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DDPA By Example

1 let id x = x;;
2 let s1 = id 1;;
3 let s2 = id 2;;

⇓ A-normalize

1 id = fun x -> (
2 ret = x;
3 );
4 n1 = 1;
5 s1 = id n1;
6 n2 = 2;
7 s2 = id n2;

Initial graph before any calls wired:

St

id n1 s1 n2 s2

End

ret
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DDPA By Example
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DDPA By Example
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DDPA By Example
CFG construction complete

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> ( ret = x; );
2 n1 = 1;
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Observe

Incrementally built control-flow graph (CFG)

Function bodies were wired to call sites as discovered
Analysis focused on variable lookup

“What values might variable x have at program point p?”

Lookup is temporally reversed and on demand
How could this lookup be accurate?

Challenges:
Context-sensitivity / polymorphism?
Non-local variables?
Recursion?
Function parameters?
State and heap aliases?
Path-sensitivity?
(Flow-sensitivity comes for free)
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Call Stack Alignment for Context-Sensitivity

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> ( ret = x; );
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;
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Implementing stack alignment

CFA2/PDCFA:

Push-Down System (PDS) for aligning calls and returns
Does not align non-locals; uses context copying for that

POLYFLOWCFL

Uses CFL/PDA for aligning calls and returns
Not flow-sensitive; lesser precision

DDPA:

Also uses PDS: lookup decision ≡ automata reachability
PDS stack is not call stack
We need the PDS stack for something else...
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Handling Non-Local Variables

Non-local example: K-combinator

1 let k v j = v;;
2 let f = k 1;;
3 let g = k 2;;
4 let s = f 0;;

⇓ A-normalization

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;
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Non-Local Variable Lookup

k a f b g z s

St End
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=a ff↑
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vg↓
=b gg↑

=k0

r
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=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]

v?[]v?[]v?[]v?[]v?[]v?[]

/

v?[]
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a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
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4 z = 0; s = f z;
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Handling Non-Local Variables

Search for defining closure; then, resume looking for variable

General case: continuation stack needed for non-local lookups
Can’t have a 2-stack PDS!

Solution: finitize call stack in PDS nodes; keep full lookup
stack.
kDDPA: maximum call stack depth k
Lookup still translates to PDS reachability decision problem
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Properties

Recursion: handled by PDS lookup; cycles are fine in a PDS

Theorem: kDDPA (for fixed k) has polynomial time bound
Lemma: both CFG and PDS are monotonically increasing over
analysis

Allows for analysis to be purely additive – efficient sharing
Observe we have reduced program analysis to incremental
(PDS) model checking - fast!
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Source / CFG / PDS - the whole analysis

1 x = {};
2 f = fun i -> ( r = i );
3 z = f x; Start x f z End

iz↓
=x zz↑

=rr

context ε

context [z] iz↓
=x r zz↑

=r

x f z End z?

nop
nop

nop
nop

nop ↑f↓f

↑x↓x

↑fnop

↑x↓x
↑xnop

↑z

↓r

↑r↓i↑i↓x

↑x

↓x
↓z

Build both CFG and PDS incrementally; above is final result
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Forward and reverse analyses compared

Forward analyses are more natural to derive from operational
semantics

DDPA is demand-driven and model-checking: potentially
more efficient than forward analyses
k in kDDPA not directly comparable to kCFA, etc.

k of kDDPA also needs to be bigger for handling non-locals
Which makes sense: for fixed k, kCFA is EXPTIME but
kDDPA is polynomial

Practically speaking, expressiveness appears similar
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Implementation

Paper artifact: inefficient proof-of-concept

Now: efficient implementation with additional features

Records
Path-sensitivity – paths validated by PDS
Heap-sensitive state including may/must alias information

Lazily constructs PDS according to regular definition
Looks to be reasonabily efficient
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Future Work

Variable alignment for precision

Better call stack model for performance
Application to existing languages
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Conclusions

DDPA: first flow-sensitive, demand-driven, higher-order
program analysis
Program analysis based on incremental model checking

Promising for efficiency
Appears comparable in expressiveness with state-of-the-art
forward analyses
Code: https://github.com/JHU-PL-Lab/odefa
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