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DDPA By Example

1 let id x = x;;
> let s1 = id 1;;
3 let 82 = id 2;;
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3 let 82 = id 2;; Initial graph before any calls wired:

\U/ A-normalize
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Bind argument n2 to parameter x
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Analyze call site s2
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CFG construction complete
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Incrementally built control-flow graph (CFG)
Function bodies were wired to call sites as discovered

Analysis focused on variable lookup
o "What values might variable x have at program point p?"

Lookup is temporally reversed and on demand
How could this lookup be accurate? Challenges:
Context-sensitivity / polymorphism?

Non-local variables?

Recursion?

Function parameters?

State and heap aliases?

Path-sensitivity?
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Analysis focused on variable lookup
o "What values might variable x have at program point p?"
Lookup is temporally reversed and on demand
How could this lookup be accurate? Challenges:
Context-sensitivity / polymorphism?
Non-local variables?
Recursion? (brief mention)
Function parameters?
State and heap aliases?
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Observe

Incrementally built control-flow graph (CFG)
Function bodies were wired to call sites as discovered

Analysis focused on variable lookup
o "What values might variable x have at program point p?"

Lookup is temporally reversed and on demand
How could this lookup be accurate? Challenges:
Context-sensitivity / polymorphism?
Non-local variables?

Recursion? (brief mention)

Function parameters?

State and heap aliases?

Path-sensitivity?

(Flow-sensitivity comes for free)
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o CFA2/PDCFA:

o Push-Down System (PDS) for aligning calls and returns
o Does not align non-locals; uses context copying for that

o POLYFLOW(gL

o Uses CFL/PDA for aligning calls and returns
o Not flow-sensitive; lesser precision

o DDPA:

o Also uses PDS: lookup decision = automata reachability
o PDS stack is not call stack
o We need the PDS stack for something else...
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<

Handling Non-Local Variables

Non-local example

fun v -> (k0 = fun j -> (r

1;
2;
0;

f

g
s

k a;
k b;
f z;

: K-combinator
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Handling Non-Local Variables

@ Search for defining closure; then, resume looking for variable

o General case: continuation stack needed for non-local lookups
o Can't have a 2-stack PDS!

o Solution: finitize call stack in PDS nodes; keep full lookup
stack.

o kDDPA: maximum call stack depth k

o Lookup still translates to PDS reachability decision problem

10/16
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Properties

@ Recursion: handled by PDS lookup; cycles are fine in a PDS

o Theorem: kDDPA (for fixed k) has polynomial time bound
o Lemma: both CFG and PDS are monotonically increasing over
analysis
o Allows for analysis to be purely additive — efficient sharing
o Observe we have reduced program analysis to incremental
(PDS) model checking - fast!
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1 x = {};
cf =fun i > (r=1);
3z =1f x;

Source / CFG / PDS - the whole analysis

context [z] Tr ZT
nop J,r

context € f

k"“‘i'*"_"“\
. nop TX . Ix x @@/. TX END(—.

@ Build both CFG and PDS incrementally; above is final result
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Forward and reverse analyses compared

o Forward analyses are more natural to derive from operational
semantics

o DDPA is demand-driven and model-checking: potentially
more efficient than forward analyses

@ k in kDDPA not directly comparable to kCFA, etc.

o k of kDDPA also needs to be bigger for handling non-locals
o Which makes sense: for fixed k, kCFA is EXPTIME but

kDDPA is polynomial
o Practically speaking, expressiveness appears similar
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Implementation

Paper artifact: inefficient proof-of-concept
Now: efficient implementation with additional features

o Records
o Path-sensitivity — paths validated by PDS
o Heap-sensitive state including may/must alias information

Lazily constructs PDS according to regular definition

Looks to be reasonabily efficient
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Future Work

@ Variable alignment for precision
o Better call stack model for performance

@ Application to existing languages
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Conclusions

o DDPA: first flow-sensitive, demand-driven, higher-order
program analysis
o Program analysis based on incremental model checking
o Promising for efficiency
@ Appears comparable in expressiveness with state-of-the-art
forward analyses

o Code: https://github.com/JHU-PL-Lab/odefa
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