
Control-Based Program Analysis

Zachary Palmer and Scott F. Smith

Swarthmore College and The Johns Hopkins University

November 23rd, 2015

Outline

CBA Overview
CBA by Example
Properties of CBA
Comparison to Related Analyses
Implementation
Conclusions

2/23

Outline

CBA Overview
CBA by Example
Properties of CBA
Comparison to Related Analyses
Implementation
Conclusions

2/23

CBA

Incrementally builds control-flow graph (CFG)

Trivial for first-order programs
Higher-order programs: control flow and data flow interact

Initial graph has no call/return edges
Add call/return edges as discovered

Determine which function arrives at call site
All values looked up relative to point in CFG
Relative lookup yields flow-sensitive analysis

CFG is the only data structure

No abstract environment or store
So, variable lookup only needs CFG

3/23

CBA

Incrementally builds control-flow graph (CFG)
Trivial for first-order programs

Higher-order programs: control flow and data flow interact
Initial graph has no call/return edges
Add call/return edges as discovered

Determine which function arrives at call site
All values looked up relative to point in CFG
Relative lookup yields flow-sensitive analysis

CFG is the only data structure

No abstract environment or store
So, variable lookup only needs CFG

3/23

CBA

Incrementally builds control-flow graph (CFG)
Trivial for first-order programs
Higher-order programs: control flow and data flow interact

Initial graph has no call/return edges
Add call/return edges as discovered

Determine which function arrives at call site
All values looked up relative to point in CFG
Relative lookup yields flow-sensitive analysis

CFG is the only data structure

No abstract environment or store
So, variable lookup only needs CFG

3/23

CBA

Incrementally builds control-flow graph (CFG)
Trivial for first-order programs
Higher-order programs: control flow and data flow interact

Initial graph has no call/return edges

Add call/return edges as discovered

Determine which function arrives at call site
All values looked up relative to point in CFG
Relative lookup yields flow-sensitive analysis

CFG is the only data structure

No abstract environment or store
So, variable lookup only needs CFG

3/23

CBA

Incrementally builds control-flow graph (CFG)
Trivial for first-order programs
Higher-order programs: control flow and data flow interact

Initial graph has no call/return edges
Add call/return edges as discovered

Determine which function arrives at call site
All values looked up relative to point in CFG
Relative lookup yields flow-sensitive analysis

CFG is the only data structure

No abstract environment or store
So, variable lookup only needs CFG

3/23

CBA

Incrementally builds control-flow graph (CFG)
Trivial for first-order programs
Higher-order programs: control flow and data flow interact

Initial graph has no call/return edges
Add call/return edges as discovered

Determine which function arrives at call site

All values looked up relative to point in CFG
Relative lookup yields flow-sensitive analysis

CFG is the only data structure

No abstract environment or store
So, variable lookup only needs CFG

3/23

CBA

Incrementally builds control-flow graph (CFG)
Trivial for first-order programs
Higher-order programs: control flow and data flow interact

Initial graph has no call/return edges
Add call/return edges as discovered

Determine which function arrives at call site
All values looked up relative to point in CFG

Relative lookup yields flow-sensitive analysis
CFG is the only data structure

No abstract environment or store
So, variable lookup only needs CFG

3/23

CBA

Incrementally builds control-flow graph (CFG)
Trivial for first-order programs
Higher-order programs: control flow and data flow interact

Initial graph has no call/return edges
Add call/return edges as discovered

Determine which function arrives at call site
All values looked up relative to point in CFG
Relative lookup yields flow-sensitive analysis

CFG is the only data structure

No abstract environment or store
So, variable lookup only needs CFG

3/23

CBA

Incrementally builds control-flow graph (CFG)
Trivial for first-order programs
Higher-order programs: control flow and data flow interact

Initial graph has no call/return edges
Add call/return edges as discovered

Determine which function arrives at call site
All values looked up relative to point in CFG
Relative lookup yields flow-sensitive analysis

CFG is the only data structure

No abstract environment or store
So, variable lookup only needs CFG

3/23

CBA

Incrementally builds control-flow graph (CFG)
Trivial for first-order programs
Higher-order programs: control flow and data flow interact

Initial graph has no call/return edges
Add call/return edges as discovered

Determine which function arrives at call site
All values looked up relative to point in CFG
Relative lookup yields flow-sensitive analysis

CFG is the only data structure
No abstract environment or store

So, variable lookup only needs CFG

3/23

CBA

Incrementally builds control-flow graph (CFG)
Trivial for first-order programs
Higher-order programs: control flow and data flow interact

Initial graph has no call/return edges
Add call/return edges as discovered

Determine which function arrives at call site
All values looked up relative to point in CFG
Relative lookup yields flow-sensitive analysis

CFG is the only data structure
No abstract environment or store
So, variable lookup only needs CFG

3/23

Outline

CBA Overview
CBA by Example
Properties of CBA
Comparison to Related Analyses
Implementation
Conclusions

4/23

A Very Simple Example

1 let id x = x;;
2 let s1 = id 1;;
3 let s2 = id 2;;

⇓ A-normalization

1 id = fun x -> (
2 ret = x;
3);
4 n1 = 1;
5 s1 = id n1;
6 n2 = 2;
7 s2 = id n2;

Initial graph:

St

id n1 s1 n2 s2

End

ret

5/23

A Very Simple Example

1 let id x = x;;
2 let s1 = id 1;;
3 let s2 = id 2;;

⇓ A-normalization

1 id = fun x -> (
2 ret = x;
3);
4 n1 = 1;
5 s1 = id n1;
6 n2 = 2;
7 s2 = id n2;

Initial graph:

St

id n1 s1 n2 s2

End

ret

5/23

A Very Simple Example

1 let id x = x;;
2 let s1 = id 1;;
3 let s2 = id 2;;

⇓ A-normalization

1 id = fun x -> (
2 ret = x;
3);
4 n1 = 1;
5 s1 = id n1;
6 n2 = 2;
7 s2 = id n2;

Initial graph:

St

id n1 s1 n2 s2

End

ret

5/23

A Very Simple Example
Graph closure

St id n1 s1 n2 s2 End

ret

x=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

A Very Simple Example
Graph closure for call site s1

St id n1 s1 n2 s2 End

ret

x=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

A Very Simple Example
Graph closure for call site s1

Look backward to find function id

St id n1 s1 n2 s2 End

ret

x=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

A Very Simple Example
Graph closure for call site s1

Look backward to find function id

St id n1 s1 n2 s2 End

ret

x=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

A Very Simple Example
Graph closure for call site s1

Look backward to find function id

St id n1 s1 n2 s2 End

ret

x=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

A Very Simple Example
Graph closure for call site s1

Bind argument n1 to parameter x

St id n1 s1 n2 s2 End

retx=n1

s1=ret

x=n2
s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

A Very Simple Example
Graph closure for call site s1
Assign result ret to call site z1

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

A Very Simple Example
Graph closure for call site s2

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

A Very Simple Example
Graph closure for call site s2

Look backward to find function id

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

A Very Simple Example
Graph closure for call site s2

Look backward to find function id

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

A Very Simple Example
Graph closure for call site s2

Bind argument n2 to parameter x

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2

s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

A Very Simple Example
Graph closure for call site s2
Assign result ret to call site z2

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

A Very Simple Example
Closure complete!

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23

Lookup: Related Work

Lookup is temporally reversed and on demand

Similar to demand-driven CFL-reachability [HRS-FSE95]
CFL-reachability research limited to first-order programs

CBA brings on-demand lookup to higher-order analyses
Challenges:

Polyvariance
Non-local variables

7/23

Lookup: Related Work

Lookup is temporally reversed and on demand
Similar to demand-driven CFL-reachability [HRS-FSE95]

CFL-reachability research limited to first-order programs

CBA brings on-demand lookup to higher-order analyses
Challenges:

Polyvariance
Non-local variables

7/23

Lookup: Related Work

Lookup is temporally reversed and on demand
Similar to demand-driven CFL-reachability [HRS-FSE95]

CFL-reachability research limited to first-order programs
CBA brings on-demand lookup to higher-order analyses

Challenges:

Polyvariance
Non-local variables

7/23

Lookup: Related Work

Lookup is temporally reversed and on demand
Similar to demand-driven CFL-reachability [HRS-FSE95]

CFL-reachability research limited to first-order programs
CBA brings on-demand lookup to higher-order analyses
Challenges:

Polyvariance
Non-local variables

7/23

Lookup: Related Work

Lookup is temporally reversed and on demand
Similar to demand-driven CFL-reachability [HRS-FSE95]

CFL-reachability research limited to first-order programs
CBA brings on-demand lookup to higher-order analyses
Challenges:

Polyvariance

Non-local variables

7/23

Lookup: Related Work

Lookup is temporally reversed and on demand
Similar to demand-driven CFL-reachability [HRS-FSE95]

CFL-reachability research limited to first-order programs
CBA brings on-demand lookup to higher-order analyses
Challenges:

Polyvariance
Non-local variables

7/23

Call Stack Alignment
Goal: polymorphism

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
Goal: polymorphism

Look up s2 from end of program

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
Goal: polymorphism

Look up s2 from end of program

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
Goal: polymorphism

Look up s2 from end of program

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
Goal: polymorphism

Look up s2 from end of program

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
Goal: polymorphism

Look up s2 from end of program

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
Goal: polymorphism

Look up s2 from end of program

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
Goal: polymorphism

Look up s2 from end of program

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
Goal: polymorphism

Look up s2 from end of program

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
We need to match calls and returns.

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
We need to match calls and returns.
Annotate wiring nodes with call sites

St id n1 s1 n2 s2 End

retxs1↓
= n1 s1s1↑

= ret

xs2↓
= n2

s2s2↑
= ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
We need to match calls and returns.

Maintain call stack during lookup

St id n1 s1 n2 s2 End

retxs1↓
= n1 s1s1↑

= ret

xs2↓
= n2

s2s2↑
= ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
We need to match calls and returns.

Maintain call stack during lookup

St id n1 s1 n2 s2 End

retxs1↓
= n1 s1s1↑

= ret

xs2↓
= n2

s2s2↑
= ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
We need to match calls and returns.
Spurious results filtered by call stack

St id n1 s1 n2 s2 End

retxs1↓
= n1 s1s1↑

= ret

xs2↓
= n2

s2s2↑
= ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
We need to match calls and returns.
Spurious results filtered by call stack

St id n1 s1 n2 s2 End

retxs1↓
= n1 s1s1↑

= ret

xs2↓
= n2

s2s2↑
= ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment
We need to match calls and returns.

Here, 1 is eliminated

St id n1 s1 n2 s2 End

retxs1↓
= n1 s1s1↑

= ret

xs2↓
= n2

s2s2↑
= ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

8/23

Call Stack Alignment: Related Work

Model control flow as a PDA

Call stack alignment induces polyvariance!
Long history of this approach in program analysis

CFL-reachability analyses: calls and returns modeled as CFL

CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls
and returns via PDA

PDA is precisely an abstract interpreter

9/23

Call Stack Alignment: Related Work

Model control flow as a PDA
Call stack alignment induces polyvariance!

Long history of this approach in program analysis

CFL-reachability analyses: calls and returns modeled as CFL

CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls
and returns via PDA

PDA is precisely an abstract interpreter

9/23

Call Stack Alignment: Related Work

Model control flow as a PDA
Call stack alignment induces polyvariance!
Long history of this approach in program analysis

CFL-reachability analyses: calls and returns modeled as CFL
CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls
and returns via PDA

PDA is precisely an abstract interpreter

9/23

Call Stack Alignment: Related Work

Model control flow as a PDA
Call stack alignment induces polyvariance!
Long history of this approach in program analysis

CFL-reachability analyses: calls and returns modeled as CFL

CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls
and returns via PDA

PDA is precisely an abstract interpreter

9/23

Call Stack Alignment: Related Work

Model control flow as a PDA
Call stack alignment induces polyvariance!
Long history of this approach in program analysis

CFL-reachability analyses: calls and returns modeled as CFL
CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls
and returns via PDA

PDA is precisely an abstract interpreter

9/23

Call Stack Alignment: Related Work

Model control flow as a PDA
Call stack alignment induces polyvariance!
Long history of this approach in program analysis

CFL-reachability analyses: calls and returns modeled as CFL
CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls
and returns via PDA

PDA is precisely an abstract interpreter

9/23

Handling Non-Local Variables

Non-local example: K-combinator

1 let k v j = v;;
2 let f = k 1;;
3 let g = k 2;;
4 let s = f 0;;

⇓ A-normalization

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

10/23

Handling Non-Local Variables

Non-local example: K-combinator

1 let k v j = v;;
2 let f = k 1;;
3 let g = k 2;;
4 let s = f 0;;

⇓ A-normalization

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

10/23

Handling Non-Local Variables
Perform closure

k a f b g z s

St End

k0

vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0

r

js↓
=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

v?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Perform closure
...for call site f.

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0

r

js↓
=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

v?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Perform closure
...for call site g.

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r

js↓
=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

v?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Perform closure
...for call site s.

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r

js↓
=z

ss↑
=r

s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

v?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Non-locals require careful handling

Look up s from end of program.

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r

js↓
=z

ss↑
=r

s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

v?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Non-locals require careful handling

Look up s from end of program.

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r

js↓
=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]

v?[]

v?[g]

v?[g]
b?[]

2! /

v?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Non-locals require careful handling

Look up s from end of program.

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r

js↓
=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

v?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Non-locals require careful handling

Look up s from end of program.

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r

js↓
=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

v?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Non-locals require careful handling

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r

js↓
=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

v?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Non-locals require careful handling

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r

js↓
=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

f?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Non-locals require careful handling

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r

js↓
=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

f?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Non-locals require careful handling

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r

js↓
=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

f?[]

k0?[f]

v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Non-locals require careful handling

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r

js↓
=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

f?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables
Non-locals require careful handling

k a f b g z s

St End

k0vf↓
=a ff↑

=k0

vg↓
=b gg↑

=k0 r

js↓
=z

ss↑
=r
s?[]

r?[s]

v?[s]

v?[]v?[]

v?[g]

v?[g]
b?[]

2! /

f?[]

k0?[f]
v?[f]

a?[]

1! ,

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;

11/23

Handling Non-Local Variables

Even with call stack alignment, non-locals are hard

When looking for non-local, must find definition of its closure

Search for closure; then, resume looking for non-local

Implementation: stack of lookup operations
2-stack PDA encodes a Turing machine. /

Our solution: finitize call stack; keep full lookup stack.
kCBA: maximum call stack depth k

12/23

Handling Non-Local Variables

Even with call stack alignment, non-locals are hard
When looking for non-local, must find definition of its closure

Search for closure; then, resume looking for non-local
Implementation: stack of lookup operations
2-stack PDA encodes a Turing machine. /

Our solution: finitize call stack; keep full lookup stack.
kCBA: maximum call stack depth k

12/23

Handling Non-Local Variables

Even with call stack alignment, non-locals are hard
When looking for non-local, must find definition of its closure

Search for closure; then, resume looking for non-local

Implementation: stack of lookup operations
2-stack PDA encodes a Turing machine. /

Our solution: finitize call stack; keep full lookup stack.
kCBA: maximum call stack depth k

12/23

Handling Non-Local Variables

Even with call stack alignment, non-locals are hard
When looking for non-local, must find definition of its closure

Search for closure; then, resume looking for non-local
Implementation: stack of lookup operations

2-stack PDA encodes a Turing machine. /

Our solution: finitize call stack; keep full lookup stack.
kCBA: maximum call stack depth k

12/23

Handling Non-Local Variables

Even with call stack alignment, non-locals are hard
When looking for non-local, must find definition of its closure

Search for closure; then, resume looking for non-local
Implementation: stack of lookup operations
2-stack PDA encodes a Turing machine. /

Our solution: finitize call stack; keep full lookup stack.
kCBA: maximum call stack depth k

12/23

Handling Non-Local Variables

Even with call stack alignment, non-locals are hard
When looking for non-local, must find definition of its closure

Search for closure; then, resume looking for non-local
Implementation: stack of lookup operations
2-stack PDA encodes a Turing machine. /

Our solution: finitize call stack; keep full lookup stack.

kCBA: maximum call stack depth k

12/23

Handling Non-Local Variables

Even with call stack alignment, non-locals are hard
When looking for non-local, must find definition of its closure

Search for closure; then, resume looking for non-local
Implementation: stack of lookup operations
2-stack PDA encodes a Turing machine. /

Our solution: finitize call stack; keep full lookup stack.
kCBA: maximum call stack depth k

12/23

Outline

CBA Overview
CBA by Example
Properties of CBA
Comparison to Related Analyses
Implementation
Conclusions

13/23

Properties of CBA

Theorem: kCBA (for fixed k) has polynomial time bound

Program of size n
New wiring nodes: O(n2)
Therefore, graph size g is O(n2)
Lookup: PDA of size O(gk+1)

(with constant k)

Lemma: CBA is monotonic

Control flow graph: G
Lookup: L(x , p, G) for var x at program point p in graph G
Monotonicity: G1 ⊆ G2 =⇒ L(x , p, G1) ⊆ L(x , p, G2)
Delightful mathematical property; huge win for optimization!

14/23

Properties of CBA

Theorem: kCBA (for fixed k) has polynomial time bound
Program of size n

New wiring nodes: O(n2)
Therefore, graph size g is O(n2)
Lookup: PDA of size O(gk+1)

(with constant k)

Lemma: CBA is monotonic

Control flow graph: G
Lookup: L(x , p, G) for var x at program point p in graph G
Monotonicity: G1 ⊆ G2 =⇒ L(x , p, G1) ⊆ L(x , p, G2)
Delightful mathematical property; huge win for optimization!

14/23

Properties of CBA

Theorem: kCBA (for fixed k) has polynomial time bound
Program of size n
New wiring nodes: O(n2)

Therefore, graph size g is O(n2)
Lookup: PDA of size O(gk+1)

(with constant k)

Lemma: CBA is monotonic

Control flow graph: G
Lookup: L(x , p, G) for var x at program point p in graph G
Monotonicity: G1 ⊆ G2 =⇒ L(x , p, G1) ⊆ L(x , p, G2)
Delightful mathematical property; huge win for optimization!

14/23

Properties of CBA

Theorem: kCBA (for fixed k) has polynomial time bound
Program of size n
New wiring nodes: O(n2)
Therefore, graph size g is O(n2)

Lookup: PDA of size O(gk+1)

(with constant k)

Lemma: CBA is monotonic

Control flow graph: G
Lookup: L(x , p, G) for var x at program point p in graph G
Monotonicity: G1 ⊆ G2 =⇒ L(x , p, G1) ⊆ L(x , p, G2)
Delightful mathematical property; huge win for optimization!

14/23

Properties of CBA

Theorem: kCBA (for fixed k) has polynomial time bound
Program of size n
New wiring nodes: O(n2)
Therefore, graph size g is O(n2)
Lookup: PDA of size O(gk+1)

(with constant k)
Lemma: CBA is monotonic

Control flow graph: G
Lookup: L(x , p, G) for var x at program point p in graph G
Monotonicity: G1 ⊆ G2 =⇒ L(x , p, G1) ⊆ L(x , p, G2)
Delightful mathematical property; huge win for optimization!

14/23

Properties of CBA

Theorem: kCBA (for fixed k) has polynomial time bound
Program of size n
New wiring nodes: O(n2)
Therefore, graph size g is O(n2)
Lookup: PDA of size O(gk+1) (with constant k)

Lemma: CBA is monotonic

Control flow graph: G
Lookup: L(x , p, G) for var x at program point p in graph G
Monotonicity: G1 ⊆ G2 =⇒ L(x , p, G1) ⊆ L(x , p, G2)
Delightful mathematical property; huge win for optimization!

14/23

Properties of CBA

Theorem: kCBA (for fixed k) has polynomial time bound
Program of size n
New wiring nodes: O(n2)
Therefore, graph size g is O(n2)
Lookup: PDA of size O(gk+1) (with constant k)

Lemma: CBA is monotonic

Control flow graph: G
Lookup: L(x , p, G) for var x at program point p in graph G
Monotonicity: G1 ⊆ G2 =⇒ L(x , p, G1) ⊆ L(x , p, G2)
Delightful mathematical property; huge win for optimization!

14/23

Properties of CBA

Theorem: kCBA (for fixed k) has polynomial time bound
Program of size n
New wiring nodes: O(n2)
Therefore, graph size g is O(n2)
Lookup: PDA of size O(gk+1) (with constant k)

Lemma: CBA is monotonic
Control flow graph: G

Lookup: L(x , p, G) for var x at program point p in graph G
Monotonicity: G1 ⊆ G2 =⇒ L(x , p, G1) ⊆ L(x , p, G2)
Delightful mathematical property; huge win for optimization!

14/23

Properties of CBA

Theorem: kCBA (for fixed k) has polynomial time bound
Program of size n
New wiring nodes: O(n2)
Therefore, graph size g is O(n2)
Lookup: PDA of size O(gk+1) (with constant k)

Lemma: CBA is monotonic
Control flow graph: G
Lookup: L(x , p, G) for var x at program point p in graph G

Monotonicity: G1 ⊆ G2 =⇒ L(x , p, G1) ⊆ L(x , p, G2)
Delightful mathematical property; huge win for optimization!

14/23

Properties of CBA

Theorem: kCBA (for fixed k) has polynomial time bound
Program of size n
New wiring nodes: O(n2)
Therefore, graph size g is O(n2)
Lookup: PDA of size O(gk+1) (with constant k)

Lemma: CBA is monotonic
Control flow graph: G
Lookup: L(x , p, G) for var x at program point p in graph G
Monotonicity: G1 ⊆ G2 =⇒ L(x , p, G1) ⊆ L(x , p, G2)

Delightful mathematical property; huge win for optimization!

14/23

Properties of CBA

Theorem: kCBA (for fixed k) has polynomial time bound
Program of size n
New wiring nodes: O(n2)
Therefore, graph size g is O(n2)
Lookup: PDA of size O(gk+1) (with constant k)

Lemma: CBA is monotonic
Control flow graph: G
Lookup: L(x , p, G) for var x at program point p in graph G
Monotonicity: G1 ⊆ G2 =⇒ L(x , p, G1) ⊆ L(x , p, G2)
Delightful mathematical property; huge win for optimization!

14/23

Outline

CBA Overview
CBA by Example
Properties of CBA
Comparison to Related Analyses
Implementation
Conclusions

15/23

CBA and CFA

kCFA: exponential time for k > 0, but no non-local
complications

Conjecture:

Suppose program with max lexical nesting depth c
(k + c)CBA strictly more expressive than kCFA

16/23

CBA and CFA

kCFA: exponential time for k > 0, but no non-local
complications
Conjecture:

Suppose program with max lexical nesting depth c
(k + c)CBA strictly more expressive than kCFA

16/23

CBA and CFA

kCFA: exponential time for k > 0, but no non-local
complications
Conjecture:

Suppose program with max lexical nesting depth c

(k + c)CBA strictly more expressive than kCFA

16/23

CBA and CFA

kCFA: exponential time for k > 0, but no non-local
complications
Conjecture:

Suppose program with max lexical nesting depth c
(k + c)CBA strictly more expressive than kCFA

16/23

CBA and PDCFA

PDCFA probably closest in expressiveness

Lookup
PDCFA: Push abstract envs forward; GC limits states
CBA: Look back through CFG to find values; no abstract env

Stack Alignment
PDCFA: Use PDA for call stack; limit to regexes in practice
CBA: Embed finitization of call stack in PDA nodes
Appear to have similar expressiveness

Polyvariance
PDCFA: classic CFA-like graph copying
CBA: via call stack alignment and non-local lookup

17/23

CBA and PDCFA

PDCFA probably closest in expressiveness
Lookup

PDCFA: Push abstract envs forward; GC limits states
CBA: Look back through CFG to find values; no abstract env

Stack Alignment
PDCFA: Use PDA for call stack; limit to regexes in practice
CBA: Embed finitization of call stack in PDA nodes
Appear to have similar expressiveness

Polyvariance
PDCFA: classic CFA-like graph copying
CBA: via call stack alignment and non-local lookup

17/23

CBA and PDCFA

PDCFA probably closest in expressiveness
Lookup

PDCFA: Push abstract envs forward; GC limits states
CBA: Look back through CFG to find values; no abstract env

Stack Alignment
PDCFA: Use PDA for call stack; limit to regexes in practice
CBA: Embed finitization of call stack in PDA nodes
Appear to have similar expressiveness

Polyvariance
PDCFA: classic CFA-like graph copying
CBA: via call stack alignment and non-local lookup

17/23

CBA and PDCFA

PDCFA probably closest in expressiveness
Lookup

PDCFA: Push abstract envs forward; GC limits states
CBA: Look back through CFG to find values; no abstract env

Stack Alignment
PDCFA: Use PDA for call stack; limit to regexes in practice
CBA: Embed finitization of call stack in PDA nodes
Appear to have similar expressiveness

Polyvariance
PDCFA: classic CFA-like graph copying
CBA: via call stack alignment and non-local lookup

17/23

Outline

CBA Overview
CBA by Example
Properties of CBA
Comparison to Related Analyses
Implementation
Conclusions

18/23

Towards a Real Implementation

Formal definition of further language features
Records
Path-sensitivity: filters validated by PDA
State

Reference implementation on GitHub (slow)
Optimized implementation under development

Uses monotonicity lemma: same lazy PDA for all lookups

19/23

Towards a Real Implementation

Formal definition of further language features
Records
Path-sensitivity: filters validated by PDA
State

Reference implementation on GitHub (slow)

Optimized implementation under development

Uses monotonicity lemma: same lazy PDA for all lookups

19/23

Towards a Real Implementation

Formal definition of further language features
Records
Path-sensitivity: filters validated by PDA
State

Reference implementation on GitHub (slow)
Optimized implementation under development

Uses monotonicity lemma: same lazy PDA for all lookups

19/23

Towards a Real Implementation

Formal definition of further language features
Records
Path-sensitivity: filters validated by PDA
State

Reference implementation on GitHub (slow)
Optimized implementation under development

Uses monotonicity lemma: same lazy PDA for all lookups

19/23

Outline

CBA Overview
CBA by Example
Properties of CBA
Comparison to Related Analyses
Implementation
Conclusions

20/23

Conclusions

CBA is interesting and worth studying!

Not claiming strictly better, but very different
May be suitable to particular applications

No abstract environment: could make concurrency easier
Path-sensitivity model: possible theorem-proving applications

21/23

Conclusions

CBA is interesting and worth studying!
Not claiming strictly better, but very different

May be suitable to particular applications

No abstract environment: could make concurrency easier
Path-sensitivity model: possible theorem-proving applications

21/23

Conclusions

CBA is interesting and worth studying!
Not claiming strictly better, but very different
May be suitable to particular applications

No abstract environment: could make concurrency easier
Path-sensitivity model: possible theorem-proving applications

21/23

Conclusions

CBA is interesting and worth studying!
Not claiming strictly better, but very different
May be suitable to particular applications

No abstract environment: could make concurrency easier

Path-sensitivity model: possible theorem-proving applications

21/23

Conclusions

CBA is interesting and worth studying!
Not claiming strictly better, but very different
May be suitable to particular applications

No abstract environment: could make concurrency easier
Path-sensitivity model: possible theorem-proving applications

21/23

Questions?

Code: https://github.com/JHU-PL-Lab/odefa-proof-of-concept

Paper: http://pl.cs.jhu.edu/projects/big-bang/papers/

control-based-program-analysis.pdf

22/23

https://github.com/JHU-PL-Lab/odefa-proof-of-concept
http://pl.cs.jhu.edu/projects/big-bang/papers/control-based-program-analysis.pdf
http://pl.cs.jhu.edu/projects/big-bang/papers/control-based-program-analysis.pdf

Example of kCBA Imprecision

Consider code:
1 let f x = x;;
2 let g y = f y;;
3 let a = g 1;;
4 let b = g 2;;

1CBA: a ⊆ {1, 2}

From within f, we can’t remember where g was called

1CFA: same problem
2CBA: a ⊆ {1}
Alternative CBA call stack finitizations exist (e.g. regex)

Such as used in pushdown-assisted CFA

23/23

Example of kCBA Imprecision

Consider code:
1 let f x = x;;
2 let g y = f y;;
3 let a = g 1;;
4 let b = g 2;;

1CBA: a ⊆ {1, 2}

From within f, we can’t remember where g was called
1CFA: same problem
2CBA: a ⊆ {1}
Alternative CBA call stack finitizations exist (e.g. regex)

Such as used in pushdown-assisted CFA

23/23

Example of kCBA Imprecision

Consider code:
1 let f x = x;;
2 let g y = f y;;
3 let a = g 1;;
4 let b = g 2;;

1CBA: a ⊆ {1, 2}
From within f, we can’t remember where g was called

1CFA: same problem
2CBA: a ⊆ {1}
Alternative CBA call stack finitizations exist (e.g. regex)

Such as used in pushdown-assisted CFA

23/23

Example of kCBA Imprecision

Consider code:
1 let f x = x;;
2 let g y = f y;;
3 let a = g 1;;
4 let b = g 2;;

1CBA: a ⊆ {1, 2}
From within f, we can’t remember where g was called

1CFA: same problem

2CBA: a ⊆ {1}
Alternative CBA call stack finitizations exist (e.g. regex)

Such as used in pushdown-assisted CFA

23/23

Example of kCBA Imprecision

Consider code:
1 let f x = x;;
2 let g y = f y;;
3 let a = g 1;;
4 let b = g 2;;

1CBA: a ⊆ {1, 2}
From within f, we can’t remember where g was called

1CFA: same problem
2CBA: a ⊆ {1}

Alternative CBA call stack finitizations exist (e.g. regex)

Such as used in pushdown-assisted CFA

23/23

Example of kCBA Imprecision

Consider code:
1 let f x = x;;
2 let g y = f y;;
3 let a = g 1;;
4 let b = g 2;;

1CBA: a ⊆ {1, 2}
From within f, we can’t remember where g was called

1CFA: same problem
2CBA: a ⊆ {1}
Alternative CBA call stack finitizations exist (e.g. regex)

Such as used in pushdown-assisted CFA

23/23

Example of kCBA Imprecision

Consider code:
1 let f x = x;;
2 let g y = f y;;
3 let a = g 1;;
4 let b = g 2;;

1CBA: a ⊆ {1, 2}
From within f, we can’t remember where g was called

1CFA: same problem
2CBA: a ⊆ {1}
Alternative CBA call stack finitizations exist (e.g. regex)

Such as used in pushdown-assisted CFA

23/23

