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CBA

Incrementally builds control-flow graph (CFG)

Trivial for first-order programs
Higher-order programs: control flow and data flow interact

Initial graph has no call/return edges
Add call/return edges as discovered

Determine which function arrives at call site
All values looked up relative to point in CFG
Relative lookup yields flow-sensitive analysis

CFG is the only data structure

No abstract environment or store
So, variable lookup only needs CFG
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A Very Simple Example

1 let id x = x;;
2 let s1 = id 1;;
3 let s2 = id 2;;

⇓ A-normalization

1 id = fun x -> (
2 ret = x;
3 );
4 n1 = 1;
5 s1 = id n1;
6 n2 = 2;
7 s2 = id n2;

Initial graph:

St

id n1 s1 n2 s2

End

ret
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A Very Simple Example
Graph closure

St id n1 s1 n2 s2 End

ret

x=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> ( ret = x; );
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;
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A Very Simple Example
Graph closure for call site s2

Bind argument n2 to parameter x

St id n1 s1 n2 s2 End
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A Very Simple Example
Graph closure for call site s2
Assign result ret to call site z2

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> ( ret = x; );
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;

6/23



A Very Simple Example
Closure complete!

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

1 id = fun x -> ( ret = x; );
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
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Lookup: Related Work

Lookup is temporally reversed and on demand

Similar to demand-driven CFL-reachability [HRS-FSE95]
CFL-reachability research limited to first-order programs

CBA brings on-demand lookup to higher-order analyses
Challenges:

Polyvariance
Non-local variables
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Call Stack Alignment
Goal: polymorphism

St id n1 s1 n2 s2 End

retx=n1 s1=ret

x=n2
s2=ret

s2?

ret?

x?

n2?

2! ,

x?

n1?

1! /

s2?[]

ret?[s2]

x?[s2]

n2?[]

x?[s2]

1 id = fun x -> ( ret = x; );
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;
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Call Stack Alignment
We need to match calls and returns.
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Call Stack Alignment
We need to match calls and returns.
Annotate wiring nodes with call sites
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Call Stack Alignment
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Call Stack Alignment
We need to match calls and returns.
Spurious results filtered by call stack
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Call Stack Alignment
We need to match calls and returns.

Here, 1 is eliminated
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Call Stack Alignment: Related Work

Model control flow as a PDA

Call stack alignment induces polyvariance!
Long history of this approach in program analysis

CFL-reachability analyses: calls and returns modeled as CFL

CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls
and returns via PDA

PDA is precisely an abstract interpreter
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Handling Non-Local Variables

Non-local example: K-combinator

1 let k v j = v;;
2 let f = k 1;;
3 let g = k 2;;
4 let s = f 0;;

⇓ A-normalization

1 k = fun v -> (k0 = fun j -> (r = v;););
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;
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Handling Non-Local Variables
Perform closure
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Handling Non-Local Variables

Even with call stack alignment, non-locals are hard

When looking for non-local, must find definition of its closure

Search for closure; then, resume looking for non-local

Implementation: stack of lookup operations
2-stack PDA encodes a Turing machine. /

Our solution: finitize call stack; keep full lookup stack.
kCBA: maximum call stack depth k
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Properties of CBA

Theorem: kCBA (for fixed k) has polynomial time bound

Program of size n
New wiring nodes: O(n2)
Therefore, graph size g is O(n2)
Lookup: PDA of size O(gk+1)

(with constant k)

Lemma: CBA is monotonic

Control flow graph: G
Lookup: L(x , p, G) for var x at program point p in graph G
Monotonicity: G1 ⊆ G2 =⇒ L(x , p, G1) ⊆ L(x , p, G2)
Delightful mathematical property; huge win for optimization!
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CBA and CFA

kCFA: exponential time for k > 0, but no non-local
complications

Conjecture:

Suppose program with max lexical nesting depth c
(k + c)CBA strictly more expressive than kCFA
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CBA and PDCFA

PDCFA probably closest in expressiveness

Lookup
PDCFA: Push abstract envs forward; GC limits states
CBA: Look back through CFG to find values; no abstract env

Stack Alignment
PDCFA: Use PDA for call stack; limit to regexes in practice
CBA: Embed finitization of call stack in PDA nodes
Appear to have similar expressiveness

Polyvariance
PDCFA: classic CFA-like graph copying
CBA: via call stack alignment and non-local lookup
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Towards a Real Implementation

Formal definition of further language features
Records
Path-sensitivity: filters validated by PDA
State

Reference implementation on GitHub (slow)
Optimized implementation under development

Uses monotonicity lemma: same lazy PDA for all lookups
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Conclusions

CBA is interesting and worth studying!

Not claiming strictly better, but very different
May be suitable to particular applications

No abstract environment: could make concurrency easier
Path-sensitivity model: possible theorem-proving applications
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Questions?

Code: https://github.com/JHU-PL-Lab/odefa-proof-of-concept

Paper: http://pl.cs.jhu.edu/projects/big-bang/papers/

control-based-program-analysis.pdf
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Example of kCBA Imprecision

Consider code:
1 let f x = x;;
2 let g y = f y;;
3 let a = g 1;;
4 let b = g 2;;

1CBA: a ⊆ {1, 2}

From within f, we can’t remember where g was called

1CFA: same problem
2CBA: a ⊆ {1}
Alternative CBA call stack finitizations exist (e.g. regex)

Such as used in pushdown-assisted CFA
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