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TinyBang

1 (`dbl x -> x + x) `dbl 3

Methods are scapes: functions with patterns

Invoke methods by passing first-class messages
(just labeled data)



Many Methods: Onioning Scapes

1 `dbl x -> x + x

Scapes are combined by onioning

Application finds match

(asymmetric)

Subsumes case expressions

Generalizes First-Class Cases [Blume et. al. ’06]



Many Methods: Onioning Scapes

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)

Scapes are combined by onioning

Application finds match

(asymmetric)

Subsumes case expressions

Generalizes First-Class Cases [Blume et. al. ’06]



Many Methods: Onioning Scapes

1 ((`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)) (`dbl 2)

Scapes are combined by onioning

Application finds match

(asymmetric)

Subsumes case expressions

Generalizes First-Class Cases [Blume et. al. ’06]



Many Methods: Onioning Scapes

1 ((`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)) (`dbl 2)

1 object a {

2 def dbl(x:Int):Int = { x + x }

3 def pos(y:Int): Boolean = { y % 2 == 1 }

4 }

5 a.dbl(2)



Many Methods: Onioning Scapes

1 ((`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)) (`dbl 2)

⇒ 4
Scapes are combined by onioning

Application finds rightmost match
(asymmetric)

Subsumes case expressions

Generalizes First-Class Cases [Blume et. al. ’06]



Many Methods: Onioning Scapes

1 ((`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)) (`dbl 2)

⇒ 4
Scapes are combined by onioning

Application finds rightmost match
(asymmetric)

Subsumes case expressions

Generalizes First-Class Cases [Blume et. al. ’06]



Many Methods: Onioning Scapes

1 ((`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)) (`dbl 2)

⇒ 4
Scapes are combined by onioning

Application finds rightmost match
(asymmetric)

Subsumes case expressions

Generalizes First-Class Cases [Blume et. al. ’06]



Typing the Onion

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)

(`dbl int ∪ `odd int) -> (int ∪ bool)

Simple union type loses alignment

Onion type does not

Weakly dependent type

Relies heavily on polymorphism



Typing the Onion

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)

(`dbl int -> int) & (`odd int -> bool)

Simple union type loses alignment

Onion type does not

Weakly dependent type

Relies heavily on polymorphism



Typing the Onion

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)

(`dbl int -> int) & (`odd int -> bool)

Simple union type loses alignment

Onion type does not

Weakly dependent type

Relies heavily on polymorphism



Typing the Onion

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1)

(`dbl int -> int) & (`odd int -> bool)

Simple union type loses alignment

Onion type does not

Weakly dependent type

Relies heavily on polymorphism



Fields

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection

But what about self?



Fields

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1) &

3 `Z 5

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection

But what about self?



Fields

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1) &

3 `Z 5

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection

But what about self?



Fields

1 (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1) &

3 `Z 5

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection

But what about self?



Fields

1 def o = (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1) &

3 `Z 5

4 in o.Z

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection

But what about self?



Fields

1 def o = (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1) &

3 `Z 5

4 in (`Z z -> z) o

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection/pattern match

But what about self?



Fields

1 def o = (`dbl x -> x + x) &

2 (`odd y -> y mod 2 == 1) &

3 `Z 5

4 in (`Z z -> z) o

Pure variant model: get/set messages

Hybrid model: variant methods, record fields

Similar to type-indexed rows [Shields, Meijer ’01]

Labels implicitly create cells

Field access by projection/pattern match

But what about self?
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Näıve Self

1 def ticker =

2 `x 0 &

3 (`inc _ & `self self ->

4 self.x = self.x + 1 in self.x)

5 in ticker (`inc () & `self ticker)

Add `self to all parameters
& is pattern conjunction

Add `self to all call sites

Be happy?



Näıve Self: Type Problems

1 def obj =

2 if something then

3 (`foo _ & `self s -> s `bar ()) &

4 (`bar _ -> 1)

5 else

6 (`foo _ & `self s -> s `baz ()) &

7 (`baz _ -> 2)

8 in obj `foo ()
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Sealing in TinyBang

1 def rec seal = obj ->

2 obj &

3 (msg -> obj (`self (seal obj) & msg)) in

4 def point =

5 `x 2 & `y 4 &

6 (`l1 _ & `self self -> self.x + self.y) in

7 def sealedPoint = seal point in

8 sealedPoint `l1 ()

9 . . .
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5 self.x = self.x + 1 in self.x)) in

6 obj `inc (); obj `inc ();

7 def extobj = seal (

8 obj &

9 (`dbl _ & `self self ->

10 self.x = self.x + self.x in self.x)) in

11 extobj `dbl (); extobj `inc ()

x =0
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Resealing Objects

1 . . .
2 def obj = seal (. . .) in

3 obj `inc (); obj `inc ();

4 def extobj = seal (. . .) in

5 extobj `dbl (); extobj `inc ()

`self obj & `self extobj & `inc ()



Other Features
1 def point = seal (`x 0 & `y 0 &
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