
A Practical, Typed
Variant Object Model

Or, How to Stand On Your Head
and Enjoy the View

Pottayil Harisanker Menon, Zachary Palmer,

Scott F. Smith, Alexander Rozenshteyn

The Johns Hopkins University

October 22, 2012



Object Encodings

Record-Based Encodings

Foundation for traditional OO languages
Easier to type
Common [Cardelli ’84] [Cook ’89] . . .

Variant-Based Encodings

Actor-based languages (Erlang)
Harder to type



Object Encodings

Record-Based Encodings
Foundation for traditional OO languages

Easier to type
Common [Cardelli ’84] [Cook ’89] . . .

Variant-Based Encodings

Actor-based languages (Erlang)
Harder to type



Object Encodings

Record-Based Encodings
Foundation for traditional OO languages
Easier to type

Common [Cardelli ’84] [Cook ’89] . . .

Variant-Based Encodings

Actor-based languages (Erlang)
Harder to type



Object Encodings

Record-Based Encodings
Foundation for traditional OO languages
Easier to type
Common [Cardelli ’84] [Cook ’89] . . .

Variant-Based Encodings

Actor-based languages (Erlang)
Harder to type



Object Encodings

Record-Based Encodings
Foundation for traditional OO languages
Easier to type
Common [Cardelli ’84] [Cook ’89] . . .

Variant-Based Encodings

Actor-based languages (Erlang)
Harder to type



Object Encodings

Record-Based Encodings
Foundation for traditional OO languages
Easier to type
Common [Cardelli ’84] [Cook ’89] . . .

Variant-Based Encodings
Actor-based languages (Erlang)

Harder to type



Object Encodings

Record-Based Encodings
Foundation for traditional OO languages
Easier to type
Common [Cardelli ’84] [Cook ’89] . . .

Variant-Based Encodings
Actor-based languages (Erlang)
Harder to type



Record-Based Object Encoding
(Scala) (OCaml)

1 object a {

2 }

1 let a = {

2 }

Object fields are record fields

Methods are fields with functions
Invocation projects methods

We ignore self-hiding for now.



Record-Based Object Encoding
(Scala) (OCaml)

1 object a {

2 val v = 5

3 }

1 let a = {

2 v = ref 5

3 }

Object fields are record fields

Methods are fields with functions
Invocation projects methods

We ignore self-hiding for now.



Record-Based Object Encoding
(Scala) (OCaml)

1 object a {

2 val v = 5

3 def mth(x:Int)

4 :Int = { x+v }

5 def foo(x:Unit ){}

6 }

1 let a = {

2 v = ref 5;

3 mth = fun self ->

4 fun x -> x+!self.v;

5 foo = fun () -> ()

6 }

Object fields are record fields

Methods are fields with functions

Invocation projects methods

We ignore self-hiding for now.



Record-Based Object Encoding
(Scala) (OCaml)

1 object a {

2 val v = 5

3 def mth(x:Int)

4 :Int = { x+v }

5 def foo(x:Unit ){}

6 };

7 a.mth(3)

1 let a = {

2 v = ref 5;

3 mth = fun self ->

4 fun x -> x+!self.v

5 foo = fun () -> ()

6 } in

7 a.mth a 3

Object fields are record fields

Methods are fields with functions
Invocation projects methods

We ignore self-hiding for now.



Record-Based Object Encoding
(Scala) (OCaml)

1 object a {

2 val v = 5

3 def mth(x:Int)

4 :Int = { x+v }

5 def foo(x:Unit ){}

6 };

7 a.mth(3)

1 let a = {

2 v = ref 5;

3 mth = fun self ->

4 fun x -> x+!self.v

5 foo = fun () -> ()

6 } in

7 a.mth a 3

Object fields are record fields

Methods are fields with functions
Invocation projects methods

We ignore self-hiding for now.



Duality

V
ar
ia
nt
s
⇐⇒

R
ecords



Variant-Based Encoding
(Scala) (OCaml)

1 object a {

2 }

1 let a = fun msg ->

2 match msg with

3 . . .

Fields by closure

Methods are message handling cases

Invocation is just message passing

But this doesn’t typecheck!



Variant-Based Encoding
(Scala) (OCaml)

1 object a {

2 val v = 5

3 }

1 let v = ref 5 in

2 let a = fun msg ->

3 match msg with

4 . . .

Fields by closure

Methods are message handling cases

Invocation is just message passing

But this doesn’t typecheck!



Variant-Based Encoding
(Scala) (OCaml)

1 object a {

2 val v = 5

3 def mth(x:Int)

4 :Int = { x+v }

5 def foo(x:Unit ){}

6 }

1 let v = ref 5 in

2 let a = fun msg ->

3 match msg with

4 | ‘mth (self ,x) ->

5 x+!self.v

6 | ‘foo () -> ()

Fields by closure

Methods are message handling cases

Invocation is just message passing

But this doesn’t typecheck!



Variant-Based Encoding
(Scala) (OCaml)

1 object a {

2 val v = 5

3 def mth(x:Int)

4 :Int = { x+v }

5 def foo(x:Unit ){}

6 };

7 a.mth(3)

1 let v = ref 5 in

2 let a = fun msg ->

3 match msg with

4 | ‘mth (self ,x) ->

5 x+!self.v

6 | ‘foo () -> ()

7 in a (‘mth (a,3))

Fields by closure

Methods are message handling cases

Invocation is just message passing

But this doesn’t typecheck!



Variant-Based Encoding
(Scala) (OCaml)

1 object a {

2 val v = 5

3 def mth(x:Int)

4 :Int = { x+v }

5 def foo(x:Unit ){}

6 };

7 a.mth(3)

1 let v = ref 5 in

2 let a = fun msg ->

3 match msg with

4 | ‘mth (self ,x) ->

5 x+!self.v

6 | ‘foo () -> ()

7 in a (‘mth (a,3))

Fields by closure

Methods are message handling cases

Invocation is just message passing

But this doesn’t typecheck!



Typing Variant Destruction

1 match v with

2 | ‘Odd y -> y mod 2 = 1

3 | ‘Dbl x -> x + x

: int ∪ bool

Typechecking variant destruction is tricky

Most languages (e.g. Caml) fail on unification

Union types

Record construction is heterogeneously typed

Variant destruction is not



Typing Variant Destruction

1 match v with

2 | ‘Odd y -> y mod 2 = 1

3 | ‘Dbl x -> x + x

: int ∪ bool

Typechecking variant destruction is tricky

Most languages (e.g. Caml) fail on unification

Union types

Record construction is heterogeneously typed

Variant destruction is not



Typing Variant Destruction

1 match v with

2 | ‘Odd y -> y mod 2 = 1

3 | ‘Dbl x -> x + x
: int ∪ bool

Typechecking variant destruction is tricky

Most languages (e.g. Caml) fail on unification

Union types

Record construction is heterogeneously typed

Variant destruction is not



Typing Variant Destruction

1 match ‘Dbl 2 with

2 | ‘Odd y -> y mod 2 = 1

3 | ‘Dbl x -> x + x
: int ∪ bool

Typechecking variant destruction is tricky

Most languages (e.g. Caml) fail on unification

Union types are insufficient!

Record construction is heterogeneously typed

Variant destruction is not



Typing Variant Destruction

1 match ‘Dbl 2 with

2 | ‘Odd y -> y mod 2 = 1

3 | ‘Dbl x -> x + x
: int!

Typechecking variant destruction is tricky

Most languages (e.g. Caml) fail on unification

Union types are insufficient!

Record construction is heterogeneously typed

Variant destruction is not



Typing Variant Destruction

1 match ‘Dbl 2 with

2 | ‘Odd y -> y mod 2 = 1

3 | ‘Dbl x -> x + x
: int!

Typechecking variant destruction is tricky

Most languages (e.g. Caml) fail on unification

Union types are insufficient!

Record construction is heterogeneously typed

Variant destruction is not



Typing the Variant Encoding

Our objective: a purely type-inferred variant-based
object encoding

This can work! We just need...

A couple new expression forms

Weakly dependent types

Precise polymorphism

A whole-program typechecking pass

...and then we reap the benefits!



Typing the Variant Encoding

Our objective: a purely type-inferred variant-based
object encoding

This can work! We just need...

A couple new expression forms

Weakly dependent types

Precise polymorphism

A whole-program typechecking pass

...and then we reap the benefits!



Typing the Variant Encoding

Our objective: a purely type-inferred variant-based
object encoding

This can work! We just need...

A couple new expression forms

Weakly dependent types

Precise polymorphism

A whole-program typechecking pass

...and then we reap the benefits!



Typing the Variant Encoding

Our objective: a purely type-inferred variant-based
object encoding

This can work! We just need...

A couple new expression forms

Weakly dependent types

Precise polymorphism

A whole-program typechecking pass

...and then we reap the benefits!



How We Get It: TinyBang

&
Onions

(Extensible,
type-indexed records)

+
χ ->

Scapes

(Functions with
built-in patterns)



How We Get It: TinyBang

&
Onions

(Extensible,
type-indexed records)

+

χ ->
Scapes

(Functions with
built-in patterns)



How We Get It: TinyBang

&
Onions

(Extensible,
type-indexed records)

+
χ ->

Scapes

(Functions with
built-in patterns)



Variant-Based Object Encoding

TinyBang

1 `dbl x -> x + x

Methods are scapes

: functions with patterns

Invoke methods by passing messages



Variant-Based Object Encoding

TinyBang

1 `dbl x -> x + x

Methods are scapes: functions with patterns

Invoke methods by passing messages



Variant-Based Object Encoding

TinyBang

1 (`dbl x -> x + x) `dbl 3

Methods are scapes: functions with patterns

Invoke methods by passing messages



Variant-Based Object Encoding

TinyBang

1 (`dbl x -> x + x) `dbl 3

Methods are scapes: functions with patterns

Invoke methods by passing first-class messages



Variant-Based Object Encoding

TinyBang

1 (`dbl x -> x + x) `dbl 3

Methods are scapes: functions with patterns

Invoke methods by passing first-class messages
(just labeled data)



Many Methods: Onioning Scapes

1 `dbl x -> x + x

Scapes are combined by onioning

Application finds match

(asymmetric)

Subsumes case expressions

Generalizes First-Class Cases [Blume et. al. ’06]



Many Methods: Onioning Scapes

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)

Scapes are combined by onioning

Application finds match

(asymmetric)

Subsumes case expressions

Generalizes First-Class Cases [Blume et. al. ’06]



Many Methods: Onioning Scapes

1 ((`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)) (`dbl 2)

Scapes are combined by onioning

Application finds match

(asymmetric)

Subsumes case expressions

Generalizes First-Class Cases [Blume et. al. ’06]



Many Methods: Onioning Scapes

1 ((`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)) (`dbl 2)

1 object a {

2 def dbl(x:Int):Int = { x + x }

3 def pos(y:Int): Boolean = { y % 2 == 1 }

4 }

5 a.dbl(2)



Many Methods: Onioning Scapes

1 ((`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)) (`dbl 2)

⇒ 4
Scapes are combined by onioning

Application finds rightmost match
(asymmetric)

Subsumes case expressions

Generalizes First-Class Cases [Blume et. al. ’06]



Many Methods: Onioning Scapes

1 ((`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)) (`dbl 2)

⇒ 4
Scapes are combined by onioning

Application finds rightmost match
(asymmetric)

Subsumes case expressions

Generalizes First-Class Cases [Blume et. al. ’06]



Many Methods: Onioning Scapes

1 ((`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)) (`dbl 2)

⇒ 4
Scapes are combined by onioning

Application finds rightmost match
(asymmetric)

Subsumes case expressions

Generalizes First-Class Cases [Blume et. al. ’06]



Typing the Onion

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)

(`dbl int ∪ `odd int) -> (int ∪ bool)

Simple union type loses alignment

Onion type does not

Weakly dependent type

Relies heavily on polymorphism



Typing the Onion

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)

(`dbl int -> int) & (`odd int -> bool)

Simple union type loses alignment

Onion type does not

Weakly dependent type

Relies heavily on polymorphism



Typing the Onion

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)

(`dbl int -> int) & (`odd int -> bool)

Simple union type loses alignment

Onion type does not

Weakly dependent type

Relies heavily on polymorphism



Typing the Onion

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)

(`dbl int -> int) & (`odd int -> bool)

Simple union type loses alignment

Onion type does not

Weakly dependent type

Relies heavily on polymorphism



Fields

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection

But what about self?



Fields

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1) &

3 `Z 5

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection

But what about self?



Fields

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1) &

3 `Z 5

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection

But what about self?



Fields

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1) &

3 `Z 5

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection

But what about self?



Fields

1 def o = (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1) &

3 `Z 5

4 in o.Z

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection

But what about self?



Fields

1 def o = (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1) &

3 `Z 5

4 in (`Z z -> z) o

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection/pattern match

But what about self?



Fields

1 def o = (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1) &

3 `Z 5

4 in (`Z z -> z) o

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection/pattern match

But what about self?



Näıve Self

1 def ticker =

2 `x 0 &

3 (`inc _ ->

4 self.x = self.x + 1 in self.x)

5 in ticker `inc ()

Add `self to all parameters

& is pattern conjunction

Add `self to all call sites

Be happy?



Näıve Self

1 def ticker =

2 `x 0 &

3 (`inc _ & `self self ->

4 self.x = self.x + 1 in self.x)

5 in ticker `inc ()

Add `self to all parameters

& is pattern conjunction

Add `self to all call sites

Be happy?



Näıve Self

1 def ticker =

2 `x 0 &

3 (`inc _ & `self self ->

4 self.x = self.x + 1 in self.x)

5 in ticker `inc ()

Add `self to all parameters
& is pattern conjunction

Add `self to all call sites

Be happy?



Näıve Self

1 def ticker =

2 `x 0 &

3 (`inc _ & `self self ->

4 self.x = self.x + 1 in self.x)

5 in ticker (`inc () & `self ticker)

Add `self to all parameters
& is pattern conjunction

Add `self to all call sites

Be happy?



Näıve Self

1 def ticker =

2 `x 0 &

3 (`inc _ & `self self ->

4 self.x = self.x + 1 in self.x)

5 in ticker (`inc () & `self ticker)

Add `self to all parameters
& is pattern conjunction

Add `self to all call sites

Be happy?



Näıve Self: Type Problems

1 def obj =

2 if something then

3 (`foo _ & `self s -> s `bar ()) &

4 (`bar _ -> 1)

5 else

6 (`foo _ & `self s -> s `baz ()) &

7 (`baz _ -> 2)

8 in obj `foo ()



Näıve Self: Problems

αSelf =

(`foo _ & `self α1 -> int) &

(`bar _ -> int)

where α1 has `bar⋃
(`foo _ & `self α2 -> int) &

(`baz _ -> int)

where α2 has `baz



Näıve Self: Problems

αSelf :>
(`foo _ & `self α1 -> int) &

(`bar _ -> int)

where α1 has `bar

αSelf :>
(`foo _ & `self α2 -> int) &

(`baz _ -> int)

where α2 has `baz



Self Solutions

Classic object encodings [Bruce et. al. ’98]

Type of self is fixed at instantiation
No object extensibility

Extensible Object Calculus [Fisher et. al. ’98]

Prototype objects: extensible but not callable
Proper objects: callable but not extensible
Prototypes can be sealed into proper objects
Sealing is permanent
Sealing is meta-theoretic

TinyBang

Sealing is encodable (no meta-theory)
Sealed objects can be extended and resealed



Self Solutions

Classic object encodings [Bruce et. al. ’98]

Type of self is fixed at instantiation

No object extensibility

Extensible Object Calculus [Fisher et. al. ’98]

Prototype objects: extensible but not callable
Proper objects: callable but not extensible
Prototypes can be sealed into proper objects
Sealing is permanent
Sealing is meta-theoretic

TinyBang

Sealing is encodable (no meta-theory)
Sealed objects can be extended and resealed



Self Solutions

Classic object encodings [Bruce et. al. ’98]

Type of self is fixed at instantiation
No object extensibility

Extensible Object Calculus [Fisher et. al. ’98]

Prototype objects: extensible but not callable
Proper objects: callable but not extensible
Prototypes can be sealed into proper objects
Sealing is permanent
Sealing is meta-theoretic

TinyBang

Sealing is encodable (no meta-theory)
Sealed objects can be extended and resealed



Self Solutions

Classic object encodings [Bruce et. al. ’98]

Type of self is fixed at instantiation
No object extensibility

Extensible Object Calculus [Fisher et. al. ’98]

Prototype objects: extensible but not callable
Proper objects: callable but not extensible
Prototypes can be sealed into proper objects
Sealing is permanent
Sealing is meta-theoretic

TinyBang

Sealing is encodable (no meta-theory)
Sealed objects can be extended and resealed



Self Solutions

Classic object encodings [Bruce et. al. ’98]

Type of self is fixed at instantiation
No object extensibility

Extensible Object Calculus [Fisher et. al. ’98]

Prototype objects: extensible but not callable

Proper objects: callable but not extensible
Prototypes can be sealed into proper objects
Sealing is permanent
Sealing is meta-theoretic

TinyBang

Sealing is encodable (no meta-theory)
Sealed objects can be extended and resealed



Self Solutions

Classic object encodings [Bruce et. al. ’98]

Type of self is fixed at instantiation
No object extensibility

Extensible Object Calculus [Fisher et. al. ’98]

Prototype objects: extensible but not callable
Proper objects: callable but not extensible

Prototypes can be sealed into proper objects
Sealing is permanent
Sealing is meta-theoretic

TinyBang

Sealing is encodable (no meta-theory)
Sealed objects can be extended and resealed



Self Solutions

Classic object encodings [Bruce et. al. ’98]

Type of self is fixed at instantiation
No object extensibility

Extensible Object Calculus [Fisher et. al. ’98]

Prototype objects: extensible but not callable
Proper objects: callable but not extensible
Prototypes can be sealed into proper objects

Sealing is permanent
Sealing is meta-theoretic

TinyBang

Sealing is encodable (no meta-theory)
Sealed objects can be extended and resealed



Self Solutions

Classic object encodings [Bruce et. al. ’98]

Type of self is fixed at instantiation
No object extensibility

Extensible Object Calculus [Fisher et. al. ’98]

Prototype objects: extensible but not callable
Proper objects: callable but not extensible
Prototypes can be sealed into proper objects
Sealing is permanent

Sealing is meta-theoretic

TinyBang

Sealing is encodable (no meta-theory)
Sealed objects can be extended and resealed



Self Solutions

Classic object encodings [Bruce et. al. ’98]

Type of self is fixed at instantiation
No object extensibility

Extensible Object Calculus [Fisher et. al. ’98]

Prototype objects: extensible but not callable
Proper objects: callable but not extensible
Prototypes can be sealed into proper objects
Sealing is permanent
Sealing is meta-theoretic

TinyBang

Sealing is encodable (no meta-theory)
Sealed objects can be extended and resealed



Self Solutions

Classic object encodings [Bruce et. al. ’98]

Type of self is fixed at instantiation
No object extensibility

Extensible Object Calculus [Fisher et. al. ’98]

Prototype objects: extensible but not callable
Proper objects: callable but not extensible
Prototypes can be sealed into proper objects
Sealing is permanent
Sealing is meta-theoretic

TinyBang

Sealing is encodable (no meta-theory)
Sealed objects can be extended and resealed



Self Solutions

Classic object encodings [Bruce et. al. ’98]

Type of self is fixed at instantiation
No object extensibility

Extensible Object Calculus [Fisher et. al. ’98]

Prototype objects: extensible but not callable
Proper objects: callable but not extensible
Prototypes can be sealed into proper objects
Sealing is permanent
Sealing is meta-theoretic

TinyBang
Sealing is encodable (no meta-theory)

Sealed objects can be extended and resealed



Self Solutions

Classic object encodings [Bruce et. al. ’98]

Type of self is fixed at instantiation
No object extensibility

Extensible Object Calculus [Fisher et. al. ’98]

Prototype objects: extensible but not callable
Proper objects: callable but not extensible
Prototypes can be sealed into proper objects
Sealing is permanent
Sealing is meta-theoretic

TinyBang
Sealing is encodable (no meta-theory)
Sealed objects can be extended and resealed



Sealing in TinyBang

1 def rec seal = obj ->

2 obj &

3 (msg -> obj (`self (seal obj) & msg)) in

4 def point =

5 `x 2 & `y 4 &

6 (`l1 _ & `self self -> self.x + self.y) in

7 def sealedPoint = seal point in

8 sealedPoint `l1 ()

9 . . .



Resealing Objects
1 . . .
2 def obj = seal (

3 `x 0 &

4 (`inc _ & `self self ->

5 self.x = self.x + 1 in self.x)) in

6 obj `inc (); obj `inc ();

7 def extobj = seal (

8 obj &

9 (`dbl _ & `self self ->

10 self.x = self.x + self.x in self.x)) in

11 extobj `dbl (); extobj `inc ()

x =0



Resealing Objects
1 . . .
2 def obj = seal (

3 `x 0 &

4 (`inc _ & `self self ->

5 self.x = self.x + 1 in self.x)) in

6 obj `inc (); obj `inc ();

7 def extobj = seal (

8 obj &

9 (`dbl _ & `self self ->

10 self.x = self.x + self.x in self.x)) in

11 extobj `dbl (); extobj `inc ()

x =1



Resealing Objects
1 . . .
2 def obj = seal (

3 `x 0 &

4 (`inc _ & `self self ->

5 self.x = self.x + 1 in self.x)) in

6 obj `inc (); obj `inc ();

7 def extobj = seal (

8 obj &

9 (`dbl _ & `self self ->

10 self.x = self.x + self.x in self.x)) in

11 extobj `dbl (); extobj `inc ()

x =2



Resealing Objects
1 . . .
2 def obj = seal (

3 `x 0 &

4 (`inc _ & `self self ->

5 self.x = self.x + 1 in self.x)) in

6 obj `inc (); obj `inc ();

7 def extobj = seal (

8 obj &

9 (`dbl _ & `self self ->

10 self.x = self.x + self.x in self.x)) in

11 extobj `dbl (); extobj `inc ()

x =4



Resealing Objects
1 . . .
2 def obj = seal (

3 `x 0 &

4 (`inc _ & `self self ->

5 self.x = self.x + 1 in self.x)) in

6 obj `inc (); obj `inc ();

7 def extobj = seal (

8 obj &

9 (`dbl _ & `self self ->

10 self.x = self.x + self.x in self.x)) in

11 extobj `dbl (); extobj `inc ()

x =5



Resealing Objects

1 . . .
2 def obj = seal (. . .) in

3 obj `inc (); obj `inc ();

4 def extobj = seal (. . .) in

5 extobj `dbl (); extobj `inc ()



Resealing Objects

1 . . .
2 def obj = seal (. . .) in

3 obj `inc (); obj `inc ();

4 def extobj = seal (. . .) in

5 extobj `dbl (); extobj `inc ()

`inc ()



Resealing Objects

1 . . .
2 def obj = seal (. . .) in

3 obj `inc (); obj `inc ();

4 def extobj = seal (. . .) in

5 extobj `dbl (); extobj `inc ()

`self extobj & `inc ()



Resealing Objects

1 . . .
2 def obj = seal (. . .) in

3 obj `inc (); obj `inc ();

4 def extobj = seal (. . .) in

5 extobj `dbl (); extobj `inc ()

`self obj & `self extobj & `inc ()



Resealing Objects

1 . . .
2 def obj = seal (. . .) in

3 obj `inc (); obj `inc ();

4 def extobj = seal (. . .) in

5 extobj `dbl (); extobj `inc ()

`self obj & `self extobj & `inc ()



Other Features
1 def point = seal (`x 0 & `y 0 &

2 (`l1 _ & `self self ->

3 self.x + self.y)) in

4 def mixin = (`nearZero _ & `self self ->

5 (self `l1 ()) <= 4) in

6 def mixedPoint = seal (point & mixin) in

7 mixedPoint `nearZero ()

Mixins

Higher-order object extension

Data sharing

Overloading

Classes, inheritance, etc.



Other Features
1 def point = . . . in

2 def mixin = ((`nearZero _ & `self self ->

3 (self `l1 ()) <= 4)) in

4 def mixedPoint = seal (point & mixin) in

5 mixedPoint `nearZero ()

Mixins

Higher-order object extension

Data sharing

Overloading

Classes, inheritance, etc.



Other Features
1 def obj = seal (

2 `x 0 & (`inc _ & `self self ->

3 self.x = self.x + 1 in self.x)) in

4 def obj2 = seal (

5 (obj &. `x) & `y 0 &

6 (`inc _ & `self self ->

7 self.y = self.y + self.x in self.y)) in

8 . . .

Mixins

Higher-order object extension

Data sharing

Overloading

Classes, inheritance, etc.



Other Features
1 def obj = seal (

2 `x 0 &

3 (`inc n:int & `self self ->

4 self.x = self.x + n in self.x) &

5 (`inc n:unit & `self self ->

6 self `inc 1) in

7 obj (`inc ()); obj (`inc 4)

Mixins

Higher-order object extension

Data sharing

Overloading

Classes, inheritance, etc.



Other Features

etc.

Mixins

Higher-order object extension

Data sharing

Overloading

Classes, inheritance, etc.



Type Inference



Type Inference

Subtype constraint system

Assign each subexpression a type variable

Derive initial constraint set over expression

Perform knowledge closure on constraints

Check resulting closure for consistency

Soundness is proven over inference system



Type Inference

Subtype constraint system

Assign each subexpression a type variable

Derive initial constraint set over expression

Perform knowledge closure on constraints

Check resulting closure for consistency

Soundness is proven over inference system



Type Inference

Subtype constraint system

Assign each subexpression a type variable

Derive initial constraint set over expression

Perform knowledge closure on constraints

Check resulting closure for consistency

Soundness is proven over inference system



Type Inference

Subtype constraint system

Assign each subexpression a type variable

Derive initial constraint set over expression

Perform knowledge closure on constraints

Check resulting closure for consistency

Soundness is proven over inference system



Type Inference

Subtype constraint system

Assign each subexpression a type variable

Derive initial constraint set over expression

Perform knowledge closure on constraints

Check resulting closure for consistency

Soundness is proven over inference system



Type Inference

Subtype constraint system

Assign each subexpression a type variable

Derive initial constraint set over expression

Perform knowledge closure on constraints

Check resulting closure for consistency

Soundness is proven over inference system



Constraint Types

int ∪ unit

m

α\{int <: α,unit <: α}



Constraint Types

int ∪ unit

m

α\{int <: α,unit <: α}



Constraint Closure

5 + 3

int

α1

α2

α3+



Constraint Closure

5 + 3

int

α1

α2

α3+



Constraint Closure

5 + 3

int

α1

α2

α3

+



Constraint Closure

5 + 3

int

α1

α2

α3

+



Constraint Closure

5 + 3

int

α1

α2

α3

+



Constraint Closure

5 + 3

int

α1

α2

α3+



Constraint Closure

5 + 3

int

α1

α2

α3+



Constraint Closure

5 + 3

int

α1

α2

α3+



Constraint Closure

5 + 3

int

α1

α2

α3+



Constraint Closure

5 + 3

int

α1

α2

α3+



Constraint Closure

5 + 3

int

α1

α2

α3+



Constraint Closure

5 + 3

int

α1

α2

α3+



Functions

x -> x + x

+



Functions

x -> x + x

+



Functions

x -> x + x

+



Functions

x -> x + x

+



Functions

x -> x + x

+



Functions

x -> x + x

+



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5

•

+



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5

• +



Application

(x -> x + x) 5 : int

• +



Polymorphism



Polymorphism

Let-bound polymorphism

Type-parametric methods fail

Local polymorphism

Objects are not local
Requires type annotations

TinyBang uses call-site polymorphism

Each call site is freshly polyinstantiated
Recursion reuses variable contours



Polymorphism

Let-bound polymorphism
Type-parametric methods fail

Local polymorphism

Objects are not local
Requires type annotations

TinyBang uses call-site polymorphism

Each call site is freshly polyinstantiated
Recursion reuses variable contours



Polymorphism

Let-bound polymorphism
Type-parametric methods fail

Local polymorphism

Objects are not local
Requires type annotations

TinyBang uses call-site polymorphism

Each call site is freshly polyinstantiated
Recursion reuses variable contours



Polymorphism

Let-bound polymorphism
Type-parametric methods fail

Local polymorphism
Objects are not local

Requires type annotations

TinyBang uses call-site polymorphism

Each call site is freshly polyinstantiated
Recursion reuses variable contours



Polymorphism

Let-bound polymorphism
Type-parametric methods fail

Local polymorphism
Objects are not local
Requires type annotations

TinyBang uses call-site polymorphism

Each call site is freshly polyinstantiated
Recursion reuses variable contours



Polymorphism

Let-bound polymorphism
Type-parametric methods fail

Local polymorphism
Objects are not local
Requires type annotations

TinyBang uses call-site polymorphism

Each call site is freshly polyinstantiated
Recursion reuses variable contours



Polymorphism

Let-bound polymorphism
Type-parametric methods fail

Local polymorphism
Objects are not local
Requires type annotations

TinyBang uses call-site polymorphism
Each call site is freshly polyinstantiated

Recursion reuses variable contours



Polymorphism

Let-bound polymorphism
Type-parametric methods fail

Local polymorphism
Objects are not local
Requires type annotations

TinyBang uses call-site polymorphism
Each call site is freshly polyinstantiated
Recursion reuses variable contours



Polymorphic Application

def id = x -> x in (id () & id 1)

•

•

&



Polymorphic Application

def id = x -> x in (id () & id 1)

•

•

&



Polymorphic Application

def id = x -> x in (id () & id 1)

•

•

&



Polymorphic Application

def id = x -> x in (id () & id 1)

•

•

&



Polymorphic Application

def id = x -> x in (id () & id 1)

•

•

&



BigBang

Aims to infer types for script-like programs

Uses type information for better performance

Desugars down to TinyBang

Provides syntax for classes, modules, etc.

Enough polymorphism for scripting intuitions

...without divergence or exponential blow-up



BigBang

Aims to infer types for script-like programs

Uses type information for better performance

Desugars down to TinyBang

Provides syntax for classes, modules, etc.

Enough polymorphism for scripting intuitions

...without divergence or exponential blow-up



BigBang

Aims to infer types for script-like programs

Uses type information for better performance

Desugars down to TinyBang

Provides syntax for classes, modules, etc.

Enough polymorphism for scripting intuitions

...without divergence or exponential blow-up



BigBang

Aims to infer types for script-like programs

Uses type information for better performance

Desugars down to TinyBang

Provides syntax for classes, modules, etc.

Enough polymorphism for scripting intuitions

...without divergence or exponential blow-up



BigBang

Aims to infer types for script-like programs

Uses type information for better performance

Desugars down to TinyBang

Provides syntax for classes, modules, etc.

Enough polymorphism for scripting intuitions

...without divergence or exponential blow-up



BigBang

Aims to infer types for script-like programs

Uses type information for better performance

Desugars down to TinyBang

Provides syntax for classes, modules, etc.

Enough polymorphism for scripting intuitions

...without divergence or exponential blow-up



Summary

TinyBang encodes objects as scapes and onions

Variant destruction is heterogeneously typed

(Re)sealing is encodable as a function

Flexible OO structures are encodable

Heavily uses call-site polymorphism model

Requires whole-program typechecking

Questions?



Summary

TinyBang encodes objects as scapes and onions

Variant destruction is heterogeneously typed

(Re)sealing is encodable as a function

Flexible OO structures are encodable

Heavily uses call-site polymorphism model

Requires whole-program typechecking

Questions?



Summary

TinyBang encodes objects as scapes and onions

Variant destruction is heterogeneously typed

(Re)sealing is encodable as a function

Flexible OO structures are encodable

Heavily uses call-site polymorphism model

Requires whole-program typechecking

Questions?



Summary

TinyBang encodes objects as scapes and onions

Variant destruction is heterogeneously typed

(Re)sealing is encodable as a function

Flexible OO structures are encodable

Heavily uses call-site polymorphism model

Requires whole-program typechecking

Questions?



Summary

TinyBang encodes objects as scapes and onions

Variant destruction is heterogeneously typed

(Re)sealing is encodable as a function

Flexible OO structures are encodable

Heavily uses call-site polymorphism model

Requires whole-program typechecking

Questions?



Summary

TinyBang encodes objects as scapes and onions

Variant destruction is heterogeneously typed

(Re)sealing is encodable as a function

Flexible OO structures are encodable

Heavily uses call-site polymorphism model

Requires whole-program typechecking

Questions?



Summary

TinyBang encodes objects as scapes and onions

Variant destruction is heterogeneously typed

(Re)sealing is encodable as a function

Flexible OO structures are encodable

Heavily uses call-site polymorphism model

Requires whole-program typechecking

Questions?


