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Abstract
We explore a novel approach to higher-order program analysis that brings ideas of on-demand
lookup from first-order CFL-reachability program analyses to higher-order programs. The anal-
ysis needs to produce only a control-flow graph; it can derive all other information including
values of variables directly from the graph. Several challenges had to be overcome, including how
to build the control-flow graph on-the-fly and how to deal with non-local variables in functions.
The resulting analysis is flow- and context-sensitive with a provable polynomial-time bound.
The analysis is formalized and proved correct and terminating, and an initial implementation is
described.
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1 Introduction

Flow analysis for imperative first-order programs is a well-known and straightforward pro-
cess. Before the analysis starts, it is known which functions are being invoked at each call
site in the source program. This is possible because, in absence of higher-order functions,
potential control flow is determined immediately from the structure of the program. So, for
first-order programs, it is possible to directly build a fixed control flow graph (CFG) where
each edge in the CFG points to a potential next program point. The program analysis then
can monotonically accumulate information about what values program variables could take
on at each program point, propagating information along this fixed CFG.

Forward higher-order program analysis

In languages with higher-order functions, program analysis is much more challenging: it is
no longer obvious which functions may be invoked at each call site. The program’s data flow
determines which functions appear at the call site, in turn influencing the program’s control
flow. Accurate analyses of programs with higher-order functions must therefore compute
data- and control-flow information simultaneously [12, 16].

Higher-order program analyses are generally based on abstract interpretations [2]; such
analyses define a finite-state abstraction of the operational semantics transition relation to
soundly approximate the program’s runtime behavior. The resulting analysis has the same
general structure as the operational semantics it was based on: program points, environ-
ments, stacks, stores, and addresses are replaced with abstract counterparts which have
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2 Higher-Order Demand-Driven Program Analysis

finite cardinality, “hobbling” the full operational semantics of the language to guarantee
termination of the analysis [13]. A sound analysis will visit the (finitely many) abstract
counterparts of all reachable concrete program states, producing a finite automaton repre-
senting all potential program runs.

We use the term “forward analyses” to refer to standard higher-order program analyses,
to emphasize how they propagate data forward through the program in the same manner
as an operational semantics does. All abstract interpretation based higher-order program
analyses, including [12, 16, 22, 13, 27, 8, 15, 3], are forward analyses.

Since each node is an abstract state and there can be a great many combinations of
data for environment or store, even the finitized abstract state space can be very large. For
this reason, any practical analysis must compress the total number of states. Typically, the
program counter is preserved. One standard compression, store widening, replaces the store
in each each abstract program state with a single global store; this global store is then the
union of all the individual stores.

Store widening is effective in compressing the abstract state set but tends to give too
little precision. For example, function polymorphism which is present before store widening
may be lost as the parameters to the calls of a given function in each program state are
unioned together. Store widening also generally loses any so-called flow sensitivity, where a
given (often stateful) variable can take on different values at different points.

So, other methods are employed to recover expressiveness without a full store in each
abstract state. One method is polyvariance, such as in kCFA [22] for k > 0, where each
function parameter gets unique addresses relative to the k most recent stack frames. Another
method is call-return alignment: the analysis uses a stack internally to return only to the
call site of the particular call being analyzed [26]. Call-return alignment also gives some, but
not all, of the power of polyvariance. One alternative to store widening is abstract garbage
collection [14], which also limits the number of abstract states: the store is not widened,
but an analysis-time analogue of run-time garbage collection removes inaccessible bindings
from the store. Abstract GC preserves flow-sensitivity, but this technique is still susceptible
to an explosion in analysis states for programs with nontrivial amounts of persistent data
as each configuration of this data represents another abstract program state to consider.

A demand-driven approach to higher-order programs

In this paper, we explore a fundamentally different approach to higher-order program analy-
sis which does not proceed by finitizing an operational semantics. Rather than pushing data
forward as in an operational semantics, the analysis looks up data on demand. This lookup
walks backward along the control flow from the point at which a variable’s value is needed
to the point at which the variable was most recently defined. Actual values never need to
be pushed forward so, in some sense, lookup is lazier than a standard lazy interpreter.

CFL-reachability analyses [6] have shown how demand-driven variable lookup is possi-
ble in first-order program analyses. In comparison to forward analyses, the demand-driven
approach has potential for better performance: the aforementioned optimizations are un-
necessary as no store is propagated forward through the analysis. CFL-reachability is a
first-order analysis, where the CFG is already known and where there are no non-local
variables in functions. Demand-driven lookup is applied to higher-order languages in [18],
but in the a context of a flow-insensitive type-based analysis with other restrictions. To
generally apply this technique to higher-order programs, we must have (1) a technique for
constructing the CFG in tandem with the data flow analysis and (2) a strategy for handling
non-local variables.
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In this paper, we solve these two problems to produce a higher-order Demand-Driven
Program Analysis (DDPA). The CFG is constructed incrementally just as in a forward
higher-order program analysis. Unlike a forward analysis, we only need to construct the
CFG; there is no abstracted environment/store/etc as all of the variable lookup happens in
reverse by following CFG edges backwards. To deal with non-local variables in functions,
we develop a novel reverse lookup process that is related to how access links are used in a
compiler to look up non-local variables: we find the definition of the function itself and look
up the variable from there. For added precision, we incorporate call-return alignment from
CFL-reachability [21, 20] and pushdown higher-order flow analyses [26, 8].

Contrast with forward analyses

During the course of DDPA, each variable lookup occurs relative to a particular point in the
(partial) control flow graph where the variable is used; this makes flow-sensitivity a natural
component of DDPA. In forward higher-order analyses, such flow-sensitivity is expensive
since it prohibits common performance-enhancing techniques such as store widening. Ab-
stract garbage collection, an aforementioned alternative to store widening, prunes the stores
significantly but produces many states for persistent data. Additionally, there is no need
for explicit polyvariance in DDPA: the combination of call-return alignment and non-local
lookup achieves the full effect of polyvariance without an explicit polyvariance model a la
kCFA. DDPA appears to compare favorably to forward analyses: it has the simultaneous
benefits of store widening (we have no per-node store), abstract garbage collection (demand-
driven lookup prevents the generation of garbage), call-return alignment (the one feature
we directly adopt) and polyvariance (which is subsumed by our call-return alignment given
our novel non-local variable lookup mechanism). Forward analyses cannot combine all these
features because abstract GC is ineffective in the presence of store widening [8].

In theory, DDPA has minimal requirements on run-time data structures: the only re-
quired data structure is the CFG, which is minuscule compared to the formal treatment of
forward analysis. In practice, an efficient DDPA implementation requires significant caching
structures which are similar to fragments of an abstract store in a forward analysis. We
do not assert DDPA to be a strictly better form of program analysis, only a substantially
different one with different trade-offs and worthy of study.

In terms of technical overhead, DDPA has the advantage of naturally scaling up to a
flow-, path-, and context-sensitive analysis while preserving a relatively compact formal
specification. On the other hand, reverse lookup is a different process than the original
(forward) operational semantics and requires a major re-thinking about program flow; a
forward analysis can to some degree be “read off the operational semantics” [25, 13].

We have completed a proof-of-concept implementation of DDPA, described in Section 6,
and include it as an artifact archived with the paper. The implementation builds a push-
down automaton (PDA) and variable lookup questions can be cast as reachability questions
in the PDA. This implementation has not been optimized but it confirms that the analysis
has the expected behavior on examples.

Paper outline

Section 2 presents an example-driven description of the main features of the analysis. Section
3 gives the full details, and Section 4 establishes its soundness relative to an operational
semantics. Section 5 defines extensions for full records, path-sensitivity, and state. Section
6 describes the implementation. Section 7 covers related work. We conclude in Section 8.
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e ::= [c, . . .] expressions
c ::= x = b clauses
b ::= v | x | x x | x ~ p ? f : f clause bodies
x variables

E ::= [x = v, . . .] environments

v ::= r | f values
r ::= {`, . . .} records
f ::= fun x -> ( e ) functions
p ::= r patterns

Figure 1 Expression Grammar

1 f = fun x -> ( # λx.(λy.y)x
2 i = fun a -> (
3 r2 = a
4 );
5 r = i x;
6 n0 = r;
7 );
8 x1 = {y};
9 z1 = f x1; # evaluates to {y}

10 x2 = {n};
11 z2 = f x2; # evaluates to {n}

f x1 z1 x2 z2Start End

xz1↓
= x1 z1z1↑

= n0

i n0r

1

1
1

1

ar↓
=x r2 rr↑

=r2
2

2 2
2

xz2↓
= x2 z2z2↑

= n0
3

3
3

3

Figure 2 Invocation Example: ANF Figure 3 Invocation Example: Analysis

2 Overview of the Analysis

This section informally presents DDPA by example.

2.1 A Simple Language

For a given program, our objective is to establish the possible execution paths that the
program will take. We encode this information in the form of a CFG, more precisely as a
happens-before relation c << c′: program point c related to c′ means there may be control
flow from c to c′.

We use a simple functional language defined in Figure 1. To make it easier to keep
track of program points and operation sequencing, we restrict our language syntax to a
shallow A-normal form (ANF) [5]. We further restrict all variables to be unique; this ensures
that clauses c themselves denote program points. (Notation: lists are written [g1, . . . , gn],
and || denotes list concatenation. We may overload as g1 ||[g2, g3] = [g1, g2, g3] when it is
unambiguous.)

The operational semantics of this (eager) language are straightforward and are given
in Section 4.1. Note that we have a degenerate form of record with label components
only; this restriction is made to simplify the formalism and we relax this restriction in the
implementation. Case analysis is written x ~ p ? f1 : f2; we execute f1 with x as argument if
the value of x matches the pattern p, and f2 with x as argument otherwise.

2.2 The Basic Analysis

Consider the program in Figure 2. Note that f is just a fancy identity function used to help
illustrate the analysis, and that clause n0 is a “no-op”: it is present only to help clarify the
diagrams.
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The analysis begins by constraining the top-level clauses to happen in order: f, x1, z1,
x2, and then z2. For technical reasons, we also add distinguished Start and End nodes.

Figure 3 shows the completed analysis; up to now we have only described the bottom
row. Focusing only on that row for now, the solid arrows ( ) represent nodes ordered by
<< in the source program, and indicate what we know about control flow at the beginning
of the analysis: only that control can move from each clause to the next. As shorthand, we
identify each clause by the unique variable it assigns; thus, the green node labeled x1 refers
to line 8 in Figure 2. Green nodes are immediate clauses and gray nodes are call sites.

2.2.1 Adding control flows for function calls

To elaborate the call graph, we must connect each call site to any function body invoked at
that call site. Proceeding forward on the control flow from the program start, the first call
site (gray node) is node z1. The dotted edges ( ) annotated with the number “1” represent
control passing from call site z1 to the start of the body of f (the i, r, n0 clauses), and from
the end of the function body back to z1. Note that the wires in fact run “around” the call
site in the figure, going out the predecessor of z1 and back to the successor. This reflects
how a function inlining would work. (Aside: both and edges define << relationships
between program points; the two edge sorts are used for illustration only.)

Additionally, the call adds two new intermediate nodes: x=x1 represents copying the
argument x1 at the call site into the function f’s parameter, while z1=n0 represents copying
the result of the function into the variable defined at the call site. These nodes are marked
with annotations to indicate their call site and purpose; z1↓, for instance, indicates a pa-
rameter passed in from the z1 call site. All of the information in these new nodes can in
fact be inferred from context since all values are unique given a (call site, function) pair. In
other words, the happens-before relation is isomorphic to the call graph.

Continuing with the analysis: now that the body of f has been wired in, the call site
r can execute, adding two orange wiring nodes and the corresponding “2” flows. The “3”
flows are similarly added when we elaborate z2.

2.2.2 Variable lookup as reverse walk

In the description above, we glossed over how variable lookup occurs: for each call site, we
needed to look up the particular functions to invoke and this can be nontrivial in a higher-
order language. The clause z1 invokes f, and all potential definitions of f need to be wired
to the call site. This particular case is simple since f obviously has only one value.

In general, variable lookup is contextual: lookup starts at the clause where the variable
is being used and proceeds backwards in time with respect to the control flow to find the
most recent value. This approach to lookup is related to the demand-driven optimizations
of first-order CFL-reachability analyses [6].

For a less trivial example, let us look up x from the perspective of r’s defining clause
in line 5. Walking back though the graph from r, there are two definitions of x reached:
x=x1 and x=x2. Since x1/x2 are not concrete values, lookup proceeds by looking up those
variables, respectively. Ultimately, x has final value set {{y}, {n}}, the set of arguments the
function was invoked on.

Since variable lookup always starts at the node representing the redex where the variable
is used, we obtain a flow-sensitive analysis by default. Note that the specification of lookup
traverses all the way back to the original definition every time; for example, in looking up x
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we needed to look up x=x1 and we then needed to continue back to x1’s original definition.
An efficient implementation should cache, but that is orthogonal to the specification.

2.3 Constraining lookup to reasonable call stacks
The above description of a simple lookup leaves out an important refinement in DDPA: it
is possible to rule out variable lookup search paths on which calls and returns do not align,
because such a path corresponds to no program execution. To show the incompleteness
of lookup as described thus far, consider how lookup would find values for z2 from the
perspective of the end of the program. To find z2, we proceed back on the control flow to
z2=n0 (recall how the call site itself is dead code after all calls have been wired in), at which
point the search is now for the value of n0; continuing back we reach n0=r and proceed by
looking up r from node n0, and so on until we are looking up x from node i. Here, there are
two paths, to either x=x1 or x=x2. So, we take both paths and union the result, obtaining
{{y}, {n}}. This is clearly a loss of precision: {y} cannot appear as the argument of call site
z2 at runtime. But, looking at the overall path we took above in this spurious lookup, we
walked back into the function via the z2 call site and came out of the front of the function
to the z1 call site. This is a non-sensical program execution path since the call and return
site are not aligned.

The annotations z1↓ / z1↑ on the wiring nodes indicate a call into and return from
call site z1, respectively, and are used to filter out these spurious paths. On any lookup
path the wiring annotations must pair correctly; that is, one may only visit a z1↓ node if
a corresponding z1↑ node was visited. We track these pairings using an abstract call stack
to verify they obey a reasonable call-return discipline. The idea of call-return alignment is
taken from CFL-reachability [21, 20] and higher-order pushdown analyses [26, 8].

Note that the above analysis exhibits polyvariant behavior: different invocations of the
same function are not analyzed uniformly. Polyvariance is commonly achieved by copying,
kCFA being a canonical example [16]. In DDPA, polyvariance can be achieved solely by
call-return alignment, unlike [26, 8] – stack alignment in these analyses only aligns variables
local to the function body, whereas DDPA also aligns non-locals; the subtleties of non-local
lookup are covered next.

2.4 Looking up Non-Local Variables
So far, our examples of lookup have been restricted to local variables. However, the above
lookup process does not accurately reflect how non-local variables are bound: if non-local
variables were handled in the same way, lookup would give non-locals a dynamically scoped
semantics. To see why, consider the code in Figure 4 and its graph in Figure 5. If we look
up the value of z from the end of the program, we find ourselves asking for the values of
v at the wiring of j=e. Proceeding as described above, j does not match v and we would
attempt to find a value for v at the e clause. This leads us to the clause v=b, which in turn
gives us just the value {b}. This would be unsound as it is not consistent with run-time
behavior.

To give lexical scoping semantics, the lookup function must be modified. Lexical scoping
means we want the values of non-local variables at the point which the function containing
them was itself declared, so we proceed by first locating the function definition and then
resuming our search for the value of the variable. This is similar to the access link method of
non-local lookup in a compiler implementation. In the example above, the pivotal decision
is made when finding values of v when we have searched through the whole body of the
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1 k = fun v -> ( # λx.λy.x
2 k0 = fun j -> ( r = v; );
3 );
4 a = {a};
5 f = k a; # λy.{a}
6 b = {b};
7 g = k b; # λy.{b}
8 e = {};
9 z = f e; # evaluates to {a}

k a f b g e z

Start End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r
jz↓

=e

zz↑
=r

Figure 4 Non-Local Variable: ANF Figure 5 Non-Local Variable: Analysis

function in lines 2-4 and arrived at the argument wiring j=e. From the annotation z↓ on
this node, we can deduce that we are leaving the current function which was called from
site z. Since we have not yet found v, it must be a non-local. So, we then delay our search
for v, examine the call site z (appearing in the wiring annotation), and look up the function
invoked at that point; here, this means to search for f starting from e. This search leads us
through f=k0 to k0, the point at which the function was originally defined, and from here
the search for v can soundly resume. Using this approach, the lookup of z from the end of
the program yields {a}.

The general case of non-local lookup chains on the above idea, since the defining function
could itself be non-locally defined. The chain is up the lexical scoping structure, so its length
is bound by program size.

2.5 Looking up Higher-Order Functions
The analysis described thus far also does not deal well with the case of multiple functions
showing up at a call site – it does not take in account which functions are actually available.
Consider the code example in Figure 6.

We would like a search for rb from the End to conclude {{b}}, the run-time result. In the
process of trying to answer that question, the analysis eventually gets to node n0, querying
for the variable hr. At that point, there are two paths by which to proceed: one to hr=a
and another to hr=b. If the analysis took both paths, the result would be {{a}, {b}}, but
{a} will never arise at runtime.

We address this case as follows. Before entering a function call (in reverse), the analysis
first runs a subordinate lookup for all functions that could show up at the call site under
consideration. The main lookup can then use this result to rule out any function definition
that could have not reached the call site in the current context. In the given example, at
the node n0, before entering node hr=a or hr=b, the analysis performs a subordinate lookup
for f from hr, under the current calling context of rb. In order to align with the rb=n0
entrance node, the only possible answer is fb, ruling out the choice of hr=a and leading to
a final answer of only {b}.

2.6 Recursion and Decidability
The analysis described above naturally analyzes recursive programs: consider the program
in Figure 8 which we code in an extension including proper records. This program defines
a function f which is recursive (by self-passing) and which deeply projects any number of l
fields from a record.
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1 h = fun f -> ( # λf. f {}
2 e = {};
3 hr = f e;
4 n0 = hr;
5 );
6 fa = fun ia -> ( a = {a}; ); # λ_. {a}
7 fb = fun ib -> ( b = {b}; ); # λ_. {b}
8 ra = h fa;
9 n1 = {};

10 rb = h fb; # evaluates to {b}

Start

h

fa fb ra n1 rb End

e hr n0

fra↓
= fa rara↑

= n0 frb↓
= fb rbrb↑

= n0

aiahr↓
= e hrhr↑

= a

bibhr↓
= e hrhr↑

= b

Figure 6 Higher-Order Functions: ANF Figure 7 Higher-Order Functions: Analysis

1 f = fun s -> ( # l-projecting function
2 f0 = fun a -> (
3 n0 = {};
4 r = a ~ {l}
5 ? fun a1 -> ( n2 = {};
6 ss = s s; # self-apply
7 v = a1.l; # project l
8 r1 = ss v; # recurse
9 n3 = r1; )

10 : fun a2 -> ( r2 = a2; );
11 n1 = r;
12 );
13 );
14 ff = f f; # initial self-application
15 x1 = {};
16 x2 = {l=x1};
17 x3 = {l=x2}; # the record {l={l={}}}
18 z = ff x3; # evaluates to {}

r true branch

f0 function

f ff x1 x2

x3

z

Start

End

f0sff↓
= f ffff↑

= f0 az↓
=x3

zz↑
=n1

n0

r

n1

a2r↓
=a

rr↑
=r2

r2

n2 ss v r1 n3

a1r↓
=a

rr↑
=n3sss↓

= s ssss↑
= f0 ar1↓

= v r1r1↑
= n1

Figure 8 Recursion: ANF Figure 9 Recursion: Analysis

The DDPA result appears in Figure 9. Lookup generally proceeds via the same process
as for the previous examples. The only complication with recursion is that some control flow
paths could be cyclic. For instance, the path n0 ; n2 ; v ; n0 is a cycle representing an
arbitrary number of recursive unwrappings, each of which pushes r↓ and r1↓ onto the stack.
The specification of the analysis only requires variable lookup paths to be balanced in calls
and returns, so there are arbitrarily many possible paths. It is clear in this example that the
number of times around the cycle can be bounded without changing the result; as we will
discuss later, it is not known whether lookup over an arbitrary-size call stack is computable.
We address this issue in Section 3 by defining a stack finitization kDDPA which retains the
k most recent contexts in the spirit of kCFA [22].

DDPA is flow-sensitive and context-sensitive. However, it is not path-sensitive; that is,
a variable’s values are not considered in terms of how branching decisions at conditionals
led to a particular program point. Consider for example the values of z which may appear
at the end of the program of Figure 8: the path x3 ; n0 ; r2 ; n1 ; End in Figure 9 is
valid, but this would imply that the value {l={l={}}} is possible for z, but it will not arise
at runtime. Path sensitivity can close this gap, and we sketch such an extension in Section
5.2. Note this example also uses “real” records and not just the label sets of our grammar
of Figure 1; we sketch an extension to full records in Section 5.1.
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ê ::= [ĉ, . . .] abstract expressions
ĉ ::= x̂ = b̂ abstract clauses
b̂ ::= v̂ | x̂ | x̂ x̂ | abs. bodies

x̂ ~ p̂ ? f̂ : f̂
x̂ ::= x abstract variables
v̂ ::= r̂ | f̂ abstract values
p̂ ::= r̂ abstract patterns
f̂ ::= fun x̂ -> ( ê ) abs. functions
r̂ ::= r abstract records

V̂ ::= {v̂, . . .} abstract value sets
â ::= ĉ | abs. annotated clauses

x̂
ĉ↓
= x̂ | x̂ ĉ↑

= x̂ | Start | End
d̂ ::= â << â abstract dependencies
D̂ ::= {d̂, . . .} abs. dependency graphs
X̂ ::= [x̂, . . .] abs. var lookup stacks

Figure 10 Analysis Grammar

3 The Analysis Formally

In this section we formalize the analysis algorithm. The operational semantics is standard
and so we postpone it and the soundness proof to Section 4.

The grammar constructs needed for the analysis appear in Figure 10. The items on the
left are just the hatted versions of the corresponding program syntax. As mentioned above,
we require variables to be bound uniquely so that each program point is defined by exactly
one variable. Furthermore, we assume the expressions we analyze to be closed: a variable is
not used until after the clause in which it is bound.

Edges in a dependency graph D̂ are dependencies d̂, are written â << â′ and mean clause
â happens right before clause â′. New clause annotations ĉ↓ / ĉ↑ are used to mark the entry
and exit points for functions/cases.

I Definition 3.1. We use the following notational sugar for graph dependencies:
We write â1 << â2 << . . . << ân to mean {â1 << â2, . . . , ân−1 << ân}.
We write â′ << {â1, . . . , ân} (resp. {â1, . . . , ân} << â′) to denote {â′ << â1, . . . , â

′ << ân}
(resp. {â1 << â′, . . . , ân << â′}).
We write â <� â′ to mean â << â′ ∈ D̂ for some graph D̂ understood from context.
We define abbreviations Preds(â) = {â′ | â′ <� â} and Succs(â) = {â′ | â <� â′}.

I Definition 3.2. Initial embedding Embed([c1, . . . , cn]) is the graph D̂ given by Start <<
ĉ1 << . . . << ĉn << End, where each ĉi = ci.

This initial graph is just the linear sequence of clauses in the “main program”.

3.1 Lookup
As was described in Section 2, the analysis will look back along << edges in the graph D̂ to
search for definitions of variables it needs. We now define this lookup function.

3.1.1 Context Stacks
The definition of lookup proceeds with respect to a current context stack Ĉ. The context
stack is used to align calls and returns to rule out cases of looking up a variable based on a
non-sensical call stack, and was described in Section 2.3.

The proof of decidability relies upon bounding the depth of the call stack. We first define
a general call stack model for DDPA, and in Section 3.3 below we instantiate the general
model with a fixed k-depth call stack version notated kDDPA; this is a simple bounding
strategy and our model can in principle work with other strategies.



10 Higher-Order Demand-Driven Program Analysis

I Definition 3.3. A context stack model Σ = 〈Ĉ, ε,Push,Pop, IsTop〉 obeys the following:
1. Ĉ is a set. We use Ĉ to range over elements of Ĉ and refer to such Ĉ as context stacks.
2. ε ∈ Ĉ.
3. Push(ĉ, Ĉ) and Pop(Ĉ) are total functions returning stacks.
4. IsTop(ĉ,Push(ĉ, Ĉ)), IsTop(ĉ, ε), and Pop(ε) = ε hold.
5. If IsTop(ĉ, Ĉ) then IsTop(ĉ,Pop(Push(ĉ′, Ĉ))).

The context stack represents the calls of which we are certain; thus, the empty stack
represents “no knowledge” (and not “no stack frames”). Thus, popping from the empty
stack yields the empty stack and any clause is considered to be on top of an empty stack.

3.1.2 Lookup stacks
Lookup also proceeds with respect to a non-locals lookup stack X̂ which is used to remember
non-local variable(s) we are in the process of looking up while searching for the lexically
enclosing context where they were defined. In the general case it is a stack since the function
itself could prove to be a non-local, etc. This stack can be unbounded unlike the context
stack above. Section 2.4 gave motivation and examples for non-local variable lookup.

3.1.3 Defining the lookup function
Lookup finds the value of a variable starting from a given graph node. Given a dependency
graph D̂, we write D̂(x̂, â0, X̂, Ĉ) to denote the lookup of a definition of the variable x̂ in D̂
relative to graph node â0, access stack X̂ and context stack Ĉ. We let D̂(x̂, â0), the top-level
lookup of x̂ from graph node â0, abbreviate D̂(x̂, â0, [], ε). Note that we have oriented the
definition so looking from graph node â0 means we are not looking for the value in that node
itself, but in (all) predecessors of it.

I Definition 3.4. Given dependency graph D̂, D̂(x̂, â0, X̂, Ĉ) is the function returning the
least set of values V̂ satisfying the following conditions:
1. If â1 = (x̂ = v̂), â1 <� â0, and X̂ = [], then v̂ ∈ V̂ .
2. If â1 = (x̂ = f̂), â1 <� â0 andX̂=[x̂1, . . . , x̂n]for n > 0, then D̂(x̂1, â1, [x̂2, . . . , x̂n], Ĉ) ⊆ V̂.
3. If â1 = (x̂ = x̂′) and â1 <� â0, then D̂(x̂′, â1, X̂, Ĉ) ⊆ V̂ .
4a. If â1 = (x̂ ĉ↓

= x̂′), â1 <� â0, ĉ is an application clause, and IsTop(ĉ, Ĉ), then
D̂(x̂′, â1, X̂,Pop(Ĉ)) ⊆ V̂ .

4b. If â1 = (x̂ ĉ↓
= x̂′), â1 <� â0 and ĉ is a conditional clause, then D̂(x̂′, â1, X̂, Ĉ) ⊆ V̂ .

5a. If â1 = (x̂ ĉ↑
= x̂′), â1 <� â0 and ĉ = (x̂r = x̂f x̂v), then D̂(x̂′, â1, X̂,Push(ĉ, Ĉ)) ⊆ V̂ ,

provided fun x̂′′ -> ( ê ) ∈ D̂(x̂f , ĉ, [], Ĉ) and x̂′ = RV(ê).
5b. If â1 = (x̂ ĉ↑

= x̂′), â1 <� â0 and ĉ is a conditional clause, then D̂(x̂′, â1, X̂, Ĉ) ⊆ V̂ .
6. If â1 = (x̂′′ = b), â1 <� â0, and x̂′′ 6= x̂, then D̂(x̂, â1, X̂, Ĉ) ⊆ V̂ .
7a. If â1 = (x̂′′ ĉ↓

= x̂′), â1 <� â0, x̂′′ 6= x̂, ĉ is an application clause, and IsTop(ĉ, Ĉ), then
D̂(x̂f , â1, x̂ || X̂,Pop(Ĉ)) ⊆ V̂ .

7b. If â1 = (x̂′′ ĉ↓
= x̂′), â1<� â0, x̂′′ 6= x̂ and ĉ is a conditional clause,then D̂(x̂, â1, X̂, Ĉ) ⊆ V̂.

(where in the above RV(ê) = x̂ if ê = [ĉ, . . . , x̂ = b̂], i.e. x̂ is the return variable of ê.)

Note this is a well-formed inductive definition by inspection. Each of the clauses above
represents a different case in the reverse search for a variable; we now give clause-by-clause
intuitions. (1) We finally arrived at a definition of the variable x̂ and so it must be in
the result set. (2) The variable x̂ we are searching for has a function value, and unlike
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clause (1) there is a non-empty lookup stack. This means the variable on top of the lookup
stack, x̂1, was a non-local and was pushed on to the non-local stack while searching for the
definition of the function it resides in. That function definition, x̂ = f̂ , has now been found,
and so we may continue to search for x̂1 from the current point in the graph. (3) We have
found a definition of x̂ but it is defined to be another variable x̂′. We transitively switch
to looking for x̂′. (4a) We have reached the start of the function body and the variable
x̂ we are searching for was the formal argument x̂′. So, continue by searching for x̂′ from
the call site. The IsTop clause constrains this stack frame exit to align with the frame we
had last entered (in reverse). (4b) This is the case clause version of the previous. Case
clauses can be viewed as inlined functions aligned by program context so use of Ĉ is not
necessary for alignment. (5a) We have reached a return copy which is assigning our variable
x, so to look for x we need to continue by looking for x′ inside this function. Push ĉ on
the stack since we are now entering the body (in reverse) via that call site. For a more
accurate analysis, the “provided” line additionally requires that we only “walk back” into
function(s) that could have reached this call site; so, we launch a subordinate lookup of x̂f

and constrain â1 accordingly. (6) Here the previous clause is not a match so the search
continues at any predecessor node. Note this will chain past function/match call sites which
did not return the variable x̂ we are looking for. This is sound in a pure functional language;
when we address state in Section 5.3, we will enter such a function to verify an alias to our
variable was not assigned. (7a) The precondition means we have reached the beginning of
a function body and did not find a definition for the variable x̂. In this case, we switch to
searching for the clause that defined the function body we are exiting, which is x̂f , and push
x̂ on the non-locals stack. Once the defining point of x̂f is found, x̂ will be popped from
the non-locals stack and we will resume searching for it. The IsTop clause constrains the
stack frame being exited to align with the frame we had last entered (in reverse). (7b) This
is the case clause variation of the previous; as with (4b) above, the stack is not needed for
conditional alignment – there is syntactically only one entry and exit.

3.2 Abstract Evaluation
We are now ready to present the single-step abstract evaluation relation on dependency
graphs. Like [28, 10] etc, it is a graph-based notion of evaluation, but where function bodies
are never copied – a single body is shared.

3.2.1 Active nodes
In order to preserve standard evaluation order we define the notion of an active node, Active
– only nodes with all previous nodes already executed can fire. This serves a purpose similar
to an evaluation context in operational semantics [4].

I Definition 3.5. Active(â′, D̂) iff path Start << â1 << . . . << ân << â′ appears in D̂ such
that no âi is of one of the forms x̂ = x̂′ x̂′′ or x̂ = x̂′ ~ p̂ ? f̂ : f̂ ′. We write Active(â′) when D̂
is understood from context.

3.2.2 Wiring
Recall from Section 2 how function application required the concrete function body to be
“wired” directly in to the call site node, and how additional nodes were added to copy in
the argument and out the result. The following definition accomplishes this.
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Application
ĉ = (x̂1 = x̂2 x̂3) Active(ĉ, D̂) f̂ ∈ D̂(x̂2, ĉ) v̂ ∈ D̂(x̂3, ĉ)

D̂ −̂→1 D̂ ∪Wire(ĉ, f̂, x̂3, x̂1)

Record Conditional True
ĉ = (x̂1 = x̂2 ~ r̂ ? f̂1 : f̂2) Active(ĉ, D̂) r̂′ ∈ D̂(x̂2, ĉ) r̂ ⊆ r̂′

D̂ −̂→1 D̂ ∪Wire(ĉ, f̂1, x̂2, x̂1)

Record Conditional False
ĉ = (x̂1 = x̂2 ~ r̂ ? f̂1 : f̂2) Active(ĉ, D̂) v̂ ∈ D̂(x̂2, ĉ) v̂ of form r̂′ only if r̂ * r̂′

D̂ −̂→1 D̂ ∪Wire(ĉ, f̂2, x̂2, x̂1)

Figure 11 Abstract Evaluation Rules

I Definition 3.6. Let Wire(ĉ′, fun x̂0 -> ( [ĉ1, . . . , ĉn] ) , x̂1, x̂2) =
Preds(ĉ′) << (x̂0

ĉ′↓
= x̂1) << ĉ1 << . . . << ĉn << (x̂2

ĉ′↑
= RV([ĉn])) << Succs(ĉ′).

ĉ′ here is the call site, and ĉ1 << . . . << ĉn is the wiring of the function body. The
Preds/Succs functions (given above in Definition 3.1) reflect how we simply wire to the
existing predecessor(s) and successor(s).

Next, we define the abstract small-step relation −̂→1 on graphs, see Figure 11.

I Definition 3.7. We define the small step relation −̂→1 to hold if a proof exists in the
system in Figure 11. We write D̂0 −̂→∗ D̂n to denote D̂0 −̂→1 D̂1 −̂→1 . . . −̂→1 D̂n.

The evaluation rules are straightforward after the above preliminaries. For application,
if ĉ is a call site that is an active redex, lookup of the function variable x̂2 returns function
body f̂ and some value v̂ can be looked up at the argument position, we may wire in f̂ ’s
body to this call site. Note that v̂ is not added to the graph, it is only observed here to
constrain evaluation order to be call-by-value. The case clause rules are similar.

3.3 Decidability
We begin with the computability of the variable lookup operation, the source of all of the
computational complexity of the analysis.

I Lemma 3.8. For any context stack model Σ with a finite Ĉ and computable Push/Pop/IsTop
operations, D̂(x̂0, â) is a computable function.

Proof. This proof proceeds by reduction to the problem of reachability in a push-down
system (PDS) accepting by empty stack. A push-down system is a push-down automaton
(PDA) with an empty input alphabet; PDA/PDS reachability is polynomial-time [3, 1].

We define a PDS in which each state is a pair between a program point and a context
stack (of which there are finitely many); the initial state is the pair â × ε. The stack of
the PDS corresponds roughly to the lookup stack and the current variable of the lookup
operation: each variable of the source program is a member of the stack alphabet and the
initial PDS stack is then [x̂0] for computing D̂(x̂0, â). Each clause in Definition 3.4 (except
clause 5a, which is discussed below) directly corresponds to a collection of transitions in the
PDS. For instance, suppose â1 = (x̂′ = v̂′) and â1 << â0; then, by clauses 1 and 2, each node
â0 × Ĉ in the PDS transitions to â1 × Ĉ by popping x̂′ (and pushing no symbols).



Z. Palmer and S. F. Smith 13

Clause 5a of Definition 3.4 requires special handling due to the additional “provided”
constraint which must analyze a subordinate invocation of the lookup function. To perform
this subordinate lookup in a way that affects the PDS transitions, we include the program’s
values and the PDS’s own states in the PDS stack grammar. A subordinate lookup is started
by pushing the current state and the lookup variable onto the stack. When a value is found,
it is pushed onto the stack. Finally, every PDS state can transition to any target PDS state
by popping the target PDS state from the stack. With some encoded stack reordering, the
subordinate lookup returns us to the state in which it started with the resulting value on
the top of the stack.

Given the above, it suffices to show that the values given by D̂(x̂0, â) are exactly those
of the nodes reachable with an empty stack in the PDS. Let V̂ = D̂(x̂0, â) and let V̂ ′ be the
values in the PDS’s reachable nodes. For each v̂ ∈ V̂ , v̂ ∈ V̂ ′ follows directly by induction
on the size of the proof of v̂ ∈ V̂ , constructing a path through the PDS at each step. For
each v̂ ∈ V̂ ′, v̂ ∈ V̂ follows directly by induction on the length of any path in the PDS which
reaches the node containing v̂. J

3.3.1 Some simple context stack models
A natural family of context stacks is one where stacks are the k latest frames; to also admit
the unbounded case we let k range over Nat ∪ ω for ω the first limit ordinal. We let
[ĉ′, ĉ1, . . . , ĉn]dk denote [ĉ′, ĉ1, . . . , ĉm] for m = min(k, n).

I Definition 3.9. Fixing k, we define context stack model Σk as having stack set Ĉ be the
set of all lists of ĉ occurring in the program up to length k, and with the stack operations
as follows:

Push(ĉ′, [ĉ1, . . . , ĉn]) = [ĉ′, ĉ1, . . . , ĉn]dk
Pop([ĉ1, . . . , ĉn]) = [ĉ2, . . . , ĉn] if n > 0; Pop([]) = [].
IsTop(ĉ′, [ĉ1, . . . , ĉn]) is true if ĉ′ = ĉ1 or if n = 0; it is false otherwise.

The term “kDDPA” we use to refer to DDPA with the context stack model Σk.

I Lemma 3.10. Fixing Σ to some Σk for fixed constant k, D̂(x̂, â0) is computable in poly-
nomial time in the number of nodes in graph D̂.

Proof. Let g be the number of nodes in graph D̂. By inspection, the PDS built in the
proof of Lemma 3.8 will have a number of states which is of order the product of g and
the number of context stacks in Σk. For Σk, the number of stacks is of order O(gk). Since
PDS reachability is computable polynomially in the number of nodes in the PDS, the result
immediately follows. J

Note that if k was not fixed and was in fact increasing with the size of the program, it would
become exponential.

I Lemma 3.11. Variable lookup is monotonic; that is, for any x̂ and â, if D̂1 ⊆ D̂2 then
D̂1(x̂, â) ⊆ D̂2(x̂, â).

Proof. Variable lookup is encodable as a PDS reachability problem (see Lemma 3.8) and
the PDS grows monotonically with the graph D̂. PDS reachability grows monotonically
with the PDS. Therefore, the set of results from variable lookup grows monotonically with
the graph D̂. J

I Lemma 3.12. The evaluation relation −̂→∗ is confluent.
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Proof. By inspection of Figure 11, the single-step rules only add to graph D̂. The Active
relation is also clearly monotone: any enabled redex is never disabled. Confluence is trivial
from these two facts. J

I Lemma 3.13. The evaluation relation −̂→∗ is terminating, i.e. for any D̂0 there exists a
D̂n such that D̂0 −̂→∗ D̂n and if D̂n −̂→∗ D̂n+1, D̂n = D̂n+1. Furthermore, n is polynomial
in the size of the initial program.

Proof. By inspection of Figure 11, we have for any step D̂′ −̂→1 D̂′′ that D̂′ ⊆ D̂′′. The
only new nodes that can be added to D̂ in the course of evaluation are the entry/exit nodes
x̂′

ĉ↓
= x̂ / x̂ ĉ↑

= x̂′, and only one of each of those nodes can exist for each call site (or case
clause) / function body pair in the source program: ĉ is the call site, and x̂ / x̂′ are variables
in that call site and function body source, respectively. So, the number of nodes that can be
added is always less then two times the square of the size of the original program. A similar
argument holds for added edges. J

We let D̂ ↓ D̂′ abbreviate D̂ −̂→∗ D̂′ such that D̂′ −̂→1 D̂′. We write e ↓ D̂ to abbreviate
Embed(e) ↓ D̂; this means the analysis of e returns graph D̂. Given the pieces assembled
above, it is now easy to prove that the analysis is polynomial-time.

I Theorem 3.14. Fixing Σ to be some Σk and fixing some expression e, the analysis result
D̂, where e ↓ D̂, is computable in time polynomial in the size of e.

Proof. By Lemma 3.10, each lookup operation takes poly-time. The evaluation rules are
trivial computations besides the required lookups and, by Lemma 3.13, there are polynomi-
ally many evaluation steps before termination. Thus e ↓ D̂ is computable in poly-time. J

4 Soundness

We now establish soundness of the analysis defined in the previous section. In forward
program analyses the alignment between the operational semantics and analysis is fairly
close and so soundness is not particularly difficult, but here there is a larger gap. We
cross this river by throwing a stone in the middle: along with defining a mostly-standard
operational semantics we build a graph-based operational semantics which creates a concrete
call graph of the program run that is more directly aligned with the analysis. Soundness is
then shown by proving the standard and graph-based operational semantics equivalent and
by showing the analysis sound with respect to the graph-based operational semantics.

In this section we first present the standard operational semantics, then the graph-
based operational semantics and its equivalence to the standard one, and finally we prove
soundness.

4.1 Standard Operational Semantics
The operational semantics appears in Figure 12, as a small step relation e −→1 e′. In many
ways the operational semantics is standard, but due to our use of an A-normal form it is
neither precisely substitution-based nor environment-based. It is more substitution-based
in spirit since function bodies are inlined. Although variable lookup is via an environment,
all names in that environment are deterministically freshened and so no variable shadowing
ever arises; so, although variable lookup might appear to be dynamically scoped, the absence
of shadowing ensures static scoping. This model of evaluation is designed to integrate well
with the graph-based semantics of the next sub-section.
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Lookup
x2 = v ∈ E

E ||[x1 =x2] || e −→1 E ||[x1 = v] || e

Application
x2 = f ∈ E x3 = v ∈ E f ′ = fr(x1, f)
E ||[x1 =x2 x3] || e −→1 E ||Wire(f ′, v, x1) || e

Record Conditional True
x2 = r′ ∈ E r ⊆ r′ f ′1 = fr(x1, f1)

E ||[x1 =x2 ~ r ? f1 : f2] || e −→1 E ||Wire(f ′1, r′, x1) || e

Record Conditional False
x2 = v ∈ E v of the form r′ only if r * r′ f ′2 = fr(x1, f2)

E ||[x1 =x2 ~ r ? f1 : f2] || e −→1 E ||Wire(f ′2, r′, x1) || e

Figure 12 Small-Step Evaluation

We must freshen variables as they are introduced to the expression to preserve the in-
variant that each variable is uniquely defined and no shadowing occurs. We give a somewhat
nonstandard definition of freshening which is deterministic, so as to make alignments easier.
We take fr(x′, x) to yield another variable x′′; we require that fr(−,−) is injective and
that its codomain does not include variables appearing in the initial program. Here, x is
the variable to be freshened and x′ is the point in the program at which it is freshened. For
informal illustration, one concrete freshening function could be fr(x′, x) = xx′ . We overload
fr(x′, v) to indicate the freshening of all variables bound in v. The rules for the small step
relation are given in Figure 12. Here, wiring is the process of inlining a function body; for
this we use the following auxiliary function.

I Definition 4.1. Let Wire(funx -> ( e ) , v, x′) = [x = v] || e ||[x′ = RV(e)].

I Definition 4.2. We define the small step relation −→1 to hold if a proof exists in the
system in Figure 12. We write e0 −→∗ en to denote e0 −→1 e1 −→1 . . . −→1 en.

I Definition 4.3. If, for some expression e not of the form E, there exists no e′ such that
e −→1 e′, then we say that e is stuck. For any e′′ such that e′′ −→∗ e, we say that e′′
becomes stuck.

4.2 Graph-Based Operational Semantics
We now define the graph-based operational semantics, and prove it to be equivalent to the
standard operational semantics just defined.

The graph-based operational semantics is structurally very similar to the analysis. The
primary difference is function bodies here are copied to make new graph structure (as op-
posed to the analysis, in which only one copy of each function body exists in the graph).
Otherwise, the graph-based operational semantics and the analysis are nearly identical,
including the use of context stacks, lookup operations, and so on. Since many of these
definitions are so similar, we will be much more brief here; we assume that the reader has
absorbed the analysis definitions.

The graph-based operational semantics differs from the standard operational semantics
of Section 4.1 in the following dimensions:
1. the total ordering of the list becomes a partial ordering here;
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V ::= {v, . . .} value sets

a ::= c | x c↓
= x | x c↑

= x | annotated clauses
Start | End

d ::= a << a dependencies

D ::= {d, . . .} dependency graphs
X ::= [x, . . .] lookup stacks
C ::= [c, . . .] context stacks

Figure 13 Graph-Based Evaluation Grammar

2. alias clauses x =x′ are resolved lazily rather than eagerly, and
3. the graph is monotonically increasing; that is, in each place that the standard semantics

replaces a call site, the graph-based semantics builds a path around the call site.

The new grammar constructs needed for the graph-based operational semantics appear
in Figure 13.

We write Embed(e) to denote the initial embedding of an expression e into a dependency
graph D. This definition is identical to analysis Definition 3.2 with hats removed from the
metavariables. Similarly, we also will use the notational sugar of Notation 3.1 in perfect
analogy.

4.2.1 Variable value lookup
The definition of lookup proceeds with respect to the context stack C which is directly
aligned with the corresponding stack Ĉ of the analysis. This stack is not necessary in the
operational semantics (as copying of function bodies removes all of the ambiguity that was
in the analysis); we retain it for alignment. Unlike the analysis, we need not bound C; we
therefore fix the context stack model of the operational semantics to the equivalent of the
unbounded model Σω in this grammar.

Lookup finds the value of a variable starting from a given graph node; this definition is
a near-exact parallel of Definition 3.4 and the reader is referred there for intuitions. We let
D(x, a0) abbreviate D(x, a0, [], []).

I Definition 4.4. Given graph D, D(x, a0, X,C) is the function returning the least set of
values V satisfying the following conditions:
1. If a1 = (x = v), a1 <� a0, and X = [], then v ∈ V .
2. If a1 = (x = f), a1 <� a0, and X = [x1, . . . , xn] for n > 0, then D(x1, a1, [x2, . . . , xn], C) ⊆

V .
3. If a1 = (x =x′) and a1 <� a0, then D(x′, a1, X,C) ⊆ V .
4a. If a1 = (x c↓

= x′), a1 <� a0, c is an application clause, and IsTop(c, C), then
D(x′, a1, X,Pop(C)) ⊆ V .

4b. If a1 = (x c↓
= x′), a1 <� a0 and c is a conditional clause, then D(x′, a1, X,C) ⊆ V .

5a. If a1 = (x c↑
= x′), a1 <� a0 and c = (xr =xf xv), then D(x′, a1, X,Push(c, C)) ⊆ V ,

provided fun x′′ -> ( e ) ∈ D(xf , c, [], C) and x′ = RV(e).
5b. If a1 = (x c↑

= x′), a1 <� a0 and c is a conditional clause, then D(x′, a1, X,C) ⊆ V .
6. If a1 = (x′′ = b), a1 <� a0, and x′′ 6= x, then D(x, a1, X,C) ⊆ V .
7a. If a1 = (x′′ c↓

= x′), a1 <� a0, x′′ 6= x, c is an application clause, and IsTop(c, C), then
D(xf , a1, x ||X,Pop(C)) ⊆ V .

7b. If a1 = (x′′ c↓
= x′), a1 <� a0, x′′ 6= x and c is a conditional clause, then D(x, a1, X,C) ⊆

V .
where RV(e) = x if e = [c, . . . , x = b], i.e. x is the return variable of e.



Z. Palmer and S. F. Smith 17

Application
c = (x1 =x2 x3) Active(c,D) f ∈ D(x2, c) v ∈ D(x3, c) f ′ = fr(x1, f)

D −→1 D ∪Wire(c, f ′, x3, x1)

Record Conditional True
c = (x1 =x2 ~ r ? f1 : f2) Active(c,D) r′ ∈ D(x2, c) r ⊆ r′ f ′1 = fr(x1, f1)

D −→1 D ∪Wire(c, f ′1, x2, x1)

Record Conditional False
c = (x1 =x2 ~ r ? f1 : f2)

Active(c,D) v ∈ D(x2, c) v of form r′ only if r * r′ f ′2 = fr(x1, f2)
D −→1 D ∪Wire(c, f ′2, x2, x1)

Figure 14 Graph Evaluation Rules

4.2.2 The evaluation relation
The definition of an active node, Active, exactly parallels the analysis version of Definition
3.5, simply remove the hats from the metavariables. We write Active(a′) when D is un-
derstood from context. Wiring is also defined in perfect analogy with Definition 3.6 so is
omitted here. The small-step relation −→1 on graphs is defined in Figure 14. (Note we
overload symbol −→1 for the list and graph operational semantics, it is clear from context
which relation is intended.)

I Definition 4.5. We define the small step relation −→1 to hold if a proof exists in the
system in Figure 14. We write D0 −→∗ Dn to denote D0 −→1 D1 −→1 . . . −→1 Dn.

We also define a notion of “stuckness” for graphs in parallel with the standard operational
semantics.

These rules are very similar to the analysis transition rules in Section 3.2; we refer the
reader to the descriptions there. Here we comment on a few points unique to the operational
semantics not found in the analysis.

We are precise about freshening in these rules. Because the fr(x,−) function is deter-
ministically freshening based on the call site x, it will always generate the same result for the
same call site and value. This means that e.g. each use of the Application rule is idempotent
and the graph-based operational semantics is deterministic.

Observe how Figure 14 is defining a “reduction” relation which is in fact monotonically
increasing, an unusual property compared to standard operational semantics.

4.3 Proving Equivalence of Operational Semantics
The overall proof of soundness relies upon showing that these two systems of operational
semantics are equivalent. To demonstrate this, we must show several properties of the
graph-based operational semantics which are less obvious than in the standard operational
semantics due to the structure of the graph. As stated above, the real differences between
these systems are (1) the partial ordering of clauses, (2) lazy resolution of alias clauses, and
(3) that the graph grows monotonically instead of replacing applications and conditionals.
Nonetheless, the graph representation “runs” in the same way that expressions do: there is
a unique clause which is evaluated next, it may cause the introduction of more clauses, and
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complex clauses (applications and conditionals) are handled by wiring and evaluating the
appropriate function body.

We use this reasoning to establish a bisimulation ∼= between an expression and its em-
bedding and then show that this bisimulation is preserved as evaluation proceeds. The
bisimulation and corresponding preservation proof are tedious and intuitive, so we exclude
them for reasons of space. The key equivalence lemma is stated as follows.

I Lemma 4.6 (Equivalence of standard and graph-based semantics). If e ∼= D, then
1. If e −→1 e′ then D −→∗ D′ such that e′ ∼= D′.
2. If D −→1 D′ then e −→∗ e′ such that e′ ∼= D′.

This equivalence is one-to-many to accommodate the differences between the two oper-
ational semantics relations. The graph opsems lazily resolves aliases, meaning that several
steps of the standard opsems may be required to propagate a value that the graph would
find via lookup (Definition 4.4). Likewise, a single lookup step of the standard opsems may
require no changes to the graph to maintain bisimulation.

4.4 Soundness of the Analysis

We now show that the analysis simulates the graph-based operational semantics, D 4 D̂.
This proof is easy, as the operational semantics graph can be projected on to an analysis
graph by inverting the variable freshening function. We formally define this inversion as
follows:

I Definition 4.7. The origin of a variable x is x itself if x is not in the codomain of
fr(−,−). Otherwise, let fr(x′′, x′) = x (for unique x′′ and x′, as fr(−,−) is injective).
Then the origin of x is the origin of x′.

We next define the simulation between evaluation graphs and analysis graphs. The graph
operational semantics was designed explicitly to make this simulation direct.

IDefinition 4.8 (Simulation relation). Let f be the natural graph-and-clause homomorphism
from an evaluation graph D to an analysis graph D̂ which maps variables to their origins.
We say that D is simulated by D̂ (written D 4 D̂) iff f(D) = D̂.

I Lemma 4.9 (Soundness). If D 4 D̂ and D −→1 D′, then D̂ −̂→1 D̂′ with D′ 4 D̂′.

Proof. By case analysis on the rule used to prove D −→1 D′. In particular, the premises
of a corresponding rule D̂ −̂→1 D̂′ can be proven using the premises of D −→1 D′ and the
simulation. J

5 Extensions

In this section, we outline three extensions: full records, path sensitivity, and mutable state.
Our goal here is to show there is no fundamental limitation to the model given in the
previous sections: DDPA can in principle be extended to the full feature set of a realistic
programming language. Here for simplicity of presentation we take each feature one at a
time; in a language where they are all simultaneously added there are additional feature
interaction cases that must be addressed.
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5.1 Records
The “records” presented thus far have no projection operation since there are no values
to project; here we outline an extension to records with projection. Consider a lookup of
variable x̂: if x̂ is defined as x̂ = x̂′.`, then this necessitates a record projection; x̂′ itself
may also necessitate further projection, and so on. In the general case, there could be a
continuation stack of record projections to be performed. This is similar to the non-local
lookup stack of our analysis, and not coincidentally: non-locals may be encoded in terms of
records via closure conversion.

In light of this connection, we can extend lookup to support full records using a single
stack X̂ (now more appropriately thought of as a continuation stack) to handle both data
destructors as well as non-local variables. We define the grammar of lookup actions to
include variables x̂ and projections of the form .`; we use k̂ to range over these lookup
actions and extend X̂ to all lists of k̂. We then augment Definition 3.4 with the following
new clauses:

I Definition 5.1. We extend Definition 3.4 to full records by adding the following clauses.
9. If â1 = (x̂ = {`1 = x̂′, . . . }), â1 <� â0, X̂ = [.`1, k̂2, . . . , k̂n],

then D̂(x̂′, â1, [k̂2, . . . , k̂n], Ĉ) ⊆ V̂ .
10. If â1 = (x̂ = x̂′.`), â1 <� â0, and X̂ = [k̂1, . . . , k̂n], then D̂(x̂′, â1, [.`, k̂1, . . . , k̂n], Ĉ) ⊆ V̂ .

We also extend each of the clauses of Definition 3.4 to address lookup actions generally
(rather than requiring lookup stacks to consist only of variables). Clause 10 above introduces
the projection action .` when we discover that we will need to project from the variable we
find; clause 9 eliminates this projection action when the corresponding record value is found.
Note that record pattern matching would also be desirable syntax, and would be possible
by extending clause 8 of the original lookup definition; for brevity, we skip that here.

5.2 Filtering for path sensitivity
An additional level of expressiveness we desire from records is the ability to filter out paths
that cannot have been taken. Consider, for instance, the recursive example in Figure 8. This
example appears to be unsafe based on the analysis result: on line 7, we project l from the
function’s argument. The condition on line 4 makes this safe – only records with l labels
may reach line 7 – but the analysis is unaware of this and so erroneously believes that the
record {} may reach that point.

We address this incompleteness using filters: sets of patterns which the value must match
in order to be considered relevant. In the above example, for instance, looking up v from
line 7 leads us to look up a from line 4. Because our path moved backwards through the
first clause of a conditional, however, we know that we may ignore any values we discover
which do not match the {l} pattern. This is key to enabling path sensitivity and preventing
spurious errors; with filters, DDPA correctly identifies the recursion example as safe.

We can formalize path sensitivity in DDPA by keeping track of sets of accumulated
patterns in our lookup function, and disallowing matches not respecting the patterns they
passed through. We use Π+ and Π− to range over sets of patterns which a discovered
value must or must not match, respectively. Formally, path-sensitive DDPA is possible by
modifying the lookup function as follows:

I Definition 5.2. We modify Definition 3.4 by adding to the lookup function two parameters
of the forms Π+ and Π−. Each existing clause of that definition passes these arguments
unchanged. We additionally replace clauses 1 and 4b of Definition 3.4 with:
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1. If â1 = (x̂ = v̂), â1 <� â0, X̂ = [], and v̂ matches all patterns in Π+ and no patterns in
Π−, then v̂ ∈ V̂ .

4b1. If â1 = (x̂′ ĉ↓
= x̂1), â1 <� â0, ĉ = (x̂2 = x̂1 ~ p̂ ? f̂1 : f̂2), f̂1 = fun x̂′ -> ( ê ), and

x̂ ∈ {x̂1, x̂
′}, then D̂(x̂′, â1, X̂, Ĉ,Π+ ∪ {p̂},Π−) ⊆ V̂ .

4b2. If â1 = (x̂′ ĉ↓
= x̂1), â1 <� â0, ĉ = (x̂2 = x̂1 ~ p̂ ? f̂1 : f̂2), f̂2 = fun x̂′ -> ( ê ), and

x̂ ∈ {x̂1, x̂
′}, then D̂(x̂′, â1, X̂, Ĉ,Π+,Π− ∪ {p̂}) ⊆ V̂ .

4b3. If â1 = (x̂′ ĉ↓
= x̂1), â1 <� â0, ĉ = (x̂2 = x̂1 ~ p̂ ? f̂1 : f̂2), and x̂ /∈ {x̂1, x̂

′}, then
D̂(x̂′, â1, X̂, Ĉ,Π+,Π−) ⊆ V̂ .

We then redefine D̂(x̂, â) to mean D̂(x̂, â, [], [], ∅, ∅).

Revised clause 1 shows how the filters are used: any value not matching the positive
filter is filtered out, and oppositely for the negative filter. The original clause 4 was the case
where we reached the start of a function and search variable x̂ was passed as the parameter;
in that case, the clause continued by searching for the argument at the call site. The original
clause 4b was the case where we reached the start of a case clause and search variable x̂ was
passed as the parameter; in that case, the clause continued by searching for the argument
at the call site. Here, we have separated that rule into two cases. In 4b1, the function was
the first branch of a conditional, so we know that any discovered value is only relevant if it
matches the conditional’s pattern. Thus, we add the pattern to the filter set to constrain it
so. Clause 4b2 is the opposite case.

5.3 State
Lookup in the presence of state may also be performed using only a call graph. We consider
here a variation of the presentation language which includes OCaml-style references with
ref x / !x / x <- x syntax. There are several subtle issues that must be addressed. First,
a simple linear search may not always give the correct answer; a cell containing a cell could
have the inner cell mutated after the outer cell, which is out of order compared to the control
flow sequence. So, we must define a branching search for references. Second, aliases may
arise in the form of different variable names referring to the same cell. Lookup must not
overlook aliases; otherwise, the lookup will be inaccurate and incomplete. So, explicit alias
testing is needed to verify proper values are not being passed by.

Not only may DDPA be adapted to address state, but the alias analysis itself is not
difficult using the same lookup routine. The following definition revises the lookup operation
for state.

I Definition 5.3. Definition 3.4 is extended to a stateful language by adding the following
clauses.
9. If â1 = (x̂ = ! x̂′), â1 <� â0, then letting V̂ ′ = D̂(x̂′, â1, [], Ĉ), for each ref x̂′′ ∈ V̂ ′,

D̂(x̂′′, â1, X̂, Ĉ) ⊆ V̂ .
10a. If â1 = (x̂′1 = x̂′2 <- x̂′3), â1 <� â0, and MayAlias(x̂, x̂′2, â1, Ĉ), then ref x̂′3 ∈ V̂ .
10b. If â1 = (x̂′1 = x̂′2 <- x̂′3), â1 <� â0, and MayNotAlias(x̂, x̂′2, â1, Ĉ), then D̂(x̂, â1, X̂, Ĉ) ⊆

V̂ .
In these clauses, the terms MayAlias and MayNotAlias refer to the following predicates:

MayAlias(x̂1, x̂2, â, Ĉ) holds iff V̂ ′ = D̂(x̂1, â, [], Ĉ), V̂ ′′ = D̂(x̂2, â, [], Ĉ), and ∃ref x̂′′ ∈
(V̂ ′ ∩ V̂ ′′)
MayNotAlias(x̂1, x̂2, â, Ĉ) holds iff V̂ ′ = D̂(x̂1, â, [], Ĉ), V̂ ′′ = D̂(x̂2, â, [], Ĉ), and V̂ ′ 6=
V̂ ′′ or V̂ ′ 6= {ref x̂′} or V̂ ′′ 6= {ref x̂′′}
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Clause 9 handles dereferencing. It finds the ref values which may be in x̂′ at this point
in the program; it then returns to this point to find all of the values that those variables may
contain. This new task is necessary since we want the value at the point the ! happened.

Clauses 10a and 10b address cell updates. Clause 10a determines if the updated cell in x̂′2
may alias the cell we are looking up; if this is the case, the value assigned by the cell update
may be our answer. Clause 10b addresses the case in which the updated cell may be different
from the target of our lookup. This happens when the lookups of each variable yield different
results or when they result in multiple cells – even if the sets of cells are equal, the orders
in which the program modifies the cells might differ, so we take the conservative approach
and call them different. MayAlias and MayNotAlias can be simultaneously satisfiable; when
that happens, the analysis explores both clauses 10a and 10b.

Along with the above modifications, the existing clauses 5 and 6 need to be extended to
support state. As written, clause 6 allows us to skip by call sites and pattern matches whose
output do not match the variable for which we are searching. This is sound in a pure system,
but in the presence of side-effects we must explore these clauses to ensure that they did not
affect the cell we are attempting to dereference. We thus modify clause 6 by prohibiting b̂
from being a call site or pattern match. We require a new clause similar to clause 5 but for
the case in which the search variable does not match the output variable. In that case, we
proceed into the body of the function but in a “side-effect only” mode: we skip by every
clause which is not a cell assignment or does not lead to one. We leave side-effect only mode
once we leave the beginning of the function which initiated it.

6 Implementation

We have developed a proof-of-concept implementation of DDPA [17]; a copy of the imple-
mentation is archived as an artifact with this paper. This implementation analyzes the
presentation language given in Section 2 extended to the proper record semantics described
in Section 5. The implementation correctly generates all control-flow graphs and value
lookup results given in the overview.

Although the proof-of-concept implementation demonstrates the behavior of DDPA, it
is far from efficient and we are presently developing a performant implementation. Our im-
plementation follows the lookup algorithm outlined in the proof of Lemma 3.8: we construct
a push-down automaton modeling a non-deterministic backwards walk of the DDPA graph
and then analyze this PDA for states reachable with an empty stack. There is a wealth of
literature on PDA reachability algorithms [3, 1] which we can utilize to gain efficiency; in
particular, [3] includes an algorithm for eliminating spurious nodes and edges which we have
already integrated into the proof-of-concept implementation due to its simplicity.

7 Related Work

7.1 CFL-reachability
The core idea of our analysis can be viewed as extending first-order demand-driven CFL-
reachability analyses [6] to the higher-order case: the analysis is centered around using a
CFG, calls and returns are aligned, and lookup is computed lazily. Two issues make the
higher-order analysis challenging: the CFG needs to be computed on-the-fly due to the
presence of higher-order functions, and non-local variable lookup is subtle. The aforecited
demand-driven analyses delve further into the trade-off between active propagation and
demand-driven lookup, and this is something we plan to explore in future work. There
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are many other first-order program analyses with a demand-driven component; several use
Datalog-style specification formats [19] including [29, 23].

Higher-order program analyses have been built which also incorporate call-return align-
ment [26, 8], but these higher-order analyses are not demand-driven and have a different
algorithmic basis. We now contrast DDPA with these and other higher-order program anal-
yses.

7.2 Higher-order program analysis
As mentioned in the Introduction, higher-order program analyses today are generally con-
structed by abstract interpretation [2], a finitization process on the operational seman-
tics. We refer to these analyses as forward analyses to contrast with the backward-looking,
demand-driven approach of DDPA.

In the most basic forward analysis, a new state is created for each new program point/s-
tore/environment, and the number of states grows too rapidly to be practical. Modifications
including store widening, abstract garbage collection, polyvariance, and call-return align-
ment are thus added as means to obtain a better trade-off of expressiveness vs size of state
space. DDPA in some sense comes from the opposite direction: the global state information
is a graph isomorphic to the CFG which is polynomial in size and will be smaller than the
state space of any forward analysis. However, variable lookup is of high complexity and we
need to “spend” more space to make it more efficient.

We will expand by considering the different dimensions of analysis expressiveness in turn.
We begin with flow-sensitivity, meaning the analysis is sensitive to the order of assignment
operations. Forward analyses are initially flow-sensitive since each abstract state has its own
store, but the standard store widening optimization unifies these stores and eliminates flow-
sensitivity. One alternative is abstract garbage collection [14, 8], which requires a per-node
store (since, if the store were global, there would be no garbage). Abstract garbage preserves
flow-sensitivity while reducing abstract states caused by local data, but state explosions still
occur with persistent data. DDPA is flow-sensitive and garbage-free by construction: it
is flow-sensitive because variables are looked up with respect to a program point, and it
is garbage-free vacuously (as no stores are ever created). In a practical implementation of
DDPA, the caching of values will bring it closer to an abstract garbage collection approach,
but abstract garbage collection is bottom-up as opposed to top-down: rather than deleting
items proved unneeded, items are added only if they may be needed in the future.

Another important dimension of expressiveness is polyvariance: whether functions can
take on different forms in different contexts of use. The classic higher-order polyvariance
model is kCFA [22], which copies contours in analogy to forall-elimination in a polymorphic
type system. But there are many routes to behavior that appears as polyvariance. With-
out store widening, flow-sensitivity alone can distinguish calling context and provide some
polyvariance. Additionally, call-return alignment can provide different contexts for differ-
ent function calls. The example we gave in Figure 3, for instance, needs only call-return
alignment to give polyvariant behavior in DDPA.

Call-return alignment was first explored in a higher-order context in subtype constraint
theories [18]; this work also uses the demand-driven nature of CFL-reachability to optimize
lookup. However, it is flow-insensitive, uses let-polymorphism only, and does not align non-
local variables, and so is not in the same category of analysis. In the context of abstract
interpretation, the first such algorithm was CFA2 [26], which was subsequently extended
and refined in kPDCFA [8]. We compare primarily with the more recent kPDCFA here.

An important observation of [8] regarding kPDCFA was that, in the presence of abstract
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garbage collection, it is not possible to have an arbitrary stack for aligning calls and returns.
That paper proposes a regular expression modeling of call stacks to make the analysis
computable. We have a similar problem: our analysis finitizes one of its two stacks to
conform to a PDA encoding. We define the family of analyses kDDPA (Definition 3.3)
where k is the maximum stack depth for call-return alignments. Our finitization here is
simpler than the regular expression approach of kPDCFA; the regular expression approach
may work in our context and is a topic for future investigation.

DDPA achieves greater polyvariance solely from call-return alignment when compared
with kPDCFA or CFA2. In kPDCFA, stack alignment can be used to provide a different
context for function parameters, but non-local variables get no such advantage since they
are not in the local stack context. In DDPA, the stack context is still applicable to non-
local variable lookup as shown in Figure 5. In fact, we conjecture that, for a program with a
maximal lexical nesting depth of c, the analysis (k+c)DDPA will be at least as expressive as
kCFA (and should be more expressive due to alignment of calls and returns). The additional
c levels are needed because, in the worst case, each extra lexical level requires the lookup
of a non-local variable and thus a position on the lookup stack. This way, DDPA achieves
with only stack alignment what forward analyses need both stack alignment and polyvariant
contours to accomplish.

The run-time complexity of kDDPA can also be framed in terms of the expressiveness
of non-local variable polyvariance. It is shown in [15] how non-locals are the (only) source
of exponential behavior in kCFA [24]; in particular, if lexical nesting were assumed to be of
some constant depth not tied to the size of the program, kCFA would not be exponential.
The complexity of kDDPA comes from the other direction: for any fixed k, the algorithm
kDDPA is polynomial; but k needs to be increased by one for each level of stack alignment
we wish to achieve in non-local lookup. For pathologically nested programs, k must be on
the order of the size of the program for kDDPA to avoid imprecision due to non-local lookup.
Because kDDPA’s complexity is exponential in k, such a non-local-precise kDDPA would
be exponentially complex in that pathological case.

Related to this are provably polynomial context-sensitive analyses which, like kDDPA,
restrict context-sensitivity in the case of high degree of lexical nesting [7, 15]. mCFA [15]
is a polyvariant analysis hierarchy for functional languages that is provably polynomial in
complexity. This is achieved by an analysis that “in spirit” is working over closure-converted
source programs: by factoring out all non-local variable references, the worst-case behavior
has also been removed. Unfortunately, this also affects the precision of the analysis: non-
locals that are distinguished in kCFA are merged inmCFA. In kDDPA, the level of non-local
precision is built into the constant k of how deep the run-time stack approximation is, so
more precision is achieved as k increases. mCFA does not have this property: non-locals
will always be monomorphised for any m.

Our current implementation is a proof-of-concept only; we plan to investigate ideas
in [11, 8, 9] and other papers for more performant PDA reachability algorithms. Overall
the trade-offs in performance and expressiveness are subtle and implementations will be
necessary to decide how practically useful DDPA is.

8 Conclusions

In this paper, we have developed a demand-driven program analysis (DDPA) for higher-order
programs which is centered around production of a call graph. DDPA needs only the call
graph to look up variable values; the specification does not maintain any other structures.
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DDPA can be viewed as the adaptation of previous CFL-reachability-based demand-driven
program analyses to higher-order programs. This adaptation required two key changes.
First, it was necessary to incrementally construct the control-flow graph as the analysis
proceeded; second, the lookup of non-local variables required special handling.

We believe DDPA shows promise primarily because it represents a significantly different
approach compared with other higher-order analyses. A high-level analogy can be made
with eager and lazy programming languages: it is a fundamental decision in language design
which approach to take and there are significant trade-offs. We believe the demand-driven
side of higher-order program analyses deserves further exploration.

We have established a polynomial-time bound on a higher-order program analysis which
is both flow- and context-sensitive. The reduced global state size holds out promise for
program verification tools: the fewer the states, the less overwhelming the workload will be
for a model checker, theorem prover, or other verification strategy.

We present preliminary results here from a simple implementation to serve as a confir-
mation of correctness, but our implementation needs tuning and would benefit from a head-
to-head comparison with some state-of-the-art analyses. Although DDPA’s value lookup is
novel, it shares the task of PDA reachability with the existing program analysis literature
and so a rich body of work is available to be utilized in implementing DDPA efficiently.

We believe the analysis should scale well to other language features, and have presented
outlines for extensions of the basic analysis to deep data structures, path-sensitivity, and
state; we leave efficient decision procedures for the latter two to future work. We also intend
to explore the development of extensions for other language features: exceptions and other
control operators, concurrency, and modularity to name a few.

Acknowledgements We thank Alex Rozenshteyn for motivating our interest in AAM [25]
and related papers which then led to our formulation of DDPA.We thank David Van Horn for
discussions helping us better understand the AAM work. We also thank Leandro Facchinetti
for his detailed review of this paper and his contributions to the accompanying artifact.

References
1 Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of pushdown

automata: Application to model-checking. In CONCUR’97, 1997.
2 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In POPL, 1977.
3 Christopher Earl, Matthew Might, and David Van Horn. Pushdown control-flow analysis

of higher-order programs. In Workshop on Scheme and Functional Programming, 2010.
4 M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control

and state. Theoretical Computer Science, 1992.
5 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of

compiling with continuations. In PLDI, 1993.
6 Susan Horwitz, Thomas Reps, and Mooly Sagiv. Demand interprocedural dataflow analysis.

In Foundations of Software Engineering, 1995.
7 Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in higher-

order languages. In POPL ’95, 1995.
8 J. Ian Johnson, Ilya Sergey, Christopher Earl, Matthew Might, and David Van Horn.

Pushdown flow analysis with abstract garbage collection. JFP, 2014.
9 John Kodumal and Alex Aiken. The set constraint/CFL reachability connection in practice.

In PLDI, 2004.



Z. Palmer and S. F. Smith 25

10 John Lamping. An algorithm for optimal lambda calculus reduction. In POPL, 1990.
11 Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue. An incremental points-to analysis with

CFL-reachability. In Compiler Construction, 2013.
12 Jan Midtgaard. Control-flow analysis of functional programs. ACM Comput. Surv., 2012.
13 Matthew Might. Abstract interpreters for free. In Proceedings of the 17th International

Conference on Static Analysis, 2010.
14 Matthew Might and Olin Shivers. Improving flow analyses via ΓCFA: Abstract garbage

collection and counting. In ICFP, Portland, Oregon, 2006.
15 Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving and exploiting the

k-CFA paradox: Illuminating functional vs. object-oriented program analysis. In PLDI,
2010.

16 Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

17 Zachary Palmer and Leandro Facchinetti. Odefa proof-of-concept implementation. https:
//github.com/JHU-PL-Lab/odefa-proof-of-concept, 2015. Accessed: 2015-10-11.

18 Jakob Rehof and Manuel Fähndrich. Type-base flow analysis: from polymorphic subtyping
to CFL-reachability. In POPL, New York, NY, USA, 2001.

19 Thomas Reps. Demand interprocedural program analysis using logic databases. In Appli-
cation of Logic Databases, 1994.

20 Thomas Reps. Shape analysis as a generalized path problem. In PEPM, 1995.
21 Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis

via graph reachability. In POPL, 1995.
22 Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie-

Mellon University, 1991. TR CMU-CS-91-145.
23 Yannis Smaragdakis and Martin Bravenboer. Using Datalog for fast and easy program

analysis. In Datalog Reloaded: First International Workshop, 2011.
24 David Van Horn and Harry G. Mairson. Deciding kCFA is complete for EXPTIME. In

ICFP, 2008.
25 David Van Horn and Matthew Might. Abstracting abstract machines. In ICFP, 2010.
26 Dimitrios Vardoulakis and Olin Shivers. CFA2: A context-free approach to control-flow

analysis. In European Symposium on Programming, 2010.
27 Dimitrios Vardoulakis and Olin Shivers. Pushdown flow analysis of first-class control. In

ICFP, 2011.
28 Christopher P. Wadsworth. Semantics and Pragmatics of the Lambda-calculus. PhD thesis,

University of Oxford, 1971.
29 Xin Zhang, Mayur Naik, and Hongseok Yang. Finding optimum abstractions in parametric

dataflow analysis. In PLDI, 2013.

https://github.com/JHU-PL-Lab/odefa-proof-of-concept
https://github.com/JHU-PL-Lab/odefa-proof-of-concept

	Introduction
	Overview of the Analysis
	A Simple Language
	The Basic Analysis
	Adding control flows for function calls
	Variable lookup as reverse walk

	Constraining lookup to reasonable call stacks
	Looking up Non-Local Variables
	Looking up Higher-Order Functions
	Recursion and Decidability

	The Analysis Formally
	Lookup
	Context Stacks
	Lookup stacks
	Defining the lookup function

	Abstract Evaluation
	Active nodes
	Wiring

	Decidability
	Some simple context stack models


	Soundness
	Standard Operational Semantics
	Graph-Based Operational Semantics
	Variable value lookup
	The evaluation relation

	Proving Equivalence of Operational Semantics
	Soundness of the Analysis

	Extensions
	Records
	Filtering for path sensitivity
	State

	Implementation
	Related Work
	CFL-reachability
	Higher-order program analysis

	Conclusions

