Control-Based Program Analysis

Zachary Palmer and Scott F. Smith

Swarthmore College and The Johns Hopkins University

November 23rd, 2015
Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions
Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions
CBA

- Incrementally builds control-flow graph (CFG)
CBA

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
CBA

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
CBA

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
CBA

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
CBA

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
 - Determine which function arrives at call site

All values looked up relative to point in CFG
Relative lookup yields flow-sensitive analysis
CFG is the only data structure
No abstract environment or store
So, variable lookup only needs CFG
CBA

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
 - Determine which function arrives at call site
 - All values looked up relative to point in CFG
CBA

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
 - Determine which function arrives at call site
 - All values looked up relative to point in CFG
 - Relative lookup yields flow-sensitive analysis
CBA

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
 - Determine which function arrives at call site
 - All values looked up relative to point in CFG
 - Relative lookup yields flow-sensitive analysis
- CFG is the only data structure
CBA

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
 - Determine which function arrives at call site
 - All values looked up relative to point in CFG
 - Relative lookup yields flow-sensitive analysis
- CFG is the only data structure
 - No abstract environment or store
CBA

- Incrementally builds control-flow graph (CFG)
 - Trivial for first-order programs
 - Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
 - Determine which function arrives at call site
 - All values looked up relative to point in CFG
 - Relative lookup yields flow-sensitive analysis
- CFG is the only data structure
 - No abstract environment or store
 - So, variable lookup **only** needs CFG
Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions
A Very Simple Example

```
1 let id x = x;;
2 let s1 = id 1;;
3 let s2 = id 2;;
```
A Very Simple Example

1 \textbf{let} \ id \ x = x;;
2 \textbf{let} \ s1 = id 1;;
3 \textbf{let} \ s2 = id 2;;

\[\downarrow\]

A-normalization

1 id = \textbf{fun} \ x \rightarrow (\\
2 \quad \textbf{ret} = x; \\
3 \quad); \\
4 n1 = 1; \\
5 s1 = id n1; \\
6 n2 = 2; \\
7 s2 = id n2;
A Very Simple Example

1 let id x = x;;
2 let s1 = id 1;;
3 let s2 = id 2;;

A-normalization

⇓

1 id = fun x -> (ret = x; 3));
4 n1 = 1;
5 s1 = id n1;
6 n2 = 2;
7 s2 = id n2;

Initial graph:

```
Initial graph:

<table>
<thead>
<tr>
<th>id</th>
<th>n1</th>
<th>s1</th>
<th>n2</th>
<th>s2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>END</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
A Very Simple Example

Graph closure

```ocaml
1 id = fun x -> ( ret = x; );
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;
```
A Very Simple Example
Graph closure for call site s1

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;
A Very Simple Example

Graph closure for call site s1
Look backward to find function id

```
1  id = fun x -> ( ret = x; );
2  n1 = 1;
3  s1 = id n1;
4  n2 = 2;
5  s2 = id n2;
```
A Very Simple Example

Graph closure for call site s1
Look backward to find function id

id = fun x -> (ret = x;);
n1 = 1;
s1 = id n1;
n2 = 2;
s2 = id n2;
A Very Simple Example

Graph closure for call site s1
Look backward to find function id

```
1  id = fun x -> ( ret = x; );
2  n1 = 1;
3  s1 = id n1;
4  n2 = 2;
5  s2 = id n2;
```
A Very Simple Example

Graph closure for call site \texttt{s1}
Bind argument \texttt{n1} to parameter \texttt{x}

1 \texttt{id = fun x -> (ret = x;);}
2 \texttt{n1 = 1;}
3 \texttt{s1 = id n1;}
4 \texttt{n2 = 2;}
5 \texttt{s2 = id n2;}

\begin{verbatim}
 id = fun x -> (ret = x;);
 n1 = 1;
 s1 = id n1;
 n2 = 2;
 s2 = id n2;
\end{verbatim}
A Very Simple Example

Graph closure for call site \(s_1 \)
Assign result \(\text{ret} \) to call site \(z_1 \)

\[
\begin{align*}
\text{id} & = \text{fun} \ x \rightarrow (\text{ret} = x;); \\
n1 & = 1; \\
s1 & = \text{id} \ n1; \\
n2 & = 2; \\
s2 & = \text{id} \ n2;
\end{align*}
\]
A Very Simple Example

Graph closure for call site s2

```
id = fun x -> ( ret = x; );
n1 = 1;
s1 = id n1;
n2 = 2;
s2 = id n2;
```
A Very Simple Example

Graph closure for call site s2
Look backward to find function id

```
1  id = fun x -> ( ret = x; );
2  n1 = 1;
3  s1 = id n1;
4  n2 = 2;
5  s2 = id n2;
```
A Very Simple Example
Graph closure for call site s_2
Look backward to find function id

1. $id = \text{fun } x \rightarrow (\text{ret} = x;);$
2. $n1 = 1;$
3. $s1 = id n1;$
4. $n2 = 2;$
5. $s2 = id n2;$
A Very Simple Example

Graph closure for call site s2

Bind argument n2 to parameter x

1 \texttt{id} = \texttt{fun} \ x \ \to \ (\ \texttt{ret} = x; \) ;
2 \texttt{n1} = 1;
3 \texttt{s1} = \texttt{id} \ \texttt{n1} ;
4 \texttt{n2} = 2 ;
5 \texttt{s2} = \texttt{id} \ \texttt{n2} ;
A Very Simple Example

Graph closure for call site s2
Assign result ret to call site z2

```
id = fun x -> ( ret = x; );
n1 = 1;
s1 = id n1;
n2 = 2;
s2 = id n2;
```
A Very Simple Example
Closure complete!

1 \text{ id } = \text{ fun } x \rightarrow (\text{ ret } = x;); \\
2 \text{ n1 } = 1; \\
3 \text{ s1 } = \text{ id } n1; \\
4 \text{ n2 } = 2; \\
5 \text{ s2 } = \text{ id } n2;
Lookup: Related Work

- Lookup is **temporally reversed** and **on demand**
Lookup: Related Work

- Lookup is **temporarily reversed** and **on demand**
- Similar to demand-driven CFL-reachability [HRS-FSE95]
 - CFL-reachability research limited to first-order programs
Lookup: Related Work

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
 - CFL-reachability research limited to first-order programs
- CBA brings on-demand lookup to higher-order analyses
Lookup: Related Work

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
 - CFL-reachability research limited to first-order programs
- CBA brings on-demand lookup to higher-order analyses
- Challenges:
Lookup: Related Work

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
 - CFL-reachability research limited to first-order programs
- CBA brings on-demand lookup to higher-order analyses
- Challenges:
 - Polyvariance
Lookup: Related Work

- Lookup is temporarily reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
 - CFL-reachability research limited to first-order programs
- CBA brings on-demand lookup to higher-order analyses
- Challenges:
 - Polyvariance
 - Non-local variables
Call Stack Alignment
Goal: polymorphism

```ml
1  id = fun x -> ( ret = x; );
2  n1 = 1;
3  s1 = id n1;
4  n2 = 2;
5  s2 = id n2;
```
Call Stack Alignment
Goal: polymorphism
Look up s2 from end of program

```
id = fun x -> ( ret = x; );
n1 = 1;
s1 = id n1;
n2 = 2;
s2 = id n2;
```
Call Stack Alignment
Goal: polymorphism
Look up s2 from end of program

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;
Call Stack Alignment
Goal: polymorphism
Look up s2 from end of program

```
id = fun x -> ( ret = x; );
n1 = 1;
s1 = id n1;
n2 = 2;
s2 = id n2;
```
Call Stack Alignment
Goal: polymorphism
Look up s2 from end of program

id = fun x -> (ret = x;);
1 n1 = 1;
2 s1 = id n1;
3 n2 = 2;
4 s2 = id n2;
5
Call Stack Alignment
Goal: polymorphism
Look up s2 from end of program

```
id = fun x -> ( ret = x; );
n1 = 1;
s1 = id n1;
n2 = 2;
s2 = id n2;
```
Call Stack Alignment
Goal: polymorphism
Look up s2 from end of program

1 id = fun x -> (ret = x;);
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;
Call Stack Alignment
Goal: polymorphism
Look up s2 from end of program

```
1  id = fun x -> ( ret = x; );
2  n1 = 1;
3  s1 = id n1;
4  n2 = 2;
5  s2 = id n2;
```
Call Stack Alignment
Goal: polymorphism
Look up s2 from end of program

```
1   id = fun x -> ( ret = x; );
2   n1 = 1;
3   s1 = id n1;
4   n2 = 2;
5   s2 = id n2;
```
Call Stack Alignment
We need to match calls and returns.

Call Stack Diagram:

```
id = fun x -> ( ret = x; );
n1 = 1;
s1 = id n1;
n2 = 2;
s2 = id n2;
```
Call Stack Alignment

We need to match calls and returns.
Annotate wiring nodes with call sites

```
1 id = fun x -> ( ret = x; );
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;
```
Call Stack Alignment

We need to match calls and returns.

Maintain call stack during lookup

```
1  id = fun x -> ( ret = x; );
2  n1 = 1;
3  s1 = id n1;
4  n2 = 2;
5  s2 = id n2;
```
Call Stack Alignment

We need to match calls and returns.

Maintain call stack during lookup

id = fun x -> (ret = x;);
1 n1 = 1;
2 s1 = id n1;
3 n2 = 2;
4 s2 = id n2;
Call Stack Alignment

We need to match calls and returns.

Spurious results filtered by call stack

id = fun x -> (ret = x;);
n1 = 1;
s1 = id n1;
n2 = 2;
s2 = id n2;
Call Stack Alignment

We need to match calls and returns.

Spurious results filtered by call stack

```
1  id = fun x -> ( ret = x; );
2  n1 = 1;
3  s1 = id n1;
4  n2 = 2;
5  s2 = id n2;
```
Call Stack Alignment

We need to match calls and returns.

Here, 1 is eliminated

```
1 id = fun x -> ( ret = x; );
2 n1 = 1;
3 s1 = id n1;
4 n2 = 2;
5 s2 = id n2;
```
Call Stack Alignment: Related Work

- Model control flow as a PDA
Model control flow as a PDA
Call stack alignment induces polyvariance!
Call Stack Alignment: Related Work

- Model control flow as a PDA
- Call stack alignment induces polyvariance!
- Long history of this approach in program analysis
Call Stack Alignment: Related Work

- Model control flow as a PDA
- Call stack alignment induces polyvariance!
- Long history of this approach in program analysis
 - CFL-reachability analyses: calls and returns modeled as CFL
Call Stack Alignment: Related Work

- Model control flow as a PDA
- Call stack alignment induces polyvariance!
- Long history of this approach in program analysis
 - CFL-reachability analyses: calls and returns modeled as CFL
- CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls and returns via PDA
Call Stack Alignment: Related Work

- Model control flow as a PDA
- Call stack alignment induces polyvariance!
- Long history of this approach in program analysis
 - CFL-reachability analyses: calls and returns modeled as CFL
- CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls and returns via PDA
 - PDA is precisely an abstract interpreter
Handling Non-Local Variables

Non-local example: K-combinator

1 let k v j = v;;
2 let f = k 1;;
3 let g = k 2;;
4 let s = f 0;;
Handling Non-Local Variables

Non-local example: K-combinator

1 `let k v j = v;;`
2 `let f = k 1;;`
3 `let g = k 2;;`
4 `let s = f 0;;`

\[\Downarrow \]

A-normalization

1 `k = fun v -> (k0 = fun j -> (r = v;;));`
2 `a = 1; f = k a;`
3 `b = 2; g = k b;`
4 `z = 0; s = f z;`
Handling Non-Local Variables
Perform closure

1. \(k = \text{fun} \ v \rightarrow (k0 = \text{fun} \ j \rightarrow (r = v;)); \)
2. \(a = 1; \ f = k \ a; \)
3. \(b = 2; \ g = k \ b; \)
4. \(z = 0; \ s = f \ z; \)
Handling Non-Local Variables
Perform closure
...for call site f.

```
1  k = fun v -> (k0 = fun j -> (r = v;);));
2  a = 1;  f = k a;
3  b = 2;  g = k b;
4  z = 0;  s = f z;
```
Handling Non-Local Variables

Perform closure

...for call site g.

```ml
1 k = fun v -> (k0 = fun j -> (r = v;)););
2 a = 1;  f = k a;
3 b = 2;  g = k b;
4 z = 0;  s = f z;
```
Handling Non-Local Variables

Perform closure

...for call site s.

1 \(k = \text{fun} \ v \rightarrow (k0 = \text{fun} \ j \rightarrow (r = v);); \)
2 \(a = 1; \ f = k \ a; \)
3 \(b = 2; \ g = k \ b; \)
4 \(z = 0; \ s = f \ z; \)
Handling Non-Local Variables
Non-locals require careful handling
Look up s from end of program.

1. `k = fun v -> (k0 = fun j -> (r = v;));`;
2. `a = 1; f = k a;`
3. `b = 2; g = k b;`
4. `z = 0; s = f z;`
Handling Non-Local Variables

Non-locals require careful handling
Look up s from end of program.

1. \(k = \text{fun } v \rightarrow (k0 = \text{fun } j \rightarrow (r = v;));) \\
2. \(a = 1; \ f = k \ a; \)
3. \(b = 2; \ g = k \ b; \)
4. \(z = 0; \ s = f \ z; \)
Handling Non-Local Variables
Non-locals require careful handling
Look up s from end of program.

1. $k = \text{fun } v \to (k0 = \text{fun } j \to (r = v;));$
2. $a = 1; \quad f = k \ a;$
3. $b = 2; \quad g = k \ b;$
4. $z = 0; \quad s = f \ z;$
Handling Non-Local Variables

Non-locals require careful handling

Look up \(s \) from end of program.

\[
\begin{align*}
1 & \quad k = \text{fun } v \rightarrow (k0 = \text{fun } j \rightarrow (r = v;));; \\
2 & \quad a = 1; \quad f = k \ a; \\
3 & \quad b = 2; \quad g = k \ b; \\
4 & \quad z = 0; \quad s = f \ z;
\end{align*}
\]
Handling Non-Local Variables
Non-locals require careful handling

1. \(k = \text{fun } v \rightarrow (k0 = \text{fun } j \rightarrow (r = v)); \);
2. \(a = 1; \ f = k \ a; \)
3. \(b = 2; \ g = k \ b; \)
4. \(z = 0; \ s = f \ z; \)
Handling Non-Local Variables

Non-locals require careful handling

1. \(k = \text{fun } v \rightarrow (k0 = \text{fun } j \rightarrow (r = v));); \\
2. \(a = 1; \ f = k \ a; \)
3. \(b = 2; \ g = k \ b; \)
4. \(z = 0; \ s = f \ z; \)
Handling Non-Local Variables
Non-locals require careful handling

1. \(k = \text{fun } v \rightarrow (k0 = \text{fun } j \rightarrow (r = v));\);
2. \(a = 1; \ f = k \ a;\)
3. \(b = 2; \ g = k \ b;\)
4. \(z = 0; \ s = f \ z;\)
Handling Non-Local Variables
Non-locals require careful handling

k0?[f]

v?f[a] → k0 → f?f[k0] → k0?[f]

v?b → f?k0 → k0?[f]

v?f[a] → k0 → f?f[k0] → k0?[f]

v?b → f?k0 → k0?[f]

j?z → g?k0 → f?f[k0] → k0?[f]

f?[] → k0?[f]

r?[] → v?[s]

s?[] → r?[]

1. k = fun v -> (k0 = fun j -> (r = v;));
2. a = 1; f = k a;
3. b = 2; g = k b;
4. z = 0; s = f z;
Handling Non-Local Variables

Non-locals require careful handling

1. \(k = \text{fun } v \rightarrow (k0 = \text{fun } j \rightarrow (r = v);); \)
2. \(a = 1; \ f = k \ a; \)
3. \(b = 2; \ g = k \ b; \)
4. \(z = 0; \ s = f \ z; \)
Handling Non-Local Variables
Non-locals require careful handling

1 k = fun v -> (k0 = fun j -> (r = v;));
2 a = 1; f = k a;
3 b = 2; g = k b;
4 z = 0; s = f z;
Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard
Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
 - Search for closure; then, resume looking for non-local
Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
 - Search for closure; then, resume looking for non-local
- Implementation: stack of lookup operations
Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
 - Search for closure; then, resume looking for non-local
- Implementation: stack of lookup operations
- 2-stack PDA encodes a Turing machine. 😞
Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
 - Search for closure; then, resume looking for non-local
- Implementation: stack of lookup operations
- 2-stack PDA encodes a Turing machine. 😞
 - Our solution: finitize call stack; keep full lookup stack.
Handling Non-Local Variables

- Even with call stack alignment, non.locals are hard
- When looking for non-local, must find definition of its closure
 - Search for closure; then, resume looking for non-local
- Implementation: stack of lookup operations
- 2-stack PDA encodes a Turing machine. 😞
 - Our solution: finitize call stack; keep full lookup stack.
 - kCBA: maximum call stack depth k
Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions
Properties of CBA

- Theorem: kCBA (for fixed k) has polynomial time bound

New wiring nodes: $O(n^2)$

Therefore, graph size g is $O(n^2)$

Lookup: PDA of size $O(gk + 1)$ (with constant k)

Lemma: CBA is monotonic

Control flow graph: G

Lookup: $L(x, p, G)$ for var x at program point p in graph G

Monotonicity: $G_1 \subseteq G_2 \Rightarrow L(x, p, G_1) \subseteq L(x, p, G_2)$

Delightful mathematical property; huge win for optimization!
Properties of CBA

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size n
Properties of CBA

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size n
 - New wiring nodes: $O(n^2)$
Properties of CBA

- **Theorem:** kCBA (for fixed k) has polynomial time bound
 - Program of size n
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$
Properties of CBA

- Theorem: \(k \text{CBA} \) (for fixed \(k \)) has polynomial time bound
 - Program of size \(n \)
 - New wiring nodes: \(O(n^2) \)
 - Therefore, graph size \(g \) is \(O(n^2) \)
 - Lookup: PDA of size \(O(g^{k+1}) \)
Properties of CBA

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size n
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$
 - Lookup: PDA of size $O(g^{k+1})$ (with constant k)
Properties of CBA

- Theorem: \(k \text{CBA} \) (for fixed \(k \)) has polynomial time bound
 - Program of size \(n \)
 - New wiring nodes: \(O(n^2) \)
 - Therefore, graph size \(g \) is \(O(n^2) \)
 - Lookup: PDA of size \(O(g^{k+1}) \) (with constant \(k \))

- Lemma: CBA is monotonic
Properties of CBA

- **Theorem:** kCBA (for fixed k) has polynomial time bound
 - Program of size n
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$
 - Lookup: PDA of size $O(g^{k+1})$ (with constant k)

- **Lemma:** CBA is monotonic
 - Control flow graph: G
Properties of CBA

- Theorem: kCBA (for fixed k) has polynomial time bound
 - Program of size n
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$
 - Lookup: PDA of size $O(g^{k+1})$ (with constant k)

- Lemma: CBA is monotonic
 - Control flow graph: G
 - Lookup: $L(x, p, G)$ for var x at program point p in graph G
Properties of CBA

- **Theorem:** kCBA (for fixed k) has polynomial time bound
 - Program of size n
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$
 - Lookup: PDA of size $O(g^{k+1})$ (with constant k)

- **Lemma:** CBA is monotonic
 - Control flow graph: G
 - Lookup: $L(x, p, G)$ for var x at program point p in graph G
 - Monotonicity: $G_1 \subseteq G_2 \implies L(x, p, G_1) \subseteq L(x, p, G_2)$
Properties of CBA

- **Theorem**: kCBA (for fixed k) has polynomial time bound
 - Program of size n
 - New wiring nodes: $O(n^2)$
 - Therefore, graph size g is $O(n^2)$
 - Lookup: PDA of size $O(g^{k+1})$ (with constant k)

- **Lemma**: CBA is monotonic
 - Control flow graph: G
 - Lookup: $L(x, p, G)$ for var x at program point p in graph G
 - Monotonicity: $G_1 \subseteq G_2 \implies L(x, p, G_1) \subseteq L(x, p, G_2)$
 - Delightful mathematical property; huge win for optimization!
Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions
CBA and CFA

- kCFA: exponential time for $k > 0$, but no non-local complications
CBA and CFA

- kCFA: exponential time for $k > 0$, but no non-local complications
- Conjecture:
CBA and CFA

- kCFA: exponential time for $k > 0$, but no non-local complications
- Conjecture:
 - Suppose program with max lexical nesting depth c
CBA and CFA

- kCFA: exponential time for $k > 0$, but no non-local complications
- Conjecture:
 - Suppose program with max lexical nesting depth c
 - $(k + c)$CBA strictly more expressive than kCFA
CBA and PDCFA

- PDCFA probably closest in expressiveness
CBA and PDCFA

- **PDCFA** probably closest in expressiveness
- **Lookup**
 - **PDCFA**: Push abstract envs forward; GC limits states
 - **CBA**: Look back through CFG to find values; no abstract env
CBA and PDCFA

- PDCFA probably closest in expressiveness

Lookup
- PDCFA: Push abstract envs forward; GC limits states
- CBA: Look back through CFG to find values; no abstract env

Stack Alignment
- PDCFA: Use PDA for call stack; limit to regexes in practice
- CBA: Embed finitization of call stack in PDA nodes
- Appear to have similar expressiveness
CBA and PDCFA

- PDCFA probably closest in expressiveness

Lookup
- PDCFA: Push abstract envs forward; GC limits states
- CBA: Look back through CFG to find values; no abstract env

Stack Alignment
- PDCFA: Use PDA for call stack; limit to regexes in practice
- CBA: Embed finitization of call stack in PDA nodes
- Appear to have similar expressiveness

Polyvariance
- PDCFA: classic CFA-like graph copying
- CBA: via call stack alignment and non-local lookup
Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions
Towards a Real Implementation

- Formal definition of further language features
 - Records
 - Path-sensitivity: filters validated by PDA
 - State
Towards a Real Implementation

- Formal definition of further language features
 - Records
 - Path-sensitivity: filters validated by PDA
 - State
- Reference implementation on GitHub (slow)
Towards a Real Implementation

- Formal definition of further language features
 - Records
 - Path-sensitivity: filters validated by PDA
 - State
- Reference implementation on GitHub (slow)
- Optimized implementation under development
Towards a Real Implementation

- Formal definition of further language features
 - Records
 - Path-sensitivity: filters validated by PDA
 - State
- Reference implementation on GitHub (slow)
- Optimized implementation under development
 - Uses monotonicity lemma: same lazy PDA for all lookups
Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation

Conclusions
Conclusions

- CBA is interesting and worth studying!
Conclusions

- CBA is interesting and worth studying!
- Not claiming strictly better, but very different
Conclusions

- CBA is interesting and worth studying!
- Not claiming strictly better, but very different
- May be suitable to particular applications
Conclusions

- CBA is interesting and worth studying!
- Not claiming strictly better, but very different
- May be suitable to particular applications
 - No abstract environment: could make concurrency easier
CBA is interesting and worth studying!

Not claiming strictly better, but very different

May be suitable to particular applications
 - No abstract environment: could make concurrency easier
 - Path-sensitivity model: possible theorem-proving applications
Questions?

Example of kCBA Imprecision

Consider code:

1. `let f x = x;;`
2. `let g y = f y;;`
3. `let a = g 1;;`
4. `let b = g 2;;`

CBA: $a \subseteq \{1, 2\}$

From within f, we can't remember where g was called.

CBA: $a \subseteq \{1\}$

Alternative CBA call stack finitizations exist (e.g. regex) such as used in pushdown-assisted CFA.
Example of kCBA Imprecision

Consider code:

```ocaml
define f x = x
let g y = f y
let a = g 1
let b = g 2

cba: a ⊆ {1, 2}
```

From within f, we can't remember where g was called.

CFA: same problem.

CBA: $a \subseteq \{1\}$

Alternative CBA call stack finitizations exist (e.g. regex) such as used in pushdown-assisted CFA.
Example of kCBA Imprecision

Consider code:

```ml
let f x = x;;
let g y = f y;;
let a = g 1;;
let b = g 2;;
```

1CBA: $a \subseteq \{1, 2\}$

- From within f, we can't remember where g was called.

2CBA: same problem

Alternative CBA call stack finitizations exist (e.g. regex) Such as used in pushdown-assisted CFA.
Example of \(k\)CBA Imprecision

- Consider code:

```plaintext
1 let f x = x;;
2 let g y = f y;;
3 let a = g 1;;
4 let b = g 2;;
```

- **1CBA:** \(a \subseteq \{1, 2\}\)
 - From within \(f\), we can't remember where \(g\) was called

- **1CFA:** same problem
Example of \(k \)CBA Imprecision

- Consider code:

```ml
let f x = x;;
let g y = f y;;
let a = g 1;;
let b = g 2;;
```

- 1CBA: \(a \subseteq \{1, 2\} \)
 - From within \(f \), we can't remember where \(g \) was called

- 1CFA: same problem

- 2CBA: \(a \subseteq \{1\} \)
Example of kCBA Imprecision

- Consider code:

```ocaml
1 let f x = x;;
2 let g y = f y;;
3 let a = g 1;;
4 let b = g 2;;
```

- 1CBA: $a \subseteq \{1, 2\}$
 - From within f, we can't remember where g was called

- 1CFA: same problem

- 2CBA: $a \subseteq \{1\}$

- Alternative CBA call stack finitizations exist (e.g. regex)
Example of kCBA Imprecision

Consider code:

```haskell
let f x = x;;
let g y = f y;;
let a = g 1;;
let b = g 2;;
```

- **1CBA**: $a \subseteq \{1, 2\}$
 - From within f, we can't remember where g was called
- **1CFA**: same problem
- **2CBA**: $a \subseteq \{1\}$
- Alternative CBA call stack finitizations exist (e.g. regex)
 - Such as used in pushdown-assisted CFA