finite, thus the proof search is finite.

3. and 4. are mutually referencing and so must simultaneously be proven
decidable. Inspecting the compatibility rules of Figure 10, each rule subgoal
either works on a type variable in a subtype of a constraint in the pattern,
or a type variable in a subtype of a constraint in the slice. For example, Onion
Value Left works on a variable in a subtype of the slice, and Conjunction pattern
works on a variable in a subtype of the pattern. Thus, the proof structure is fixed
based on the V/V ′ input and so proof search is finite. (Observe also that the
subgoal of not-compatible in Onion Value Right is on α1, a type variable in a
slice subtype, so the negation proof search is similarly bounded). The mapping
F is deterministically synthesized up the proof tree so is easy to compute.

5. and 6. follow similarly to 3. and 4.; observe here that α2\C ′ is determin-
istically synthesized up the proof tree.

Lemma 12. Given JeKe =⇒∗ C , it is possible to compute the set {C ′ | C =⇒1

C ′} (which is thus a finite set of finite C ′).

Proof. Since C is inductively finite, there are finitely many different matches of
the constraints to the Transitivity and Application closure rule preconditions.
Transitivity produces one possible output per matching input so only finitely
many distinct transitivity steps are possible from C. Application is additionally
parameterized by slices V0 and V1; given such slices, matching will produce a
single output α′\C ′ since these slices bisimulate expressions which are deter-
ministic. Freshening function ΦCR/ΥCR is a function so it will also produce a
single output. So, the only nondeterminism in Application is in the slices. By
the above construction we argued it suffices to only consider slices in the (finite)
set V Vallslice; each such pair of potential slices can decidably be verified to be
slices and checked for matching by the previous Lemma, leading to computation
of a finite set of match outputs for each application rule and thus finitely many
results overall.

Since all the above relations in closure are decidable/computable, and there
are only finitely many total constraint set states C to consider as potential states
in closure (due to the constraint forms all coming from C00 and the type variables
restricted to the finite set ⨽−−⨼α produced by the finitely freshening assumption), all
potential closure paths can be exhaustively searched and Theorem 2 has been
established.

C Polymorphism in TinyBang

This appendix details properties of polymorphism in TinyBang. We give a def-
inition of the polymorphism model summarized in Section 3.4. We then prove
both that it preserves the simulation relation defined in Appendix A and that
it produces finitely many type variables as required by Appendix B.

C.1 Definition of ΦCR/ΥCR

The ΦCR/ΥCR polymorphism model functions by creating fresh polyinstantia-
tions of every variable at every call site and then merging these variables when
recursion is detected. More precisely, a type variable merging occurs if (1) two
type variables represent the type of the same variable from the original program
and (2) they do so in the context of the same call site in the original program. In
order to track this information, we define a bijection ⇔ between type variables
and type variable descriptors for a given typechecking pass.

A type variable descriptor represents two pieces of information. The first is
the type variable

?
α that was decided for the program variable during initial

alignment. The second is a contour representing the set of call strings at which
this type variable applies. (We give a precise definition of contours below.) For
instance, suppose 〈αx, αy〉 ⇔ α where αy is a contour representing just the call
string “αy”; then α is the polyinstantiation of αx when it is reached by a call
site αy appearing at the top level of the program. For example, in the program

1 i = { p = () } -> { x = p };

2 v = 4;

3 y = i i;

4 z = i 4;

the function i is the identity function. The type variable 〈αx, αy〉 ⇔ α represents
the type of x when it is expanded into the call site at y; it does not represent
the type of x when it is expanded into the call site at z.

More formally, we define contours as follows:

Definition 8. A contour C is a regular expression with the following restric-
tions:

– The contour C is composed of a disjunction of contour strands S,
– Each strand is a concatenation only of literals and Kleene closures over dis-

junctions of literals, and
– Each literal is the initial type variable of a call site declaration variable (e.g.

the initial type of x2 in the clause x2 =x0 x1)

We use ε to denote the contour matching only the empty call string. We use ∅
to denote the contour matching no call strings.

As stated above, contours could be arbitrarily long. For decidability, we pro-
vide the following refinement on contours which we maintain inductively through
each closure step:

Definition 9. A contour C is well-formed if each call site declaration variable
appears at most once within it.

For example, the contour α0(α1α2)∗ is well-formed but the contour α0α1α0

is not. The bijection only admits descriptors with well-formed contours.
For the purposes of the definitions below, we define simple notation on con-

tours. We write C ‖ C′ to indicate the concatenation on contours in the sense of
regular expressions; note that while contours are closed under this operation (by
cross product over the outermost union), well-formed contours are not. We also
write C ≤ C′ to denote that the set of call strings matched by C is a subset of
the call strings matched by C′.

For notational convenience, the remainder of this appendix often uses a type
variable’s descriptor in place of the type variable. For instance, we use int <:
〈α,∅〉 as shorthand for “int <: α′ such that 〈α,∅〉 ⇔ α′”.

Polyinstantiation and Merging We begin our management of polymorphism
with initial alignment. In particular, we always choose the type variable bijection
such that each fresh type variable

?
α chosen by initial alignment has a fixed

mapping. If the variable x represented by
?
α is defined within a pattern or the

body of a function, then 〈 ?α,∅〉 ⇔ ?
α. Otherwise, 〈 ?α, ε〉 ⇔ ?

α (to reflect the fact
that α represents x at top level, in the empty call string).

Other than this initial set, new type variables enter closure in one of two ways:
by being introduced by a slice or by the polymorphism model. We view variables

introduced by slicing in the same way that we view the variables introduced
by initial alignment; they are “original” variables in a sense and not part of
polymorphism. That is, if a slice introduces a fresh variable α′1 for a variable α1

and 〈α2, C〉 ⇔ α1, then 〈α′2, C〉 ⇔ α2 for some α′2 describing the original variable
of that slice. This is not a problem for our system because, as illustrated in
Appendix B, only finitely many original slice variables will be used during a
given typecheck.

The other manner in which type variables can be introduced is through the
ΦCR and ΥCR functions. We define ΦCR to instantiate variables appearing in a
constraint set as follows:

Definition 10. Let C be a well-formed contour. Then ΦCR(C, C) is the capture-
avoiding substitution of type variables in C such that, for any α, each free type
variable 〈α,∅〉 is replaced with 〈α, C〉 and all other type variables remain un-
changed.

Calling ΦCR creates a fresh version of each uninstantiated type variable free in
the constraint set. Note that type variables which already have a contour – which
have been previously instantiated – are unaffected.

The second function, ΥCR, is used to relate variables already appearing in
the constraint set with the newly polyinstantiated ones from ΦCR. In particu-
lar, ΥCR is used to unify type variables whose responsibilities overlap. This is
necessary to ensure that type variables are unified correctly when recursion is
detected. For instance, imagine that C in the definition above was α1(α2)∗. Then
a type variable 〈α3, C〉 represents the polyinstantiation of α3 for the call stack
is composed of call site α1 followed by any number of recursive calls to call site
α2. But when α2 was first reached, it may not be known to be recursive; there
may be variables such as 〈α3, α1α2〉 already in the constraint set.

Before defining our merge operation, we rely on some simple supporting
definitions:

Definition 11. Two variables 〈α, C〉 and 〈α′, C′〉 overlap iff α = α′ and there
exists a call string matched by both C and C′. For some constraint set C, two
variables α and α′ are connected in C iff either α and α′ overlap or there
exists some α′′ appearing in C such that α overlaps with α′′ and α′′ and α′ are
connected in C.

The purpose of this definition is to cluster type variables which have over-
lapping contours for the same program variable. These are the variables which
should be unified under a contour which covers all of the contours in that clus-
ter. (Observe that every α with a non-empty contour overlaps itself and connects
with itself.) Using the above, we can give the following definition of ΥCR:

Definition 12. For a set of constraints C, ΥCR(C) is the α-substitution of type

variables in C such that each α is replaced by 〈α′, C′〉 where
n⨽−−−−−−⨼
〈α′, C�〉 is the set

of variables connected to α in C and C′ is the least well-formed contour greater

than all
n⨽−−⨼
C .

In our above example, the least well-formed contour C′ is α1(α2)∗; thus the type
variable 〈α3, α1α2〉 would be replaced by 〈α3, α1(α2)∗〉.

C.2 Simulation Preservation

The TinyBang type system is sound when using ΦCR/ΥCR as a polymorphism
model. To prove this, we must show that both ΦCR and ΥCR are simulation-
preserving. We begin with the latter function because it is somewhat simpler.

Theorem 3. If e 4 C then e 4 ΥCR(C).

Proof. Let C ′ = ΥCR(C). We have that e 4M C. We also have that C ′ is an
α-substitution of type variables in C; thus, if e.g. τ <: α ∈ C then τ <: α′ ∈ C ′
such that α was replaced by α′. If we subject M to the same α-substitution as
C, we can show by induction on the size of e 4M C that e 4M ′ C ′.

We must make a similar argument for polyinstantiation, but this argument
is somewhat complicated by the capture-avoiding substitution. This is because,
when capture is avoided, it is possible that some instances of a type variable
have been replaced and others have not; if that type variable were representing
a single evaluation variable, simulation would no longer hold. Fortunately, we
can show that this case does not arise:

Theorem 4. Suppose we are typechecking an expression containing e. If e 4 C
then e 4 ΦCR(C,α).

Proof. Let C ′ = ΦCR(C,α). We have that e 4M C and that C ′ is a capture
avoiding substitution of variables in C. We consider each type variable α ap-
pearing in C being replaced by some other α′. If α only appears free or only
appears captured in C, then this is an α-substitution of α and the argument
proceeds as in Theorem 3.

If α appears both free and captured in C, then suppose that each variable
x in e for which M(x) = α appears either only captured or only free in e. In
this case, the corresponding instances of α can be substituted (or not) and an
alternate mapping M ′ can be defined as M ′(x) = α′ (resp. M ′(x) = α) such
that simulation still holds.

The only remaining case is that some x appears both free and captured in e
such that M(x) = α. But if this is the case, then any expression in which e is a
subexpression is either not closed or contains a duplicate definition of x; in either
case, this violates the assumptions made either by the typechecking algorithm or
by the well-formedness of ANF expressions. Therefore, this case does not exist
and we are finished.

C.3 Decidability

The decidability proof requires that the polymorphism model used with the
TinyBang type system is finitely freshening. This property is outlined in Sec-
tion 3.3. Informally, the property we want is that the polymorphism model will
only incur finitely many polyinstantiations (even when presented with variables
it has polyinstantiated). Formally, we state this property as follows:

Definition 13 (Finitely Freshening Φ/Υ). A polymorphism model Φ/Υ is

finitely freshening iff ∀f : ⨽−−⨼e →
⨽−−⨼
⨽−−⨼α .∃g : ⨽−−⨼e →

⨽−−⨼
I .∀e. we have all of the following:

– ⨽−−⨼α is a finite set of type variables isomorphic to f(e)× g(e),
– f(e) ⊆ ⨽−−⨼α ,
– For any α appearing in C, if the set of variables appearing in C is a subset

of ⨽−−⨼α then the set of variables appearing in Φ(C,α) is a subset of ⨽−−⨼α , and
– For any C, if the set of variables appearing in C is a subset of ⨽−−⨼α then the

set of variables appearing in Υ (C) is a subset of ⨽−−⨼α

By this definition, we argue that the polymorphism model ΦCR/ΥCR is finitely
freshening using contours as indices and the type variable bijection as the basis
for ⨽−−⨼α . We begin by defining a function to determine all of the contours which
will be used in a typechecking pass; this function will be used as the basis for
the g function required by the above definition.

Definition 14. Let AllContours(−) be a function taking a set of type variables
⨽−−⨼α and producing the set

⨽−−⨼
C of all well-formed contours which can be constructed

using only those type variables as literals.

We then state the following simple lemma regarding this function:

Lemma 13. For a finite set of type variables, the AllContours(−) function is
computable and produces a finite set of contours.

Proof. Trivial by the grammar of regular expressions and because well-formed
contours have a length bounded on the order of the number of type variables in
the set.

Using this property, we can easily show our polymorphism model to be finitely
freshening:

Theorem 5. The polymorphism model ΦCR/ΥCR is finitely freshening.

Proof. We are given a function f as described in Definition 13. We choose the
corresponding g(e) = AllContours(f(e)). For a given e, we select the bijection
⇔ as described above – α ∈ f(e) =⇒ α⇔ 〈α, C〉 where C is either ∅ or ε – and
leave the remainder of the bijection unconstrained. Since neither ∅ and ε require
literals, they are in AllContours(f(e)). We therefore define ⨽−−⨼α = {〈α′, C〉 | α′ ∈
f(e) ∧ C ∈ g(e)}.

It remains to show that each of ΦCR and ΥCR has the desired quality: that,
given C with variables in ⨽−−⨼α , the resulting C ′ has only variables in ⨽−−⨼α . For ΦCR,
we observe that the function performs a substitution on some variables in the
set. This substitution is such that a variable 〈α′, C〉 is always substituted with
another variable 〈α′, C′〉 such that C′ is a well-formed contour. Because 〈α′, C′〉
was in C, we know that α′ ∈ f(e); because C′ is a well-formed contour, we know
that C′ ∈ g(e). Each variable is therefore in ⨽−−⨼α and so this property holds. The
argument for ΥCR proceeds likewise.

Finally, we must show that the functions are themselves computable.

Theorem 6. Both ΦCR and ΥCR are computable.

Proof. ΦCR is a capture-avoiding substitution on a finite set and so is trivially
decidable. Whether two variables α and α′ overlap in a finite constraint set C
is decidable by enumeration of all possible paths between those variables. We
have a finite set of well-formed contours for a given e and the inclusion problem
on regular expressions is decidable, so finding a least well-formed contour which
subsumes a set of other contours is decidable. ΥCR is an α-substitution on a finite
set using these least well-formed contours; therefore, ΥCR is also decidable.

	Types for Flexible Objects

