DDPA
A Higher-Order Demand-Driven Program Analysis

Zachary Palmer! Scott F. Smith?

Swarthmore College!

The Johns Hopkins University?

July 20th, 2016

Some Program Analyses

push forward demand-driven
abstract interpretation CFL-reachability
first order
data flow analysis reverse data flow analysis
kCFA CFA2
higher order
PDCFA CFA

2/16

first order

higher order

Some Program Analyses

push forward

demand-driven

abstract interpretation

data flow analysis

CFL-reachability

reverse data flow analysis

kCFA CFA2

PDCFA CFA

2/16

Some Program Analyses

push forward demand-driven
abstract interpretation CFL-reachability
first order
data flow analysis reverse data flow analysis

kCFA CFA2
higher order

PDCFA CFA

2/16

Some Program Analyses

push forward demand-driven
abstract interpretation CFL-reachability
first order
data flow analysis reverse data flow analysis
kCFA CFA2
higher order
PDCFA CFA

2/16

Some Program Analyses

push forward demand-driven
abstract interpretation CFL-reachability
first order
data flow analysis reverse data flow analysis
kCFA CFA2
higher order DDPA
PDCFA CFA

2/16

first order

higher order

Some Program Analyses

push forward

demand-driven

abstract interpretation

data flow analysis

CFL-reachability

reverse data flow analysis

kCFA CFA2

PDCFA CFA

DDPA

POLYFLOW L

2/16

DDPA By Example

1 let id x = x;;
> let s1 = id 1;;
3 let 82 = id 2;;

3/16

N~ o a0~ W N o=

nl =
sl =
n2 =
s2 =

DDPA By Example

3/16

DDPA By Example

3 let 82 = id 2;; Initial graph before any calls wired:

\U/ A-normalize

N~ o a0~ W N o=

nl
s1
n2
s2

ret = x; AD—@D—ED—@D—(ED

- id nt; €D, ENDD

3/16

DDPA By Example

1id = fun x > (ret = x;);
>nl = 1;

3 81 = id ni;

4+ n2 = 2;

5 82 = id n2;

4/16

DDPA By Example

Analyze call site s1

GD—EAD—@D—GED—@D—ED-(ENDD

id = fun x -> (ret = x;);

1

>nl = 1;

3 81 = id ni;
4 n2 = 2;

5 82 = id n2;

4/16

DDPA By Example

Analyze call site s1
Look backward to find function id

GD—ED— @D —@D—GED-(ENDD

id = fun x -> (ret = x;);

1

>nl = 1;

3 81 = id ni;
4+ n2 = 2;

5 82 = id n2;

4/16

DDPA By Example

Analyze call site s1
Look backward to find function id

GD—AD—aD—eD—@D—GED-(ENDD

id = fun x -> (ret = x;);

1

>nl = 1;

3 81 = id ni;
4+ n2 = 2;

5 82 = id n2;

4/16

DDPA By Example

Analyze call site s1
Look backward to find function id

GD—EAD—@D—GED—@D—ED-(ENDD

id = fun x -> (ret = x;);

1

>nl = 1;

3 81 = id ni;
4+ n2 = 2;

5 82 = id n2;

4/16

Bind argument n1 to parameter x

g A W N

DDPA By Example

id
nl
s1
n2
s2

Analyze call site s1

EnleT>

fun x -> (ret =
1

id ni;

2;

id n2;

Xx;)

4/16

g A W N

DDPA By Example

Assign result ret to call site z1

id
nl
s1
n2
s2

Analyze call site s1

G=nd) xTetat=red)

fun x -> (ret =
1

id ni;

2;

id n2;

Xx;)

4/16

g A W N

DDPA By Example

id
nl
s1
n2
s2

Analyze call site s2

G=nd) xTetat=red)

fun x -> (ret =
1

id ni;

2;

id n2;

Xx;)

4/16

DDPA By Example

Analyze call site s2
Look backward to find function id

G=nd) xTetat=red)

1id = fun x > (ret = x;);
>nl = 1;

3 81 = id ni;

4+ n2 = 2;

5 82 = id n2;

4/16

DDPA By Example

Analyze call site s2
Look backward to find function id

=nd) et at=red

1id = fun x > (ret = x;);
>nl = 1;

3 81 = id ni;

4+ n2 = 2;

5 82 = id n2;

4/16

Bind argument n2 to parameter x

ED—TD—@D

DDPA By Example

Analyze call site s2

(=nd- et eioren

x=n2

ED—AD—@D—ED—

g A W N

id
nl
s1
n2
s2

fun x -> (ret =
1

id ni;

2;

id n2;

‘!’K%?i%>_ﬁ SQ.»‘EEI',

Xx;)

4/16

ED—TD—@D

DDPA By Example

Analyze call site s2

Assign result ret to call site z2

x=n2

ED—AD—@D—ED—

g A W N

id
nl
s1
n2
s2

fun x -> (ret =
1

id ni;

2;

id n2;

Xx;)

4/16

D@D @

g A W N

DDPA By Example

CFG construction complete

id
nl
s1
n2
s2

x=n2

fun x -> (ret =
1

id ni;

2;

id n2;

Xx;)

4/16

Observe

@ Incrementally built control-flow graph (CFG)

5/16

Observe

@ Incrementally built control-flow graph (CFG)

@ Function bodies were wired to call sites as discovered

5/16

Observe

@ Incrementally built control-flow graph (CFG)
@ Function bodies were wired to call sites as discovered

o Analysis focused on variable lookup
o "What values might variable x have at program point p?"

5/16

(4]

(]

(4]

(7]

Observe

Incrementally built control-flow graph (CFG)
Function bodies were wired to call sites as discovered

Analysis focused on variable lookup
o "What values might variable x have at program point p?"

Lookup is temporally reversed and on demand

5/16

(4]

(]

(4]

(7]

(]

Observe

Incrementally built control-flow graph (CFG)
Function bodies were wired to call sites as discovered

Analysis focused on variable lookup
o "What values might variable x have at program point p?"

Lookup is temporally reversed and on demand

How could this lookup be accurate? Challenges:

5/16

(4]

(]

(4]

(7]

(]

Observe

Incrementally built control-flow graph (CFG)
Function bodies were wired to call sites as discovered

Analysis focused on variable lookup
o "What values might variable x have at program point p?"

Lookup is temporally reversed and on demand
How could this lookup be accurate? Challenges:
Context-sensitivity / polymorphism?

Non-local variables?

Recursion?

Function parameters?

State and heap aliases?

Path-sensitivity?

© 6 06 06 o o

5/16

(4]

(]

(4]

(7]

(]

Observe

Incrementally built control-flow graph (CFG)
Function bodies were wired to call sites as discovered

Analysis focused on variable lookup
o "What values might variable x have at program point p?"
Lookup is temporally reversed and on demand
How could this lookup be accurate? Challenges:
Context-sensitivity / polymorphism?
Non-local variables?
Recursion?
Function parameters?
State and heap aliases?
Path-sensitivity?

(]

© 6 06 o o

5/16

(4]

(]

(4]

(7]

(]

Observe

Incrementally built control-flow graph (CFG)
Function bodies were wired to call sites as discovered

Analysis focused on variable lookup
o "What values might variable x have at program point p?"
Lookup is temporally reversed and on demand
How could this lookup be accurate? Challenges:
Context-sensitivity / polymorphism?
Non-local variables?
Recursion? (brief mention)
Function parameters?
State and heap aliases?
Path-sensitivity?

(]

© 6 06 o o

5/16

(4]

(]

(4]

(7]

(]

Observe

Incrementally built control-flow graph (CFG)
Function bodies were wired to call sites as discovered

Analysis focused on variable lookup
o "What values might variable x have at program point p?"

Lookup is temporally reversed and on demand
How could this lookup be accurate? Challenges:
Context-sensitivity / polymorphism?
Non-local variables?

Recursion? (brief mention)

Function parameters?

State and heap aliases?

Path-sensitivity?

(Flow-sensitivity comes for free)

(]

© ©6 6 6 o o

5/16

Call Stack Alignment for Context-Sensitivity

E E 5 : GH!EE!IHID
X=n .

DT BD

1 id = fun x > (ret = x;);
>nl = 1;

3 81 = id ni;

4 n2 = 2;

5 82 = id n2;

6/16

Call Stack Alignment for Context-Sensitivity

Look up s2 from end of program

E E 5 : GH!EE!IHID
X=n .

DT BD

1 id = fun x > (ret = x;);
>nl = 1;

3 81 = id ni;

4 n2 = 2;

5 82 = id n2;

6/16

Call Stack Alignment for Context-Sensitivity

Look up s2 from end of program

\s27?

@ @@ D@

X=n2

1 id = fun x > (ret = x;);
>nl = 1;

3 81 = id ni;

4 n2 = 2;

5 82 = id n2;

6/16

Call Stack Alignment for Context-Sensitivity

Look up s2 from end of program

\s27?

@ @@ D@

X=n2

1 id = fun x > (ret = x;);
>nl = 1;

3 81 = id ni;

4 n2 = 2;

5 82 = id n2;

6/16

Call Stack Alignment for Context-Sensitivity

Look up s2 from end of program

L x? [: GEHIEB

\s27?

@ @@ D@

X=n2

1 id = fun x > (ret = x;);
>nl = 1;

3 81 = id ni;

4 n2 = 2;

5 82 = id n2;

6/16

Call Stack Alignment for Context-Sensitivity

Look up s2 from end of program

........... ret?
@!535!? " \827

DD DD @

1 id = fun x > (ret = x;);
>nl = 1;

3 81 = id ni;

4 n2 = 2;

5 82 = id n2;

6/16

Call Stack Alignment for Context-Sensitivity

Look up s2 from end of program

_________ ret?
RO
| P
: n22’-., ER
ED—GD—ED—ED D@D
21 ©
1 id = fun x -> (ret = x;);
>nl = 1;
3 81 = id ni;
4 n2 = 2;
5 82 = id n2;

6/16

Call Stack Alignment for Context-Sensitivity

Look up s2 from end of program

nl? s27?
GD—GED @ @ @ (D @
21 ©

1 id = fun x -> (ret = x;);

>nl = 1;

3 81 = id ni;

4 n2 = 2;

5 82 = id n2

6/16

Call Stack Alignment for Context-Sensitivity

Look up s2 from end of program

nl? x=n2n". <27
ED—GED—@D—ED (D @
11 ® 21 ©

1 id = fun x -> (ret = x;);

>nl = 1;

3 81 = id ni;

4 n2 = 2;

5 82 = id n2

6/16

Call Stack Alignment for Context-Sensitivity

Solution: Maintain call stack during lookup, use to filter

E E 5 : GH!EE!IHID
X=n .

DT BD

1 id = fun x > (ret = x;);
>nl = 1;

3 81 = id ni;

4 n2 = 2;

5 82 = id n2;

6/16

Call Stack Alignment for Context-Sensitivity

Solution: Maintain call stack during lookup, use to filter

oA W N e

id
nl
sl
n2
s2

fun x -> (ret = x;);
1
id ni;
2;
id n2;
6/16

Call Stack Alignment for Context-Sensitivity

Solution: Maintain call stack during lookup, use to filter

oA W N e

id

nl =
sl =

n2
s2

fun x -> (ret = x;);
1
id ni;
2;
id n2;
6/16

Call Stack Alignment for Context-Sensitivity

Solution: Maintain call stack during lookup, use to filter

oA W N e

id

nl =
sl =

n2
s2

2l ©

fun x -> (ret = x;);
1
id ni;
2;
id n2;
6/16

Call Stack Alignment for Context-Sensitivity

Solution: Maintain call stack during lookup, use to filter

21 ©
1 id = fun x > (ret = x;);
>nl = 1;
3 81 = id ni;
4 n2 = 2;
5 82 = id n2;

6/16

Call Stack Alignment for Context-Sensitivity

Solution: Maintain call stack during lookup, use to filter

1 id = fun x > (ret = x;);
>nl = 1;

3 81 = id ni;

4 n2 = 2;

5 82 = id n2;

6/16

Call Stack Alignment for Context-Sensitivity

Solution: Maintain call stack during lookup, use to filter

21 ©
1 id = fun x > (ret = x;);
>nl = 1;
3 81 = id ni;
4 n2 = 2;
5 82 = id n2;

6/16

Implementing stack alignment

7/16

Implementing stack alignment

o CFA2/PDCFA:
o Push-Down System (PDS) for aligning calls and returns

7/16

Implementing stack alignment

o CFA2/PDCFA:

o Push-Down System (PDS) for aligning calls and returns
o Does not align non-locals; uses context copying for that

7/16

Implementing stack alignment

o CFA2/PDCFA:

o Push-Down System (PDS) for aligning calls and returns
o Does not align non-locals; uses context copying for that

o POLYFLOW g,
o Uses CFL/PDA for aligning calls and returns

7/16

Implementing stack alignment

o CFA2/PDCFA:

o Push-Down System (PDS) for aligning calls and returns
o Does not align non-locals; uses context copying for that

o POLYFLOW(gL

o Uses CFL/PDA for aligning calls and returns
o Not flow-sensitive; lesser precision

7/16

Implementing stack alignment

o CFA2/PDCFA:

o Push-Down System (PDS) for aligning calls and returns
o Does not align non-locals; uses context copying for that

o POLYFLOW(gL

o Uses CFL/PDA for aligning calls and returns
o Not flow-sensitive; lesser precision

o DDPA:

o Also uses PDS: lookup decision = automata reachability

7/16

Implementing stack alignment

o CFA2/PDCFA:

o Push-Down System (PDS) for aligning calls and returns
o Does not align non-locals; uses context copying for that

o POLYFLOW(gL

o Uses CFL/PDA for aligning calls and returns
o Not flow-sensitive; lesser precision

o DDPA:

o Also uses PDS: lookup decision = automata reachability
o PDS stack is not call stack
o We need the PDS stack for something else...

7/16

1

let k
let f

3 let g

let s

nmn <

R

Handling Non-Local Variables

Non-local example: K-combinator

8/16

1

3

F R SR

<

Handling Non-Local Variables

Non-local example

fun v -> (k0 = fun j -> (r

1;
2;
0;

f

g
s

k a;
k b;
f z;

: K-combinator

8/16

2 W N =

N T p W

Non-Local Variable Lookup

fun v => (k0 = fun j -> (r = v;););
1; £ =k a;
2; g=%kb;
0; s f z;

9/16

2 W N =

N T p W

Non-Local Variable Lookup

Analyze call site f.

fun v => (k0 = fun j -> (r = v;););
1; £ =k a;
2; g=%kb;
0; s f z;

9/16

2 W N =

N T p W

Non-Local Variable Lookup

Analyze call site g.

fun v => (k0 = fun j -> (r = v;););
1; £ =k a;
2; g=%kb;
0; s f z;

9/16

2 W N =

N T p W

Non-Local Variable Lookup

Analyze call site s.

fun v => (k0 = fun j -> (xr = v;););

f

g
s

k a;
k b;

f z;
9/16

2 W N =

N T p W

Non-Local Variable Lookup

Look up s from end of program.

fun v => (k0 = fun j -> (r = v;););
1; £ =k a;
2; g=%kb;
0; s f z;

9/16

2 W N =

N T p W

Non-Local Variable Lookup

Look up s from end of program.

fun v => (k0 = fun j -> (r = v;););
1; £ =k a;
2; g=%kb;
0; s f z;

9/16

2 W N =

N T p W

V7]

Non-Local Variable Lookup

Look up s from end of program.

v?[] v7?[] v7?[] v?[] v7?[]

fun v

-> (k0 = fun j -> (r = v;););
=k a;
= k b;
f z;

9/16

2 W N =

N T p W

V7]

Non-Local Variable Lookup

Look up s from end of program.

v?[] v7?[] v7?[] v?[] v7?[]

®

fun v => (k0 = fun j -> (xr = v;););

f =k a;
g =k b;
s f z;

9/16

F R SR

N T p W

Non-Local Variable Lookup

fun v => (k0 = fun j -> (r = v;););
1; £ =k a;
2; g=%kb;
0; s f z;

9/16

F R SR

N T p W

Non-Local Variable Lookup

fun v => (k0 = fun j -> (r = v;););
1; £ =k a;
2; g=%kb;
0; s f z;

9/16

F R SR

N T p W

Non-Local Variable Lookup

fun v => (k0 = fun j -> (r = v;););
1; £ =k a;
2; g=%kb;
0; s f z;

9/16

F R SR

N T p W

Non-Local Variable Lookup

fun v => (k0 = fun j -> (r = v;););
1; £ =k a;
2; g=%kb;
0; s f z;

9/16

F R SR

N T p W

Non-Local Variable Lookup

fun v => (k0 = fun j -> (r = v;););
1; £ =k a;
2; g=%kb;
0; s f z;

9/16

F R SR

N T p W

Non-Local Variable Lookup

fun v => (k0 = fun j -> (r = v;););
1; £ =k a;
2; g=%kb;
0; s f z;

9/16

Handling Non-Local Variables

@ Search for defining closure; then, resume looking for variable

10/16

Handling Non-Local Variables

@ Search for defining closure; then, resume looking for variable
o General case: continuation stack needed for non-local lookups

10/16

Handling Non-Local Variables

@ Search for defining closure; then, resume looking for variable

o General case: continuation stack needed for non-local lookups
o Can't have a 2-stack PDS!

10/16

Handling Non-Local Variables

@ Search for defining closure; then, resume looking for variable

o General case: continuation stack needed for non-local lookups
o Can't have a 2-stack PDS!

o Solution: finitize call stack in PDS nodes; keep full lookup
stack.

10/16

Handling Non-Local Variables

@ Search for defining closure; then, resume looking for variable

o General case: continuation stack needed for non-local lookups
o Can't have a 2-stack PDS!

o Solution: finitize call stack in PDS nodes; keep full lookup
stack.
o kDDPA: maximum call stack depth k

10/16

Handling Non-Local Variables

@ Search for defining closure; then, resume looking for variable

o General case: continuation stack needed for non-local lookups
o Can't have a 2-stack PDS!

o Solution: finitize call stack in PDS nodes; keep full lookup
stack.

o kDDPA: maximum call stack depth k

o Lookup still translates to PDS reachability decision problem

10/16

Properties

@ Recursion: handled by PDS lookup; cycles are fine in a PDS

11/16

Properties

@ Recursion: handled by PDS lookup; cycles are fine in a PDS
o Theorem: kDDPA (for fixed k) has polynomial time bound

11/16

Properties

@ Recursion: handled by PDS lookup; cycles are fine in a PDS

o Theorem: kDDPA (for fixed k) has polynomial time bound

o Lemma: both CFG and PDS are monotonically increasing over
analysis

11/16

Properties

@ Recursion: handled by PDS lookup; cycles are fine in a PDS

o Theorem: kDDPA (for fixed k) has polynomial time bound

o Lemma: both CFG and PDS are monotonically increasing over
analysis
o Allows for analysis to be purely additive — efficient sharing

11/16

Properties

@ Recursion: handled by PDS lookup; cycles are fine in a PDS

o Theorem: kDDPA (for fixed k) has polynomial time bound
o Lemma: both CFG and PDS are monotonically increasing over
analysis
o Allows for analysis to be purely additive — efficient sharing
o Observe we have reduced program analysis to incremental
(PDS) model checking - fast!

11/16

1 x = {};
cf =fun i > (r=1);
3z =1f x;

Source / CFG / PDS - the whole analysis

context [z] Tr ZT
nop J,r

context € f

k"“‘i'*"_"“\
. nop TX . Ix x @@/. TX END(—.

@ Build both CFG and PDS incrementally; above is final result

12/16

Forward and reverse analyses compared

o Forward analyses are more natural to derive from operational
semantics

13/16

Forward and reverse analyses compared

o Forward analyses are more natural to derive from operational
semantics

o DDPA is demand-driven and model-checking: potentially
more efficient than forward analyses

13/16

Forward and reverse analyses compared

o Forward analyses are more natural to derive from operational
semantics

o DDPA is demand-driven and model-checking: potentially
more efficient than forward analyses

@ k in kDDPA not directly comparable to kCFA, etc.

13/16

Forward and reverse analyses compared

o Forward analyses are more natural to derive from operational
semantics
o DDPA is demand-driven and model-checking: potentially
more efficient than forward analyses
@ k in kDDPA not directly comparable to kCFA, etc.
o k of kDDPA also needs to be bigger for handling non-locals

13/16

Forward and reverse analyses compared

o Forward analyses are more natural to derive from operational
semantics

o DDPA is demand-driven and model-checking: potentially
more efficient than forward analyses

@ k in kDDPA not directly comparable to kCFA, etc.

o k of kDDPA also needs to be bigger for handling non-locals
o Which makes sense: for fixed k, kCFA is EXPTIME but

kDDPA is polynomial

13/16

Forward and reverse analyses compared

o Forward analyses are more natural to derive from operational
semantics

o DDPA is demand-driven and model-checking: potentially
more efficient than forward analyses

@ k in kDDPA not directly comparable to kCFA, etc.

o k of kDDPA also needs to be bigger for handling non-locals
o Which makes sense: for fixed k, kCFA is EXPTIME but

kDDPA is polynomial
o Practically speaking, expressiveness appears similar

13/16

Implementation

o Paper artifact: inefficient proof-of-concept

14/16

Implementation

o Paper artifact: inefficient proof-of-concept
o Now: efficient implementation with additional features

14/16

Implementation

o Paper artifact: inefficient proof-of-concept
o Now: efficient implementation with additional features
o Records

14/16

Implementation

o Paper artifact: inefficient proof-of-concept
o Now: efficient implementation with additional features

o Records
o Path-sensitivity — paths validated by PDS

14/16

Implementation

o Paper artifact: inefficient proof-of-concept
o Now: efficient implementation with additional features

o Records
o Path-sensitivity — paths validated by PDS
o Heap-sensitive state including may/must alias information

14/16

Implementation

o Paper artifact: inefficient proof-of-concept
o Now: efficient implementation with additional features

o Records
o Path-sensitivity — paths validated by PDS
o Heap-sensitive state including may/must alias information

o Lazily constructs PDS according to regular definition

14/16

(<]

(]

(7]

(]

Implementation

Paper artifact: inefficient proof-of-concept
Now: efficient implementation with additional features

o Records
o Path-sensitivity — paths validated by PDS
o Heap-sensitive state including may/must alias information

Lazily constructs PDS according to regular definition

Looks to be reasonabily efficient

14/16

Future Work

@ Variable alignment for precision

15/16

Future Work

@ Variable alignment for precision

o Better call stack model for performance

15/16

Future Work

@ Variable alignment for precision
o Better call stack model for performance

@ Application to existing languages

15/16

Conclusions

o DDPA: first flow-sensitive, demand-driven, higher-order
program analysis
o Program analysis based on incremental model checking
o Promising for efficiency
@ Appears comparable in expressiveness with state-of-the-art
forward analyses

o Code: https://github.com/JHU-PL-Lab/odefa

16/16

https://github.com/JHU-PL-Lab/odefa

