Control-Based Program Analysis

Zachary Palmer and Scott F. Smith

Swarthmore College and The Johns Hopkins University

November 23rd, 2015

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

• Incrementally builds control-flow graph (CFG)

• Incrementally builds control-flow graph (CFG)

• Trivial for first-order programs

• Incrementally builds control-flow graph (CFG)

- Trivial for first-order programs
- Higher-order programs: control flow and data flow interact

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
 - Determine which function arrives at call site

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
 - Determine which function arrives at call site
 - All values looked up relative to point in CFG

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
 - Determine which function arrives at call site
 - All values looked up relative to point in CFG
 - Relative lookup yields flow-sensitive analysis

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
 - Determine which function arrives at call site
 - All values looked up relative to point in CFG
 - Relative lookup yields flow-sensitive analysis
- CFG is the only data structure

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
 - Determine which function arrives at call site
 - All values looked up relative to point in CFG
 - Relative lookup yields flow-sensitive analysis
- CFG is the only data structure
 - No abstract environment or store

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
 - Determine which function arrives at call site
 - All values looked up relative to point in CFG
 - Relative lookup yields flow-sensitive analysis
- CFG is the only data structure
 - No abstract environment or store
 - So, variable lookup only needs CFG

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

A Very Simple Example

1 let id x = x;; 2 let s1 = id 1;; 3 let s2 = id 2;;

A Very Simple Example

```
1 let id x = x;;
2 let s1 = id 1;;
3 let s2 = id 2;;
       A-normalization
_1 id = fun x -> (
2 ret = x;
3 );
4 n1 = 1;
5 s1 = id n1;
6 n2 = 2;
7 \text{ s2} = \text{id n2};
```

A Very Simple Example

A Very Simple Example Graph closure

A Very Simple Example Graph closure for call site s1

A Very Simple Example Graph closure for call site s1 Look backward to find function id

A Very Simple Example Graph closure for call site s1 Look backward to find function id

A Very Simple Example Graph closure for call site s1 Look backward to find function id

A Very Simple Example Graph closure for call site s1 Bind argument n1 to parameter x

A Very Simple Example Graph closure for call site s1 Assign result ret to call site z1

A Very Simple Example Graph closure for call site s2

A Very Simple Example Graph closure for call site s2 Look backward to find function id

A Very Simple Example Graph closure for call site s2 Look backward to find function id

A Very Simple Example Graph closure for call site s2 Bind argument n2 to parameter x

A Very Simple Example Graph closure for call site s2 Assign result ret to call site z2

A Very Simple Example Closure complete!

• Lookup is temporally reversed and on demand

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
 - CFL-reachability research limited to first-order programs

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
 - CFL-reachability research limited to first-order programs
- CBA brings on-demand lookup to higher-order analyses

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
 - CFL-reachability research limited to first-order programs
- CBA brings on-demand lookup to higher-order analyses
- Challenges:

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
 - CFL-reachability research limited to first-order programs
- CBA brings on-demand lookup to higher-order analyses
- Challenges:
 - Polyvariance

Lookup: Related Work

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
 - CFL-reachability research limited to first-order programs
- CBA brings on-demand lookup to higher-order analyses
- Challenges:
 - Polyvariance
 - Non-local variables

Call Stack Alignment Goal: polymorphism

Call Stack Alignment We need to match calls and returns.

Call Stack Alignment We need to match calls and returns. Annotate wiring nodes with call sites

2! 🙂

Call Stack Alignment

We need to match calls and returns.

Here, 1 is eliminated

Model control flow as a PDA

- Model control flow as a PDA
- Call stack alignment induces polyvariance!

- Model control flow as a PDA
- Call stack alignment induces polyvariance!
- Long history of this approach in program analysis

- Model control flow as a PDA
- Call stack alignment induces polyvariance!
- Long history of this approach in program analysis
 - CFL-reachability analyses: calls and returns modeled as CFL

- Model control flow as a PDA
- Call stack alignment induces polyvariance!
- Long history of this approach in program analysis
 - CFL-reachability analyses: calls and returns modeled as CFL
- CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls and returns via PDA

- Model control flow as a PDA
- Call stack alignment induces polyvariance!
- Long history of this approach in program analysis
 - CFL-reachability analyses: calls and returns modeled as CFL
- CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls and returns via PDA
 - PDA is precisely an abstract interpreter

Handling Non-Local Variables

Non-local example: K-combinator

Handling Non-Local Variables

Non-local example: K-combinator

11/23

...for call site f.

...for call site g.

...for call site s.

Handling Non-Local Variables Non-locals require careful handling

Handling Non-Local Variables Non-locals require careful handling

Handling Non-Local Variables Non-locals require careful handling

• Even with call stack alignment, non-locals are hard

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
 - Search for closure; then, resume looking for non-local

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
 - Search for closure; then, resume looking for non-local
- Implementation: stack of lookup operations

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
 - Search for closure; then, resume looking for non-local
- Implementation: stack of lookup operations
- 2-stack PDA encodes a Turing machine. ③

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
 - Search for closure; then, resume looking for non-local
- Implementation: stack of lookup operations
- 2-stack PDA encodes a Turing machine. 🔅
 - Our solution: finitize call stack; keep full lookup stack.

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
 - Search for closure; then, resume looking for non-local
- Implementation: stack of lookup operations
- 2-stack PDA encodes a Turing machine. 😳
 - Our solution: finitize call stack; keep full lookup stack.
 - kCBA: maximum call stack depth k

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

• Theorem: kCBA (for fixed k) has polynomial time bound

Theorem: kCBA (for fixed k) has polynomial time bound
Program of size n

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size *n*
 - New wiring nodes: $O(n^2)$

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size *n*
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size *n*
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is O(n²)
 Lookup: PDA of size O(g^{k+1})

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size *n*
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$
 - Lookup: PDA of size $O(g^{k+1})$ (with constant k)

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size *n*
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$
 - Lookup: PDA of size $O(g^{k+1})$ (with constant k)
- Lemma: CBA is monotonic

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size *n*
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$
 - Lookup: PDA of size $O(g^{k+1})$ (with constant k)
- Lemma: CBA is monotonic
 - Control flow graph: G

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size *n*
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$
 - Lookup: PDA of size $O(g^{k+1})$ (with constant k)
- Lemma: CBA is monotonic
 - Control flow graph: G
 - Lookup: L(x, p, G) for var x at program point p in graph G

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size *n*
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$
 - Lookup: PDA of size $O(g^{k+1})$ (with constant k)
- Lemma: CBA is monotonic
 - Control flow graph: G
 - Lookup: L(x, p, G) for var x at program point p in graph G
 - Monotonicity: $G_1 \subseteq G_2 \implies L(x, p, G_1) \subseteq L(x, p, G_2)$

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size *n*
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$
 - Lookup: PDA of size $O(g^{k+1})$ (with constant k)
- Lemma: CBA is monotonic
 - Control flow graph: G
 - Lookup: L(x, p, G) for var x at program point p in graph G
 - Monotonicity: $G_1 \subseteq G_2 \implies L(x, p, G_1) \subseteq L(x, p, G_2)$
 - Delightful mathematical property; huge win for optimization!

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

kCFA: exponential time for k > 0, but no non-local complications

- kCFA: exponential time for k > 0, but no non-local complications
- Conjecture:

- kCFA: exponential time for k > 0, but no non-local complications
- Conjecture:
 - Suppose program with max lexical nesting depth \boldsymbol{c}

- *k*CFA: exponential time for *k* > 0, but no non-local complications
- Conjecture:
 - ${\scriptstyle \bullet}\,$ Suppose program with max lexical nesting depth c
 - (k + c)CBA strictly more expressive than kCFA

• PDCFA probably closest in expressiveness

- PDCFA probably closest in expressiveness
- Lookup
 - PDCFA: Push abstract envs forward; GC limits states
 - CBA: Look back through CFG to find values; no abstract env

- PDCFA probably closest in expressiveness
- Lookup
 - PDCFA: Push abstract envs forward; GC limits states
 - CBA: Look back through CFG to find values; no abstract env

Stack Alignment

- PDCFA: Use PDA for call stack; limit to regexes in practice
- CBA: Embed finitization of call stack in PDA nodes
- Appear to have similar expressiveness

- PDCFA probably closest in expressiveness
- Lookup
 - PDCFA: Push abstract envs forward; GC limits states
 - CBA: Look back through CFG to find values; no abstract env

Stack Alignment

- PDCFA: Use PDA for call stack; limit to regexes in practice
- CBA: Embed finitization of call stack in PDA nodes
- Appear to have similar expressiveness

Polyvariance

- PDCFA: classic CFA-like graph copying
- CBA: via call stack alignment and non-local lookup

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

- Formal definition of further language features
 - Records
 - Path-sensitivity: filters validated by PDA
 - State

- Formal definition of further language features
 - Records
 - Path-sensitivity: filters validated by PDA
 - State
- Reference implementation on GitHub (slow)

- Formal definition of further language features
 - Records
 - Path-sensitivity: filters validated by PDA
 - State
- Reference implementation on GitHub (slow)
- Optimized implementation under development

- Formal definition of further language features
 - Records
 - Path-sensitivity: filters validated by PDA
 - State
- Reference implementation on GitHub (slow)
- Optimized implementation under development
 - Uses monotonicity lemma: same lazy PDA for all lookups

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

• CBA is interesting and worth studying!

- CBA is interesting and worth studying!
- Not claiming strictly better, but very different

- CBA is interesting and worth studying!
- Not claiming strictly better, but very different
- May be suitable to particular applications

- CBA is interesting and worth studying!
- Not claiming strictly better, but very different
- May be suitable to particular applications
 - No abstract environment: could make concurrency easier

- CBA is interesting and worth studying!
- Not claiming strictly better, but very different
- May be suitable to particular applications
 - No abstract environment: could make concurrency easier
 - Path-sensitivity model: possible theorem-proving applications

Questions?

- Code: https://github.com/JHU-PL-Lab/odefa-proof-of-concept
- Paper: http://pl.cs.jhu.edu/projects/big-bang/papers/ control-based-program-analysis.pdf

- Consider code:
- 1 let f x = x;; 2 let g y = f y;; 3 let a = g 1;;
- 4 let b = g 2;;

- Consider code:
- 1 let f x = x;; 2 let g y = f y;; 3 let a = g 1;; 4 let b = g 2;; • 1CBA: a ⊆ {1,2}

- Consider code:
- 1 let f x = x;;
- 2 let g y = f y;;
- 3 let a = g 1;;
- 4 let b = g 2;;
 - 1CBA: $a \subseteq \{1, 2\}$
 - From within f, we can't remember where g was called

- Consider code:
- 1 let f x = x;;
- 2 let g y = f y;;
- 3 let a = g 1;;
- 4 let b = g 2;;
 - 1CBA: $a \subseteq \{1, 2\}$
 - From within f, we can't remember where g was called
 - 1CFA: same problem

- Consider code:
- 1 let f x = x;;
- 2 let g y = f y;;
- 3 let a = g 1;;
- 4 let b = g 2;;
 - 1CBA: $a \subseteq \{1, 2\}$
 - From within f, we can't remember where g was called
 - 1CFA: same problem
 - 2CBA: $a \subseteq \{1\}$

- Consider code:
- 1 let f x = x;;
- 2 let g y = f y;;
- 3 let a = g 1;;
- 4 let b = g 2;;
 - 1CBA: $\mathtt{a} \subseteq \{\mathtt{1},\mathtt{2}\}$
 - From within f, we can't remember where g was called
 - 1CFA: same problem
 - 2CBA: $a \subseteq \{1\}$
 - Alternative CBA call stack finitizations exist (e.g. regex)

- Consider code:
- 1 let f x = x;;
- 2 let g y = f y;;
- 3 let a = g 1;;
- 4 let b = g 2;;
 - 1CBA: $\mathtt{a} \subseteq \{\mathtt{1},\mathtt{2}\}$
 - From within f, we can't remember where g was called
 - 1CFA: same problem
 - 2CBA: $a \subseteq \{1\}$
 - Alternative CBA call stack finitizations exist (e.g. regex)
 - Such as used in pushdown-assisted CFA