Control-Based Program Analysis

Zachary Palmer and Scott F. Smith
Swarthmore College and The Johns Hopkins University

November 23rd, 2015

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

CBA

- Incrementally builds control-flow graph (CFG)

CBA

- Incrementally builds control-flow graph (CFG)
- Trivial for first-order programs

CBA

- Incrementally builds control-flow graph (CFG)
- Trivial for first-order programs
- Higher-order programs: control flow and data flow interact

CBA

- Incrementally builds control-flow graph (CFG)
- Trivial for first-order programs
- Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges

CBA

- Incrementally builds control-flow graph (CFG)
- Trivial for first-order programs
- Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered

CBA

- Incrementally builds control-flow graph (CFG)
- Trivial for first-order programs
- Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
- Determine which function arrives at call site

CBA

- Incrementally builds control-flow graph (CFG)
- Trivial for first-order programs
- Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
- Determine which function arrives at call site
- All values looked up relative to point in CFG

CBA

- Incrementally builds control-flow graph (CFG)
- Trivial for first-order programs
- Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
- Determine which function arrives at call site
- All values looked up relative to point in CFG
- Relative lookup yields flow-sensitive analysis

CBA

- Incrementally builds control-flow graph (CFG)
- Trivial for first-order programs
- Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
- Determine which function arrives at call site
- All values looked up relative to point in CFG
- Relative lookup yields flow-sensitive analysis
- CFG is the only data structure

CBA

- Incrementally builds control-flow graph (CFG)
- Trivial for first-order programs
- Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
- Determine which function arrives at call site
- All values looked up relative to point in CFG
- Relative lookup yields flow-sensitive analysis
- CFG is the only data structure
- No abstract environment or store

CBA

- Incrementally builds control-flow graph (CFG)
- Trivial for first-order programs
- Higher-order programs: control flow and data flow interact
- Initial graph has no call/return edges
- Add call/return edges as discovered
- Determine which function arrives at call site
- All values looked up relative to point in CFG
- Relative lookup yields flow-sensitive analysis
- CFG is the only data structure
- No abstract environment or store
- So, variable lookup only needs CFG

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

A Very Simple Example

$$
\begin{aligned}
& 1 \text { let id } x=x ; ; \\
& 2 \text { let } s 1=\text { id } 1 ; \\
& 3 \text { let } s 2=\text { id } 2 ;
\end{aligned}
$$

A Very Simple Example

```
1 let id x = x;;
2 let s1 = id 1;;
3 let s2 = id 2;;
    | A-normalization
1 id = fun x -> (
2 ret = x;
3 );
4 n1 = 1;
5 s1 = id n1;
6 n2 = 2;
7 s2 = id n2;
```


A Very Simple Example

A Very Simple Example

Graph closure

```
ret
```


$$
\begin{aligned}
& 1 \text { id }=\text { fun } x->(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 ; \\
& 5 \mathrm{~s} 2=\text { id n2; }
\end{aligned}
$$

A Very Simple Example

Graph closure for call site s1

```
1 id \(=\) fun \(x \rightarrow\) (ret \(=x ;)\);
\(2 \mathrm{n} 1=1\);
\(3 \mathrm{~s} 1=\) id n 1 ;
4 n2 \(=2\);
5 s2 = id n2;
```


A Very Simple Example

Graph closure for call site s1

Look backward to find function id

A Very Simple Example

Graph closure for call site s1

Look backward to find function id

A Very Simple Example

Graph closure for call site s1

Look backward to find function id

ret


```
1 id \(=\) fun \(x \rightarrow\) (ret \(=x ;\) );
\(2 \mathrm{n} 1=1\);
\(3 \mathrm{~s} 1=\) id n 1 ;
4 n2 \(=2\);
5 s2 = id n2;
```


A Very Simple Example

Graph closure for call site s1

Bind argument n 1 to parameter x


```
1 id \(=\) fun \(x \rightarrow\) (ret \(=x ;\) );
\(2 \mathrm{n} 1=1\);
\(3 \mathrm{~s} 1=\) id n 1 ;
4 n2 \(=2\);
5 s2 = id n2;
```


A Very Simple Example

Graph closure for call site s1

Assign result ret to call site z1

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x->(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

A Very Simple Example

Graph closure for call site s2

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x->(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 ; \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

A Very Simple Example

Graph closure for call site s2

Look backward to find function id

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x->(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

A Very Simple Example

Graph closure for call site s2

Look backward to find function id

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x->(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

A Very Simple Example

Graph closure for call site s2

Bind argument n 2 to parameter x

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x->(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 ; \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

A Very Simple Example

Graph closure for call site s2

Assign result ret to call site z2

A Very Simple Example

Closure complete!

Lookup: Related Work

- Lookup is temporally reversed and on demand

Lookup: Related Work

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
- CFL-reachability research limited to first-order programs

Lookup: Related Work

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
- CFL-reachability research limited to first-order programs
- CBA brings on-demand lookup to higher-order analyses

Lookup: Related Work

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
- CFL-reachability research limited to first-order programs
- CBA brings on-demand lookup to higher-order analyses
- Challenges:

Lookup: Related Work

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
- CFL-reachability research limited to first-order programs
- CBA brings on-demand lookup to higher-order analyses
- Challenges:
- Polyvariance

Lookup: Related Work

- Lookup is temporally reversed and on demand
- Similar to demand-driven CFL-reachability [HRS-FSE95]
- CFL-reachability research limited to first-order programs
- CBA brings on-demand lookup to higher-order analyses
- Challenges:
- Polyvariance
- Non-local variables

Call Stack Alignment

Goal: polymorphism

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x->(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

Call Stack Alignment

Goal: polymorphism

Look up s2 from end of program

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x \rightarrow(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 \\
& 3 \mathrm{~s} 1=\text { id } \mathrm{n} 1 \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id } \mathrm{n} 2
\end{aligned}
$$

Call Stack Alignment

Goal: polymorphism

Look up s2 from end of program

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x \rightarrow(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 \\
& 3 \mathrm{~s} 1=\text { id } \mathrm{n} 1 \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id } \mathrm{n} 2
\end{aligned}
$$

Call Stack Alignment

Goal: polymorphism

Look up s2 from end of program

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x \rightarrow(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 \\
& 3 \mathrm{~s} 1=\text { id } \mathrm{n} 1 \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id } \mathrm{n} 2
\end{aligned}
$$

Call Stack Alignment

Goal: polymorphism
Look up s2 from end of program

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x \rightarrow(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

Call Stack Alignment

Goal: polymorphism
Look up s2 from end of program

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x->(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 \\
& 3 \mathrm{~s} 1=\text { id } \mathrm{n} 1 \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id } \mathrm{n} 2
\end{aligned}
$$

Call Stack Alignment

Goal: polymorphism
Look up s2 from end of program

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x->(\text { ret }=x ;) \\
& 2 \mathrm{n} 1=1 \\
& 3 \mathrm{~s} 1=\text { id n1 } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

Call Stack Alignment

Goal: polymorphism
Look up s2 from end of program

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x \rightarrow(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

Call Stack Alignment

Goal: polymorphism
Look up s2 from end of program

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x \rightarrow(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

Call Stack Alignment

We need to match calls and returns.

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x->(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

Call Stack Alignment

We need to match calls and returns.
Annotate wiring nodes with call sites

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x \rightarrow(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

Call Stack Alignment

We need to match calls and returns.

Maintain call stack during lookup

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x \rightarrow(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

Call Stack Alignment

We need to match calls and returns.

Maintain call stack during lookup

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x \rightarrow(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

Call Stack Alignment

We need to match calls and returns.

Spurious results filtered by call stack

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x \rightarrow(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

Call Stack Alignment

We need to match calls and returns.

Spurious results filtered by call stack

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x \rightarrow(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

Call Stack Alignment

We need to match calls and returns.

Here, 1 is eliminated

$$
\begin{aligned}
& 1 \text { id }=\text { fun } x->(\text { ret }=x ;) ; \\
& 2 \mathrm{n} 1=1 ; \\
& 3 \mathrm{~s} 1=\text { id n1; } \\
& 4 \mathrm{n} 2=2 \\
& 5 \mathrm{~s} 2=\text { id n2 }
\end{aligned}
$$

Call Stack Alignment: Related Work

- Model control flow as a PDA

Call Stack Alignment: Related Work

- Model control flow as a PDA
- Call stack alignment induces polyvariance!

Call Stack Alignment: Related Work

- Model control flow as a PDA
- Call stack alignment induces polyvariance!
- Long history of this approach in program analysis

Call Stack Alignment: Related Work

- Model control flow as a PDA
- Call stack alignment induces polyvariance!
- Long history of this approach in program analysis
- CFL-reachability analyses: calls and returns modeled as CFL

Call Stack Alignment: Related Work

- Model control flow as a PDA
- Call stack alignment induces polyvariance!
- Long history of this approach in program analysis
- CFL-reachability analyses: calls and returns modeled as CFL
- CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls and returns via PDA

Call Stack Alignment: Related Work

- Model control flow as a PDA
- Call stack alignment induces polyvariance!
- Long history of this approach in program analysis
- CFL-reachability analyses: calls and returns modeled as CFL
- CFA2 [VS-ESOP10] and PDCFA [MSV-PLDI10]: align calls and returns via PDA
- PDA is precisely an abstract interpreter

Handling Non-Local Variables

Non-local example: K-combinator

```
1 let k v j = v;;
2 let f = k 1;;
3 let g = k 2;;
4 let s = f 0;;
```


Handling Non-Local Variables

Non-local example: K-combinator

$$
\begin{aligned}
& 1 \text { let } k \text { v j = v; ; } \\
& 2 \text { let } f=k 1 \text {; ; } \\
& 3 \text { let } \mathrm{g}=\mathrm{k} 2 \text {; ; } \\
& 4 \text { let } \mathrm{s}=\mathrm{f} 0 ; \text {; } \\
& \Downarrow \text { A-normalization } \\
& 1 \mathrm{k}=\text { fun } \mathrm{v} \rightarrow \text { (} \mathrm{k} 0=\text { fun } \mathrm{j} \rightarrow \text { (} \mathrm{r}=\mathrm{v} ; \text {) ;) ; } \\
& \text { 2 } \mathrm{a}=1 ; \quad \mathrm{f}=\mathrm{k} \mathrm{a} \text {; } \\
& 3 \mathrm{~b}=2 ; \mathrm{g}=\mathrm{k} \mathrm{~b} \text {; } \\
& 4 \mathrm{z}=0 ; \mathrm{s}=\mathrm{f} \mathrm{z} \text {; }
\end{aligned}
$$

Handling Non-Local Variables

Perform closure

$1 \mathrm{k}=$ fun $\mathrm{v} \rightarrow$ ($k 0=$ fun $j \rightarrow(\mathrm{r}=\mathrm{v} ;)$;) ;
$2 \mathrm{a}=1 ; \quad \mathrm{f}=\mathrm{k} \mathrm{a}$;
$3 \mathrm{~b}=2 ; \quad \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; \quad s=f z ;$

Handling Non-Local Variables

Perform closure

...for call site f.

1 k = fun v -> (k0 = fun j-> (r = v;); ;
2 $\mathrm{a}=1 ; \mathrm{f}=\mathrm{k} \mathrm{a}$;
з $\mathrm{b}=2 ; \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; s=f z ;$

Handling Non-Local Variables

Perform closure

...for call site g.

1 k = fun v -> (k0 = fun j-> (r = v;); ;
2 $\mathrm{a}=1 ; \mathrm{f}=\mathrm{k} \mathrm{a}$;
з $\mathrm{b}=2 ; \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; s=f z ;$

Handling Non-Local Variables

Perform closure

...for call site s.

$1 \mathrm{k}=$ fun $\mathrm{v} \rightarrow$ (k0 $=$ fun $j \rightarrow(r=v ;) ;) ;$
$2 \mathrm{a}=1 ; \mathrm{f}=\mathrm{k} \mathrm{a}$;
$3 \mathrm{~b}=2 ; \quad \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; \quad s=f z ;$

Handling Non-Local Variables Non-locals require careful handling

Look up s from end of program.

$1 \mathrm{k}=$ fun $\mathrm{v} \rightarrow$ (k0 $=$ fun $j \rightarrow(r=v ;) ;) ;$
$2 \mathrm{a}=1 ; \quad \mathrm{f}=\mathrm{k} \mathrm{a}$;
$3 \mathrm{~b}=2 ; \quad \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; \quad s=f z ;$

Handling Non-Local Variables Non-locals require careful handling

Look up s from end of program.

$1 \mathrm{k}=$ fun $\mathrm{v} \rightarrow$ ($\mathrm{k} 0=$ fun $\mathrm{j} \rightarrow$ ($\mathrm{r}=\mathrm{v} ;$); ;
2 a = 1; f = k a;
$3 \mathrm{~b}=2 ; \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; \quad s=f z ;$

Handling Non-Local Variables Non-locals require careful handling

Look up s from end of program.

$1 \mathrm{k}=$ fun $\mathrm{v} \rightarrow$ ($\mathrm{k} 0=$ fun $\mathrm{j} \rightarrow$ ($\mathrm{r}=\mathrm{v} ;$); ;
2 a = 1; f = k a;
$3 \mathrm{~b}=2 ; \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; \quad s=f z ;$

Handling Non-Local Variables Non-locals require careful handling

Look up s from end of program.

$1 \mathrm{k}=$ fun $\mathrm{v} \rightarrow$ ($\mathrm{k} 0=$ fun $\mathrm{j} \rightarrow$ ($\mathrm{r}=\mathrm{v} ;$); ;
2 a = 1; f = k a;
$3 \mathrm{~b}=2 ; \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; \quad s=f z ;$

Handling Non-Local Variables Non-locals require careful handling

$1 \mathrm{k}=$ fun $\mathrm{v} \rightarrow$ ($\mathrm{k} 0=$ fun $\mathrm{j} \rightarrow$ ($\mathrm{r}=\mathrm{v} ;$); ;
2 a = 1; f = k a;
$3 \mathrm{~b}=2 ; \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; \quad s=f z ;$

Handling Non-Local Variables Non-locals require careful handling

$1 \mathrm{k}=$ fun $\mathrm{v} \rightarrow$ ($\mathrm{k} 0=$ fun $\mathrm{j} \rightarrow$ ($\mathrm{r}=\mathrm{v} ;$); ;
2 a = 1; f = k a;
$3 \mathrm{~b}=2 ; \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; \quad s=f z ;$

Handling Non-Local Variables
 Non-locals require careful handling

$1 \mathrm{k}=$ fun $\mathrm{v} \rightarrow$ ($\mathrm{k} 0=$ fun $\mathrm{j} \rightarrow(\mathrm{r}=\mathrm{v} ;)$;) ;
$2 \mathrm{a}=1 ; \mathrm{f}=\mathrm{k} \mathrm{a}$;
$3 \mathrm{~b}=2 ; \quad \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; \quad s=f z ;$

Handling Non-Local Variables
 Non-locals require careful handling

$1 \mathrm{k}=$ fun $\mathrm{v} \rightarrow$ ($\mathrm{k} 0=$ fun $\mathrm{j} \rightarrow$ ($\mathrm{r}=\mathrm{v} ;$); ;
2 a = 1; f = k a;
$3 \mathrm{~b}=2 ; \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; \quad s=f z ;$

Handling Non-Local Variables Non-locals require careful handling

$1 \mathrm{k}=$ fun $\mathrm{v} \rightarrow$ ($\mathrm{k} 0=$ fun $\mathrm{j} \rightarrow(\mathrm{r}=\mathrm{v} ;)$;) ;
2 a = 1; f = k a;
$3 \mathrm{~b}=2 ; \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; \quad s=f z ;$

Handling Non-Local Variables Non-locals require careful handling

$1 \mathrm{k}=$ fun $\mathrm{v} \rightarrow$ ($\mathrm{k} 0=$ fun $\mathrm{j} \rightarrow$ ($\mathrm{r}=\mathrm{v} ;$); ;
2 a = 1; f = k a;
$3 \mathrm{~b}=2 ; \mathrm{g}=\mathrm{k} \mathrm{b}$;
$4 z=0 ; \quad s=f z ;$

Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard

Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure

Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
- Search for closure; then, resume looking for non-local

Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
- Search for closure; then, resume looking for non-local
- Implementation: stack of lookup operations

Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
- Search for closure; then, resume looking for non-local
- Implementation: stack of lookup operations
- 2-stack PDA encodes a Turing machine. ©

Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
- Search for closure; then, resume looking for non-local
- Implementation: stack of lookup operations
- 2-stack PDA encodes a Turing machine. ©
- Our solution: finitize call stack; keep full lookup stack.

Handling Non-Local Variables

- Even with call stack alignment, non-locals are hard
- When looking for non-local, must find definition of its closure
- Search for closure; then, resume looking for non-local
- Implementation: stack of lookup operations
- 2-stack PDA encodes a Turing machine. ©
- Our solution: finitize call stack; keep full lookup stack.
- k CBA: maximum call stack depth k

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

Properties of CBA

- Theorem: k CBA (for fixed k) has polynomial time bound

Properties of CBA

- Theorem: k CBA (for fixed k) has polynomial time bound
- Program of size n

Properties of CBA

- Theorem: k CBA (for fixed k) has polynomial time bound
- Program of size n
- New wiring nodes: $O\left(n^{2}\right)$

Properties of CBA

- Theorem: k CBA (for fixed k) has polynomial time bound
- Program of size n
- New wiring nodes: $O\left(n^{2}\right)$
- Therefore, graph size g is $O\left(n^{2}\right)$

Properties of CBA

- Theorem: k CBA (for fixed k) has polynomial time bound
- Program of size n
- New wiring nodes: $O\left(n^{2}\right)$
- Therefore, graph size g is $O\left(n^{2}\right)$
- Lookup: PDA of size $O\left(g^{k+1}\right)$

Properties of CBA

- Theorem: k CBA (for fixed k) has polynomial time bound
- Program of size n
- New wiring nodes: $O\left(n^{2}\right)$
- Therefore, graph size g is $O\left(n^{2}\right)$
- Lookup: PDA of size $O\left(g^{k+1}\right)$ (with constant k)

Properties of CBA

- Theorem: k CBA (for fixed k) has polynomial time bound
- Program of size n
- New wiring nodes: $O\left(n^{2}\right)$
- Therefore, graph size g is $O\left(n^{2}\right)$
- Lookup: PDA of size $O\left(g^{k+1}\right)$ (with constant k)
- Lemma: CBA is monotonic

Properties of CBA

- Theorem: k CBA (for fixed k) has polynomial time bound
- Program of size n
- New wiring nodes: $O\left(n^{2}\right)$
- Therefore, graph size g is $O\left(n^{2}\right)$
- Lookup: PDA of size $O\left(g^{k+1}\right)$ (with constant k)
- Lemma: CBA is monotonic
- Control flow graph: G

Properties of CBA

- Theorem: k CBA (for fixed k) has polynomial time bound
- Program of size n
- New wiring nodes: $O\left(n^{2}\right)$
- Therefore, graph size g is $O\left(n^{2}\right)$
- Lookup: PDA of size $O\left(g^{k+1}\right)$ (with constant k)
- Lemma: CBA is monotonic
- Control flow graph: G
- Lookup: $L(x, p, G)$ for var x at program point p in graph G

Properties of CBA

- Theorem: k CBA (for fixed k) has polynomial time bound
- Program of size n
- New wiring nodes: $O\left(n^{2}\right)$
- Therefore, graph size g is $O\left(n^{2}\right)$
- Lookup: PDA of size $O\left(g^{k+1}\right)$ (with constant k)
- Lemma: CBA is monotonic
- Control flow graph: G
- Lookup: $L(x, p, G)$ for var x at program point p in graph G
- Monotonicity: $G_{1} \subseteq G_{2} \Longrightarrow L\left(x, p, G_{1}\right) \subseteq L\left(x, p, G_{2}\right)$

Properties of CBA

- Theorem: k CBA (for fixed k) has polynomial time bound
- Program of size n
- New wiring nodes: $O\left(n^{2}\right)$
- Therefore, graph size g is $O\left(n^{2}\right)$
- Lookup: PDA of size $O\left(g^{k+1}\right)$ (with constant k)
- Lemma: CBA is monotonic
- Control flow graph: G
- Lookup: $L(x, p, G)$ for var x at program point p in graph G
- Monotonicity: $G_{1} \subseteq G_{2} \Longrightarrow L\left(x, p, G_{1}\right) \subseteq L\left(x, p, G_{2}\right)$
- Delightful mathematical property; huge win for optimization!

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

CBA and CFA

- kCFA: exponential time for $k>0$, but no non-local complications

CBA and CFA

- kCFA: exponential time for $k>0$, but no non-local complications
- Conjecture:

CBA and CFA

- kCFA: exponential time for $k>0$, but no non-local complications
- Conjecture:
- Suppose program with max lexical nesting depth c

CBA and CFA

- kCFA: exponential time for $k>0$, but no non-local complications
- Conjecture:
- Suppose program with max lexical nesting depth c
- $(k+c)$ CBA strictly more expressive than k CFA

CBA and PDCFA

- PDCFA probably closest in expressiveness

CBA and PDCFA

- PDCFA probably closest in expressiveness
- Lookup
- PDCFA: Push abstract envs forward; GC limits states
- CBA: Look back through CFG to find values; no abstract env

CBA and PDCFA

- PDCFA probably closest in expressiveness
- Lookup
- PDCFA: Push abstract envs forward; GC limits states
- CBA: Look back through CFG to find values; no abstract env
- Stack Alignment
- PDCFA: Use PDA for call stack; limit to regexes in practice
- CBA: Embed finitization of call stack in PDA nodes
- Appear to have similar expressiveness

CBA and PDCFA

- PDCFA probably closest in expressiveness
- Lookup
- PDCFA: Push abstract envs forward; GC limits states
- CBA: Look back through CFG to find values; no abstract env
- Stack Alignment
- PDCFA: Use PDA for call stack; limit to regexes in practice
- CBA: Embed finitization of call stack in PDA nodes
- Appear to have similar expressiveness
- Polyvariance
- PDCFA: classic CFA-like graph copying
- CBA: via call stack alignment and non-local lookup

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

Towards a Real Implementation

- Formal definition of further language features
- Records
- Path-sensitivity: filters validated by PDA
- State

Towards a Real Implementation

- Formal definition of further language features
- Records
- Path-sensitivity: filters validated by PDA
- State
- Reference implementation on GitHub (slow)

Towards a Real Implementation

- Formal definition of further language features
- Records
- Path-sensitivity: filters validated by PDA
- State
- Reference implementation on GitHub (slow)
- Optimized implementation under development

Towards a Real Implementation

- Formal definition of further language features
- Records
- Path-sensitivity: filters validated by PDA
- State
- Reference implementation on GitHub (slow)
- Optimized implementation under development
- Uses monotonicity lemma: same lazy PDA for all lookups

Outline

- CBA Overview
- CBA by Example
- Properties of CBA
- Comparison to Related Analyses
- Implementation
- Conclusions

Conclusions

- CBA is interesting and worth studying!

Conclusions

- CBA is interesting and worth studying!
- Not claiming strictly better, but very different

Conclusions

- CBA is interesting and worth studying!
- Not claiming strictly better, but very different
- May be suitable to particular applications

Conclusions

- CBA is interesting and worth studying!
- Not claiming strictly better, but very different
- May be suitable to particular applications
- No abstract environment: could make concurrency easier

Conclusions

- CBA is interesting and worth studying!
- Not claiming strictly better, but very different
- May be suitable to particular applications
- No abstract environment: could make concurrency easier
- Path-sensitivity model: possible theorem-proving applications

Questions?

- Code: https://github.com/JHU-PL-Lab/odefa-proof-of-concept
- Paper: http://pl.cs.jhu.edu/projects/big-bang/papers/ control-based-program-analysis.pdf

Example of k CBA Imprecision

- Consider code:

$$
\begin{aligned}
& 1 \text { let } f x=x ; ; \\
& 2 \text { let } \mathrm{x} y=\mathrm{y} y ; \\
& 3 \text { let } \mathrm{a}=\mathrm{g} 1 ; ; \\
& 4 \text { let } \mathrm{b}=\mathrm{g} 2 ;
\end{aligned}
$$

Example of k CBA Imprecision

- Consider code:

$$
\begin{aligned}
& 1 \text { let f x = x; } \\
& 2 \text { let } \mathrm{g} \text { y }=\mathrm{f} \mathrm{y} \text {; ; } \\
& { }^{3} \text { let } \mathrm{a}=\mathrm{g} \text { 1; ; } \\
& 4 \text { let b = g 2; ; } \\
& \text { - 1CBA: } \mathrm{a} \subseteq\{1,2\}
\end{aligned}
$$

Example of k CBA Imprecision

- Consider code:

```
1 let f x = x;;
2 let g y = f y;;
3 let a = g 1;;
4 let b = g 2;;
    - 1CBA: a \subseteq{1,2}
```

- From within f, we can't remember where g was called

Example of k CBA Imprecision

- Consider code:

```
1 let f x = x; ;
2 let g y \(=\mathrm{f} \mathrm{y}\); ;
\({ }^{3}\) let \(\mathrm{a}=\mathrm{g} 1\); ;
4 let b = g 2; ;
- 1CBA: \(\mathrm{a} \subseteq\{1,2\}\)
```

- From within f, we can't remember where g was called
- 1CFA: same problem

Example of k CBA Imprecision

- Consider code:

```
1 let f x = x; ;
2 let g y \(=\mathrm{f} \mathrm{y}\); ;
\({ }^{3}\) let \(\mathrm{a}=\mathrm{g} 1\); ;
4 let b = g 2; ;
- 1CBA: \(\mathrm{a} \subseteq\{1,2\}\)
```

- From within f, we can't remember where g was called
- 1CFA: same problem
- 2CBA: $\mathrm{a} \subseteq\{1\}$

Example of kCBA Imprecision

- Consider code:

```
1 let f x = x; ;
\({ }^{2}\) let g y \(=\mathrm{f} \mathrm{y}\); ;
\({ }^{3}\) let \(\mathrm{a}=\mathrm{g}\) 1; ;
4 let b = g 2; ;
- 1CBA: \(\mathrm{a} \subseteq\{1,2\}\)
```

- From within f, we can't remember where g was called
- 1CFA: same problem
- 2CBA: $\mathrm{a} \subseteq\{1\}$
- Alternative CBA call stack finitizations exist (e.g. regex)

Example of kCBA Imprecision

- Consider code:

1 let $\mathrm{f} \mathrm{x}=\mathrm{x}$; ;
2 let g y $=\mathrm{f} \mathrm{y}$; ;
${ }^{3}$ let $\mathrm{a}=\mathrm{g}$ 1; ;
4 let b = g 2; ;

- 1CBA: $\mathrm{a} \subseteq\{1,2\}$
- From within f, we can't remember where g was called
- 1CFA: same problem
- 2CBA: $\mathrm{a} \subseteq\{1\}$
- Alternative CBA call stack finitizations exist (e.g. regex)
- Such as used in pushdown-assisted CFA

