
Backstage Java
Making a Difference in Metaprogramming

Zachary Palmer
The Johns Hopkins University

zachary.palmer@jhu.edu

Scott F. Smith
The Johns Hopkins University

scott@jhu.edu

Abstract
We propose Backstage Java (BSJ), a Java language exten-
sion which allows algorithmic, contextually-aware genera-
tion and transformation of code. BSJ explicitly and con-
cisely represents design patterns and other encodings by em-
ploying compile-time metaprogramming: a practice in which
the programmer writes instructions which are executed over
the program’s AST during compilation. While compile-time
metaprogramming has been successfully used in functional
languages such as Template Haskell, a number of language
properties (scope, syntactic structure, mutation, etc.) have
thus far prevented this theory from translating to the im-
perative world. BSJ uses the novel approach of difference-
based metaprogramming to provide an imperative program-
ming style amenable to the Java community and to enforce
that metaprograms are consistent and semantically unam-
biguous. To make the feasibility of BSJ metaprogramming
evident, we have developed a compiler implementation and
numerous working code examples.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Languages, Design

Keywords Java, metaprogramming, macros, design pat-
terns, software merging, difference-based metaprogramming

1. Introduction
When selecting features for a programming language, it’s
impossible to keep everyone happy. Inevitably, a program-
mer will want for an abstraction which would make the im-
plementation of a program much easier, more concise, and
more maintainable. When such abstractions are not provided
by the language, programmers resort to implementing each
case manually. Design patterns in Java are one example of
this strategy: while each pattern describes a solution to a
problem abstractly, each instance of a design pattern in code
must be reified with context-specific information [6].

This manual implementation is tedious, however, and
macro systems are often employed to reduce its mainte-
nance burden. One simple example is the token sequence
replacement system such as in C preprocessor macros. But

such macro systems have many well-known flaws: because
operations occur on the token level, for instance, macros
which produce low-precedence operators at a call site with
high-precedence operators can introduce subtle bugs.

More advanced generative techniques can be seen in C++
templates and Scheme macros. C++ templates, while origi-
nally intended for type and function definitions, are Turing-
complete [22] and can be used as a compile-time code gen-
eration language. Because this was never the intended use of
the system [15], the resulting templates have an obtuse and
unintuitive syntax. Scheme macros operate by AST substi-
tution (unlike most macro systems) and have a much more
tractable syntax. Indeed, language extensions have been con-
structed in Scheme using the macro system.

One weakness of all of the aforementioned systems is the
absence of contextual information at the call site. Object-
oriented languages such as Java require changes to multiple
AST subtrees to express more complex properties (e.g., that
a given class of objects is ordered by a specific member
field). OJ [20] is a Java language extension which permits the
definition of modifiers which abstract the notion of design
patterns. The OJ compiler provides a meta-object protocol
(MOP) which executes code associated with these modifiers
at compile time, allowing it to effect non-local changes:
alterations to the AST in positions other than that of the call
site itself. This form of ad hoc abstraction allows for greater
semantic meaning than any statically-typed macro system,
permitting the generation of well-typed proxies, adapters,
and other common design patterns.

Unfortunately, OJ is very permissive in this regard; it is
not immediately clear from the call site which portions of
code could be affected. A keyword modifying a local vari-
able, for instance, could make modifications to any AST
node, including those contained in other compilation units.
This behavior could easily lead to code with confusing side-
effects. While the imperative programming community ex-
pects to write code in the style of mutation, this mutation
must be managable and well-understood.

The primary weakness of OJ, however, is that of metapro-
gram execution order. If two transformations operate over
the same region of code, changing their execution order may
change the resulting AST. OJ does not clearly define its ex-

pansion order, meaning that an OJ program may have mul-
tiple valid meanings. This form of nondeterminism is unac-
ceptable from a compiler.

The functional programming community has seen sig-
nificant benefits from the more disciplined technique of
compile-time metaprogramming as a means of ad hoc ab-
straction. In languages such as MacroML [7] and Template
Haskell [17], Scheme-like code generation is reconciled with
a static type system. Compile-time metaprograms may also
inspect definitions which are in scope at the call site, pro-
viding valuable contextual information. Determinism is en-
forced by forbidding non-local changes and by executing
metaprograms in a predefined order dictated by syntactic
structure. But this theory is non-trivial to apply to imper-
ative and object-oriented languages like Java for precisely
that reason: expressing non-trivial facts about Java classes in
an imperative style is not possible without non-local changes
(as in the ordering example mentioned above).

We introduce Backstage Java (BSJ), a language which
brings the sophistication of compile-time metaprogramming
to Java. BSJ metaprograms have the following properties:

(a) Non-local changes are effected without incurring con-
fusing side-effects

(b) Execution order is dependency-driven to retain deter-
minism in light of non-locality

(c) Conflicts between independent metaprograms are auto-
matically detected

To achieve the above, BSJ uses a difference-based metapro-
gramming approach which, to our knowledge, is novel in
metaprogramming literature. Rather than viewing metapro-
grams as program transformations, we view them as trans-
formation generators: the AST is instrumented to record
an edit script of all changes which are made to it in a
strategy similar to operation-based merging [11, 12]. Then,
rather than executing each metaprogram against a single
AST in turn, the BSJ compiler prepares a different input
AST for each metaprogram. That input AST contains only
those changes in the edit scripts of the metaprogram’s de-
pendencies, guaranteeing that the metaprogram cannot see
changes applied by metaprograms on which it does not de-
pend. Metaprogram conflicts are detected when two edit
scripts fail to merge over the same AST.

This metaprogramming model has several advantages.
Non-local changes, necessary for metaprogramming in an
imperative style, are possible. The input for each metapro-
gram is understood simply in terms of its declaration, mak-
ing metaprogram semantics much clearer. Order of execu-
tion may be controlled but is inferred by default, allow-
ing flexibility without placing unnecessary burdens on the
metaprogrammer. In the event of ambiguity, the system can
easily identify the pair of metaprograms involved and the
AST subtree on which they disagree.

1 #import static com.example.bsj.Utils.*;
2 public class Person {
3 private String givenName;
4 private String middleName;
5 private String surname;
6 [:
7 generateComparedBy(context,
8 <:surname:>, <:givenName:>, <:middleName:>);
9 :]

10 }

Figure 1. Comparable BSJ Example

This paper describes the design, semantics, and imple-
mentation of BSJ. Section 2 provides brief discussions of im-
plementation challenges and solutions. Section 3 describes
how non-local changes are made safe by the implementation
of a metaprogram edit script algebra and conflict detection
system (which is proven correct in Appendix A). Section 4
details BSJ quasiquoting syntax and the use of a type fam-
ily to disambiguate it. Section 5 discusses the BSJ language
specification and the compiler reference implementation. We
conclude with an analysis of related work in Section 6 and a
discussion of future research in Section 7.

2. Overview
To discuss our difference-based metaprogramming model,
we will provide source examples in BSJ. Sections 2.1 and
2.2 provide a general introduction to BSJ syntax; Section 2.3
introduces difference-based metaprogramming and high-
lights its importance. The remainder of the overview is de-
voted to explaining other ambiguities which must be re-
solved in BSJ and outlining our solutions to them.

2.1 Basic Execution Semantics
Figure 1 presents a class in BSJ which contains three string
fields representing a person’s names. A metaprogram ap-
pears in this class which makes the class comparable first by
surname, then by given name, and finally by middle name.
A utility method is used to abstract the concept of a lexico-
graphical class ordering; this method can be seen in Figure 2.
Java code equivalent to Figure 1 can be seen in Figure 3

The delimiters [: (line 6) and :] (line 9) of Figure 1 mark
the beginning and end of an explicit BSJ metaprogram. The
intervening lines form the body of the metaprogram (lines
7 and 8). The compilation process strips the metaprograms
from the AST before they are executed, leaving behind a
single AST leaf node – called an anchor – which is provided
to the metaprogram as input.

During compilation, the statements in the metaprogram’s
body are executed. In the case of the metaprogram in Fig-
ure 1, this will result in the addition of a compareTo method
to the metaprogram’s class. The environment in which the
metaprogram is executed includes a binding for the variable
context (used on line 7), which is a reference allowing ac-
cess to the metaprogram’s anchor, the node factory, and other
metaprogramming facilities.

1 public class Utils {
2 public static void generateComparedBy(Context<?,?> context,
3 IdentifierNode... vars) {
4 ClassDeclarationNode n = context.getAnchor().
5 getNearestAncestorOfType(ClassDeclarationNode.class);
6 BsjNodeFactory factory = context.getFactory();
7 BlockStatementListNode list =
8 factory.makeBlockStatementListNode();
9 list.add(<:int c;:>);

10 for (IdentifierNode var : vars) {
11 list.add(<:c = this.~:var.deepCopy(factory):~.
12 compareTo(other.~:var:~);:>);
13 list.add(<:if (c != 0) return c;:>);
14 }
15 list.add(<:return 0;:>);
16 n.getBody().getMembers().addLast(<:
17 public int compareTo(Person other) { ~:list:~ }
18 :>);
19 n.getImplementsClause().addLast(<: Comparable
20 <~:n.getIdentifier().deepCopy(factory):~> :>);
21 }
22 }

Figure 2. BSJ Utility Class

1 public class Person implements Comparable<Person> {
2 private String givenName;
3 private String middleName;
4 private String surname;
5 public int compareTo(Person other) {
6 int c;
7 c = this.surname.compareTo(other.surname);
8 if (c != 0) return c;
9 c = this.givenName.compareTo(other.givenName);

10 if (c != 0) return c;
11 c = this.givenName.compareTo(other.middleName);
12 if (c != 0) return c;
13 return 0;
14 }
15 }

Figure 3. Comparable Java Example

The delimiters <: and :> denote a code literal (quasiquote)
and allow metaprograms to express ASTs in the form of a
code fragments. These code literals appear on line 8 of Fig-
ure 1 as well as in several places in Figure 2. In the latter
figure, the delimiters ~: and :~ are splicing operators and
permit the code literal to be used as a template which is then
instantiated by metaprogram expressions. In this case, the
arguments passed to the generateComparedBy method on
line 8 of Figure 1 will replace the splices on lines 8 and 9 of
Figure 2, generating one AST representing an assignment to
a variable c for each identifier specified in the arguments.

BSJ AST nodes can access their parent nodes.1 This per-
mits the metaprogram in Figure 1 to obtain a reference to
the class declaration in which it is contained. This is crit-
ical for the behavior of generateComparedBy because it
must insert a compareTo implementation into the class body
as well as a type in the implements clause. It is in this
fashion that BSJ permits non-local changes to be inserted
at well-defined positions in the AST. This is a necessity in
a Java-like language as some semantic facts (such as the
comparability of a class) must affect multiple subtrees of
the AST consistently. In the example code in Figure 3, both

1 For this to be possible, each node object in the AST must be unique. This
motivates the deepCopy(factory) constructions in Figure 2.

1 public class Example {
2 [:
3 // next statement produces an error!
4 context.getAnchor().getNearestAncestorOfType(
5 CompilationUnitNode.class).getTypeDecls().add(
6 <:class Extra {}:>);
7 :]
8 }

Figure 4. Limiting the Scope of Change

1 public class SimpleConflict {
2 public void foo() {
3 [:
4 // #depends a; /* uncomment to resolve conflict */
5 context.getPeers().add(0, <:System.out.print("A");:>);
6 :]
7 [:
8 // #target a; /* uncomment to resolve conflict */
9 context.getPeers().add(0, <:System.out.print("B");:>);

10 :]
11 }
12 }

Figure 5. Simple Conflict

the implements clause on line 1 and the compareTo defini-
tion starting on line 4 were added by a single metaprogram.
In contrast, the simplest and most convenient macro system
approach would require two cooperating macros, resulting
in information duplication as well as the opportunity for the
two macros to become out of sync.

To prevent metaprograms from being difficult to under-
stand, they are limited to affecting only the declaration in
which they appear. In Figure 4, for example, the metapro-
gram at line 2 attempts to insert a new top-level class into the
same file as the Example class. Because the metaprogram is
positioned inside of the Example class, it is unable to af-
fect the compilation unit outside of its declaration. Metapro-
grams are also forbidden from modifying compilation units
other than the one in which they appear, although it is possi-
ble to insert new compilation units into an existing package.

2.2 Execution Order
Order of execution is an important consideration in any
metaprogramming environment but is especially critical
when admitting non-local changes. Figure 5 demonstrates
the importance of execution order. Each metaprogram at-
tempts to insert a statement at the beginning of the method.
Without execution ordering, the meaning of the method is
ambiguous: at runtime, it may print either “BA” or “AB” de-
pending on the order in which the transformations executed.
Any such case in which the order of metaprogram execution
is unspecified but would change the resulting AST is known
as a metaprogram conflict. This particular case is known as a
dual-write conflict because the metaprograms are conflicting
over the semantics of their write operations.

Languages such as Scheme and Template Haskell use a
simple mechanism for the order of metaprogram execution:
metaprograms are executed in the order in which they ap-
pear in the AST. This is intuitive in functional languages,
as this is the direction in which scoped bindings flow. By

1 class X {
2 [:
3 /* For each class defined in this compilation unit, adds a
4 * field to this class of the same name but lower-cased. */
5 // #depends foo; /* uncomment to include y field in X */
6 · · ·
7 :]
8 }
9 [:

10 #target foo;
11 context.addAfter(<:class Y{}:>);
12 :]

Figure 6. Apparent Read-Write Conflict Example

contrast, many constructs in the Java language (such as non-
initializing declarations in the body of a type) have no rele-
vant ordering; assigning meaning to the order of these dec-
larations would be confusing and unintuitive. Furthermore,
it may be undesirable; a programmer may wish the first
metaprogram in Figure 5 to be able to see and react to the
changes made by the second metaprogram (or even by a
metaprogram in another compilation unit).

In BSJ, the programmer may resolve the conflict in
Figure 5 by explicitly specifying an ordering between the
metaprograms; uncommenting the first line of each metapro-
gram would be sufficient. The preamble clause #target a

indicates that the metaprogram is a member of the target
named a; the preamble clause #depends a indicates that
the metaprogram should wait until all metaprograms in tar-
get a have executed.

While this dependency-driven ordering of execution is a
valuable tool, it is not a complete solution. In practice, large
numbers of metaprograms can appear in an object program
and each metaprogram may have subtle side effects; thus,
we cannot expect the metaprogrammer to identify conflicts
manually. The BSJ compiler provides a conflict detection
system (described in Section 3) which guarantees that any
BSJ code which does not have exactly one valid Java equiv-
alent will produce a compilation error. This feature is nec-
essary for the scalability of the language and frees up the
programmer to focus on developing the object program.

2.3 Difference-Based Metaprogramming
Two categories of potential conflict other than dual-write
conflicts exist: read-write conflicts and injection conflicts.
Injection conflicts are outlined in Section 2.5 and discussed
in depth in Section 3.5. An example of an apparent read-
write conflict, on the other hand, appears in Figure 6. The
semantics of the first metaprogram are explained in a com-
ment for the sake of simplicity.

In previous examples we have presented, it is sufficient
to execute each metaprogram over the original AST in turn;
dual-write conflicts could be detected by noticing when one
metaprogram writes to the same AST node as another. In
Figure 6, however, this is not true. If we execute the top
metaprogram first, the body of X contains one variable dec-
laration (x); otherwise, it contains two (x and y). In neither

case do we see a dual-write conflict, but the output would
still be ambiguous if the code were allowed to compile.

A previous iteration of BSJ attempted to solve this prob-
lem by monitoring the behavior of metaprograms, produc-
ing an error if a metaprogram reads a variable that another
metaprogram changed. In our experience, however, the con-
straints describing what a metaprogram considers significant
are quite complex; often, a metaprogram would iterate over
a list (such as the body of a class declaration) and only act
on those elements which were fields. Because the conflict
detection system was unable to determine that the non-field
elements were not used, this led to numerous false conflicts.

Instead, BSJ solves this problem by using difference-
based metaprogramming. Instead of executing each of the
metaprograms in Figure 6 over the same AST in some se-
quence, we execute each over a copy of that AST. The AST
is instrumented to produce an edit script: a description of
the changes that the metaprogram made. Software merging
techniques are later used to combine these edit scripts and
produce the final program. Because each metaprogram exe-
cutes over a copy of the original AST, neither metaprogram
can see the changes created by the other. In our example, the
system would always generate code in which X had a sin-
gle member field (x). The AST provided to a metaprogram
reflects the edit scripts from that metaprogram’s dependen-
cies; thus, the programmer could choose to generate code in
which X has the member fields x and y by uncommenting
the #depends clause, making the first metaprogram depend
upon the second.

This approach has two profound advantages. First, read-
write conflicts are impossible in this system: by definition, a
metaprogram can only observe changes applied by its depen-
dencies. Second, reasoning about metaprograms becomes
considerably easier. The behavior of a metaprogram can now
be understood strictly in terms of its declaration and those of
its dependencies; it is not necessary to consider any other
code to understand the effect that a metaprogram will have.

It is possible using this approach that a programmer may
misunderstand the semantics of the program in Figure 6, ex-
pecting it to result in a class with two member fields. While
this potential for confusion exists, we view the small learn-
ing curve introduced by the dependency system’s semantics
as worth the considerable advantages described above.

2.4 Meta-Annotations
The explicit metaprogram syntax witnessed thus far (delim-
ited by the [: and :] operators) is suitable for individual
metaprograms. But a metaprogrammer often wishes to ab-
stract over these metaprograms (as well as their dependen-
cies) to represent general coding concepts. For this purpose,
BSJ includes meta-annotations.

Recall that Java annotations are constructs prefixed with
@ which may appear as modifiers on declarations. In gen-
eral, annotations have no semantic meaning; instead, pre-
processors or reflective code are expected to react to them.

1 public class AckermannFunction {
2 public static final AckermannFunction SINGLETON =
3 new AckermannFunction();
4 private AckermannFunction() {}
5 private static class EvaluateCacheKey {
6 private BigInteger m;
7 private BigInteger n;
8 · · ·

36 }
37 private Map<EvaluateCacheKey, BigInteger> evaluateCache =
38 new HashMap<EvaluateCacheKey, BigInteger>();
39 public BigInteger evaluate(BigInteger m, BigInteger n) {
40 final EvaluteCacheKey key = new EvaluateCacheKey(m, n);
41 · · ·
46 return result;
47 }
48 public BigInteger calculateEvaluate(BigInteger m,
49 BigInteger n) {
50 if (m.compare(BigInteger.ZERO) < 0 ||
51 n.compare(BigInteger.ZERO) < 0)
52 throw new ArithmeticException("Undefined");
53 if (m.equals(BigInteger.ZERO))
54 return n.add(BigInteger.ONE);
55 if (n.equals(BigInteger.ZERO))
56 return evaluate(m.subtract(BigInteger.ONE), 1);
57 return evaluate(m.subtract(BigInteger.ONE),
58 evaluate(m, n.subtract(BigInteger.ONE)));
59 }
60 }

(a) Abbreviated Java Source

1 @@MakeSingleton
2 public class AckermannFunction {
3 @@Memoized @@BigIntegerOperatorOverloading
4 public BigInteger evaluate(BigInteger m, BigInteger n) {
5 if (m < 0 || n < 0)
6 throw new ArithmeticException("Undefined");
7 if (m == 0) return n + 1;
8 if (n == 0) return evaluate(m - 1, 1);
9 return evaluate(m - 1, evaluate(m, n - 1));

10 }
11 }

(b) BSJ Source

Figure 7. Ackermann Function

BSJ meta-annotations are similar but are used by the BSJ
compiler and are not available at runtime. We use the prefix
@@ for disambiguation. BSJ also permits meta-annotations to
represent metaprograms, encouraging a declarative metapro-
gramming style.

We introduce meta-annotations with a simple example:
the task of writing a class to calculate the well-known Ack-
ermann function. This function grows quickly in some cases,
so we will use BigInteger to represent its inputs and re-
sults. Calculation of the Ackermann function is expensive,
so we will use memoization for performance.

An abbreviated version of a Java source code solution ap-
pears in Figure 7a. The full source is sixty lines. By com-
parison, the BSJ implementation of this same routine ap-
pears in Figure 7b. The latter variation is more concise and
more readable than its Java counterpart; the patterns used in
the code (singleton and memoization) are explicitly repre-
sented and existing Java syntax is semantically extended to
make BigInteger operations more legible. The BSJ stan-
dard libraries, utilized in these figures, provides definitions
of the meta-annotations such as @@Memoized. BSJ program-

1 #import edu.jhu.cs.bsj.stdlib.metaannotations.*;
2 @@GenerateEqualsAndHashCode
3 @@GenerateToString
4 @@ComparedBy({<:rank:>,<:suit:>})
5 @@GenerateConstructorFromProperties
6 public class Card {
7 public enum Rank { TWO, . . ., KING, ACE }
8 public enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }
9 @@Property(readOnly=true) private Rank rank;

10 @@Property(readOnly=true) private Suit suit;
11 }

Figure 8. BSJ Playing Card Class

1 public class Property
2 extends AbstractBsjMetaprogramMetaAnnotation {
3 public Property() {
4 super(Arrays.asList("property"), Arrays.<String>asList());
5 }
6 protected void execute(Context. . . context) {
7 /* code here to insert getters and setters */ · · ·
8 }
9 private boolean readOnly = false;

10 @BsjMetaAnnotationElementGetter
11 public boolean getReadOnly() { return this.readOnly; }
12 @BsjMetaAnnotationElementSetter
13 public void setReadOnly(boolean r) { this.readOnly = r; }
14 @Override public void complete() { }
15 }

Figure 9. @@GenerateConstructorFromProperties

mers are encouraged to define their own meta-annotations
for domain-specific patterns or other similar uses.

Meta-annotations also generalize over targets and depen-
dencies. Consider the playing card class shown in Figure 8.
The metaprograms which generate the getters for proper-
ties (on lines 9 and 10) must execute before the metapro-
gram which generates the constructor (on line 5). This de-
pendency is declared in the meta-annotations’ definitions,
reducing clutter at the call site.

Meta-annotations are defined by creating an implemen-
tation of the interface BsjMetaprogramMetaAnnotation

which specifies methods defining the metaprogram’s targets,
dependencies, and execution behavior. Meta-annotations ex-
ecute in the same fashion as explicit metaprograms and obey
the same conflict detection rules.

For an example, consider the abbreviated definition of
@@Property appearing in Figure 9. This meta-annotation
abstracts the Java property idiom: the creation of getter and
setter methods for a field. The arguments to the super con-
structor specify that each use of this meta-annotation is a
member of the property target; this allows other metapro-
grams to depend on this meta-annotation.

2.5 Metaprogram Injection
Because BSJ metaprograms can insert nodes into the AST,
they can create and insert new metaprograms. This re-
sults in a very natural expression of complex pattern def-
initions. For example, consider the Ackermann implemen-
tation in Figure 7b. The @@Memoized meta-annotation is
responsible for much of the generated code because it
must create a data structure representing the cache key:
a tuple of two BigIntegers. If the compiler expands the

1 @@MakeSingleton
2 public class AckermannFunction {
3 @@GenerateEqualsAndHashCode @@GenerateConstructorFromProperties
4 private static class EvaluateCacheKey {
5 @@Property(readOnly=true) private BigInteger m;
6 @@Property(readOnly=true) private BigInteger n;
7 }
8 @@Memoized @@BigIntegerOperatorOverloading
9 public BigInteger evaluate(BigInteger m, BigInteger n) { · · · }

10 · · ·
11 }

Figure 10. Ackermann Function - Memoize Expansion

1 [:
2 #target x;
3 context.addAfter(<: [: #target y; :] :>);
4 :]
5 [: #target y; :]
6 [: #depends y; :]

Figure 11. Injection Conflict Example

@@Memoized meta-annotation first, the AST would then re-
semble Figure 10. (@@Memoized is italicized to indicate that
its metaprogram has executed.) The newly-inserted code
uses meta-annotations to define the cache key data structure.

The process of adding new metaprograms during the ex-
ecution of a metaprogram is termed metaprogram injection.
Injection is common among metaprogramming systems but
introduces complications for a dependency system. For ex-
ample, consider the program in Figure 11. The top metapro-
gram injects a metaprogram in target y; the bottom metapro-
gram depends on target y. If the metaprograms execute from
top to bottom, everything is fine; we will conclude that the
injected metaprogram should run before the bottom one.

But at the beginning of compilation, it would also be le-
gal for the bottom metaprogram to execute before the top
one; after all, the top metaprogram is not in target y and the
injected metaprogram is not yet present. After executing the
bottom metaprogram, we would execute the top metapro-
gram only to discover that the target y is no longer satisfied!
To remain consistent, the compiler must produce an error
not only when such an event occurs, but when such an event
could have occurred; that is, even if we executed the top
metaprogram first, we must eventually realize that the po-
tential for an injection conflict existed and produce an error.
Our technique for doing this is described in Section 3.5.

2.6 Code Literal Disambiguation
A simple example of code literals is demonstrated in Fig-
ure 12a: the sole line uses code literal syntax to create an
AST representing a variable declaration. The code in Fig-
ure 12b shows an equivalent expression using a BSJ node
factory. As in other languages with quasiquoting, the code
literal form is much more readable.

While code literals are clearly desirable, the complexity
of the Java grammar makes parsing code literals difficult.
The code literal shown in Figure 12a has more than one
interpretation: it could be a local variable declaration, a class
member field, or an interface constant. Metaprogramming

1 LocalVariableDeclarationNode n1 = <: int x = 0; :>;

(a) With Code Literals

1 LocalVariableDeclarationNode n2 =
2 factory.makeLocalVariableDeclarationNode(
3 factory.makePrimitiveTypeNode(PrimitiveType.INT),
4 factory.makeVariableDeclaratorListNode(
5 factory.makeVariableDeclaratorNode(
6 factory.makeIdentifierNode("x"),
7 factory.makeIntLiteralNode(0))));

(b) Without Code Literals

Figure 12. With and Without Code Literals

environments often address this problem either by providing
different quasiquoting syntax for each form [2, 17, 21] or by
restricting the forms that can be used [10, 26]. Unfortunately,
BSJ would need dozens of different quasiquoting forms; the
singleton token sequence x could represent an identifier, an
enum constant declaration, or fourteen other parses.

It has been shown [3] that this problem can be solved by
using the type context of the surrounding metaprogram code
to disambiguate the code literal. In this approach, each of
the possible parses is lifted into metaprogram code that con-
structs the indicated AST. This forest of parses is then type-
checked and, if exactly one parse successfully typechecks, it
is taken as the meaning of the code literal.

BSJ uses a similar approach but defers the lifting until
after typechecking is complete. Code literals are represented
by a type family which directly represents the ambiguity in
the parse. This technique more directly integrates with the
original language’s type system and provides opportunities
for lazy evaluation and other performance optimizations.
Section 4 describes this process in detail.

3. Edit Scripts and Conflicts
In this section, we characterize difference-based metapro-
gramming and define its semantics. We observe that tra-
ditional metaprograms are perceived as functions convert-
ing one object program to another. That is, suppose P to
be the set of all programs ρ; then traditional metaprograms
ψ are viewed as having the type P → P. The metapro-
grams ψ1, . . . , ψn are then composed over an initial input
program ρ, producing the resulting program ρ′. This also
means, however, that each ψi receives as its input the result
of ψ1, . . . , ψi−1 executed over ρ, which leads to the possi-
bility of the read-write conflicts discussed in Section 2.3.

In a difference-based metaprogramming environment
such as BSJ, however, we separate metaprogram logic into
two parts: analysis and modification. Analysis logic involves
the metaprogram examining the object program to make de-
cisions about what actions to take; modification logic in-
volves taking action and changing the object program. A
BSJ metaprogram φ represents the analysis logic and has
the type P → ∆P, where ∆P is the set of all edit scripts
δ̄. An edit script represents the modification logic as a se-
ries of transformations δ1, . . . , δn which are performed over
a program. We define a function ϑ(δ, ρ) = ρ′ which ap-

plies the transformation of an edit script element δ to a pro-
gram ρ, resulting in a program ρ′. For convenience, we de-
fine ϑ(δ̄, ρ) = ϑ(δn, (· · ·ϑ(δ1, ρ))). Clearly, ϑ has the type
P → P if δ is fixed. But unlike a traditional metaprogram,
ϑ can only perform write operations based on the edit script
element; it would not inspect the object program or make
any decisions during its application.

Edit scripts are generated by providing a specific object
program as input to each metaprogram φ which reflects φ’s
dependencies.. While the full discussion of dependencies is
deferred until Section 3.1, we can informally define the de-
pendencies of φ as the set of metaprograms which partici-
pate in targets on which φ depends (and the dependencies of
those metaprograms, recursively). We model the AST nodes
representing the original source code as being inserted by
an “origin” metaprogram on which all other metaprograms
depend. The input to φ is then ϑ(δ̄n, (· · ·ϑ(δ̄1, ∅))) where ∅
represents an empty AST, δ̄i is the edit script produced by
φi, and φ1 is the origin metaprogram.

Once the edit scripts δ̄i for each metaprogram φi has been
calculated, we apply them to the original program ρ to obtain
the resulting program ρ′. To do so, we must select an order
of application. We always do so in a fashion that observes
the dependencies that each metaprogram has declared.

Definition 3.1. Given metaprograms {φ1, . . . , φn}, an or-
dering of these metaprograms k̄ = k1, . . . , kn is some per-
mutation of the integers 1, . . . , n. The ordering k̄ is respect-
ful iff, for any metaprogram φj which depends on a target
containing φi, the value i preceeds the value j in k̄.

We then determine the final object program ρ′ by calcu-
lating ϑ(δ̄kn , (· · ·ϑ(δ̄k1 , ∅))) using a respectful ordering k̄.

Our key objective is to ensure that all BSJ programs are
unambiguous: each BSJ program either corresponds to ex-
actly one output program or it produces a compilation error.
Since the ordering in which the metaprograms’ edit scripts
are composed is selected arbitrarily by the compiler (such
that it preserves declared dependencies), we must ensure
that it has no impact on the output; every respectful order-
ing should produce the same result. In pursuit of this, we
provide a formal definition of a metaprogram conflict be-
low. This definition uses a concept of program equivalence;
we define program equivalence to resolve a special case in
Section 3.4, but a reader may safely proceed by assuming
equivalence (∼=) to be identity until then.

Definition 3.2. Let φ and φ′ be two metaprograms in a
compilation of a program ρ involving n metaprograms. Let
δ̄ and δ̄′ be the edit scripts produced by those metapro-
grams, respectively. Let k̄ be any respectful ordering of
the n metaprograms. A conflict exists if there exists any
other respectful ordering k̄′ of the n metaprograms such that
ϑ(δ̄kn , (· · ·ϑ(δ̄k1 , ∅))) � ϑ(δ̄k′n , (· · ·ϑ(δ̄k′1 , ∅))).

We separate conflicts into the three categories discussed
in Section 2. We specify an edit script algebra for modeling

difference-based metaprogramming execution in Section 3.3
and show that this metaprogramming model makes read-
write conflicts impossible. We then describe a merge oper-
ation in Section 3.4; this operation simultaneously performs
the composition of a series of edit scripts and analyzes them
to determine if any dual-write conflicts exist. Section 3.5 de-
scribes injection conflicts in detail and provides a graph anal-
ysis sufficient to detect them.

3.1 The Dependency Graph
For purposes of execution ordering and conflict detection,
metaprograms and their targets are organized into a bipar-
tite dependency graph. Each metaprogram is assigned a
unique identity; we use the terms M1, M2, etc. to range
over metaprogram identities and the terms a, b, etc. to range
over metaprogram targets. Because the input for a metapro-
gram φ is defined in terms of the output of its dependencies,
those dependencies will always be executed prior to φ. In
effect, the dependency graph defines a partial order over the
metaprograms which is used to determine order of execu-
tion. Formally, we define a dependency graph as follows:

Definition 3.3. A dependency graphG = 〈M,T,EM , ET 〉,
where M is a finite set of metaprogram nodes, T is a set of
target nodes, EM is a set of directed edges from metapro-
gram nodes to target nodes, andET is a set of directed edges
from target nodes to metaprogram nodes. Each edge in EM
and in ET is either an explicit edge or an implicit edge.

An acyclic dependency graph is said to be well-formed.
Executing a metaprogram from a dependency graph which
is not well-formed eventually becomes impossible without
violating at least one dependency constraint; as a result, the
construction of such dependency graphs results in a compile
error. Hereafter, all discussion of dependency graphs will
assume that they are well-formed.

To facilitate this discussion, we turn to the contrived ex-
ample shown in Figure 13. This source file contains seven
metaprograms, all of which perform no operations when ex-
ecuted (as they contain no statements). The #target and
#depends clauses declare execution order. This order is en-
forced by constructing a dependency graph G as shown in
Figure 14. Metaprograms themselves are shown as square
nodes in the graph; metaprogram targets are shown as cir-
cles.

This graph defines a number of facts about execution
order. We can see, for instance, thatM6 should execute after
M3 (because a path exists from M6 to M3). We formalize
metaprogram dependencies with the following definition.

Definition 3.4. LetM andM′ be metaprograms in a depen-
dency graph G. M depends on M′ (equiv., M M′) if a
path exists in the dependency graph from M to M′. Other-
wise,M does not depend onM′ (equiv.,M / M′). We write
M−− M′ to represent M M′ ∨ M = M′ and we write
M /−− M′ to represent ¬(M−− M′).

1 [: #target a; :] // metaprogram 1
2 [: #target a; :] // metaprogram 2
3 [: #target a, b; :] // metaprogram 3
4 [: #target c; #depends a; :] // metaprogram 4
5 [: #target c; #depends b; :] // metaprogram 5
6 [: #depends c; :] // metaprogram 6
7 [: :] // metaprogram 7

Figure 13. Execution Order Example

M1 a M4 c M6

M2 M3 b M5 M7

Figure 14. Example Dependency Graph

M is ordered with respect to M′ (equiv., M and M′ are
ordered, M

 M′) if M M′ or if M′ M. Any two
metaprograms which are not ordered are unordered (equiv.,
M /

 M′). We writeM−−

 M′ to representM

 M′ ∨M = M′

and we writeM /−−

 M′ to represent ¬(M−−

 M′).
We also reason about dependencies over targets. Given

any target t in a dependency graph, M depends on target t
if a path exists in the dependency graph from M to t. M is
a member of target t (equiv., M ∈ t) if a path exists in the
dependency graph from t toM.

Based on this definition, it should be evident that any
respectful ordering of a set of metaprograms is a topological
sort of its dependency graph.

Any metaprogram which does not declare any dependen-
cies implicitly depends on the target α, the only member of
which is the origin metaprogram Mα. We use Mα to repre-
sent the start of compilation. Intuitively, Mα can be seen as
the metaprogram which loads the initial sources for compi-
lation. The edges leading into and out of α are all implicit,
the meaning of which is discussed below in Section 3.5.

The dependency graph is monotonically increasing dur-
ing compilation. This is because metaprograms can create
and insert other metaprograms into the AST (a process we
term metaprogram injection); each new metaprogram ap-
pears in the dependency graph after its injector terminates.
Metaprogram injection is the motivation for implicit edges
and is discussed in Section 3.5. As indicated above, a com-
pile error occurs if such an injection introduces a depen-
dency graph cycle.

The definition of the dependency graph permits a metapro-
grammer to express an explicit ordering between any two
metaprograms. The bipartite nature of the graph and the ex-
istence of targets allows metaprograms to be grouped as a
form of indirection. While the dependency graph permits
the programmer to express ordering constraints between
metaprograms, we must also be able to detect conflicts when
ordering constraints are missing. The following sections
demonstrate how this is accomplished.

η node nonces

l labels

u native immutable values

M metaprogram identifiers

K ::= l | η record labels

R ::= {K 7→ v̂} records

S ::= {M} metaprogram sets
M
η ::= η | . | / list nonces
◦η ::= (

M
η,M, S) list element

L ::= [◦η] lists

v ::= η | u | R | L values

v̂ ::= v | b− optional value

δ̊ ::= +
Rη(l = v̂) record node creation

| +Lη list node creation

| η.l← v̂ record assignment

| η : η " M
η list add-before

| η :
M
η # η list add-after

| η : ↓ η list removal

δ ::= M � δ̊ edit script element

e ::= v̂ | δ e expression

Figure 15. Edit Script Algebra Syntax

3.2 Edit Script Algebra
As stated above, a metaprogram’s logic can be separated into
analysis and modification. The objective of an edit script
(δ̄ : ∆P) is to distill the modification logic of a given
metaprogram over a known input program separated from its
analysis logic. This edit script is then applied to the original
program along with the edit scripts of other metaprograms
to produce the final output.

In difference-based metaprogramming, we model metapro-
grams as having type P → ∆P. But BSJ, a difference-based
metaprogramming environment, has syntax that allows pro-
grammers to directly modify the AST; this behavior corre-
sponds to the type P→ P in our algebraic notation. The BSJ
compiler reference implementation resolves this issue by
executing metaprograms over heavily instrumented ASTs.
These ASTs capture the behavior of the BSJ metaprogram
by recording each mutation event; a sequence of such events
composes the programmatic representation of an edit script.
In this fashion, the BSJ reference implementation uses the
algebra described here to drive its compilation process.

Figure 15 describes the syntax of our edit script algebra.
This algebra is language-agnostic, but we relate it to BSJ
throughout this section to provide practical examples and
appeal to intuition. The grammar uses the notation k 7→ v

1 public class X {
2 private int x;
3 public void foo() { }
4 }

(a) Example Source

class

X body

field method

x int foo body

ηa

ηb ηc

ηd ηe

ηd
′ ηd

′′ ηe′ ηe′′

(b) Simplified Example AST

id 7→ ηb
body 7→ ηc

7→ηa

identifier 7→ "X"7→ηb

[(.,M, S), (ηd,M, S),
(ηe,M, S), (/,M, S)]

7→ηc

id 7→ ηd
′

type 7→ ηd
′′7→ηd

identifier 7→ "x"7→ηd
′

type 7→ INT7→ηd
′′

id 7→ ηe
′

body 7→ ηe
′′7→ηe

identifier 7→ "foo"7→ηe
′

[(.,M, S), (/,M, S)]7→ηe
′′

(c) Record Encoding

Figure 16. Example Record Encoding

to denote a sequence k1 7→ v1, . . . , kn 7→ vn. We use
this notation to reflect the embedding of sequences within
other sequences; for instance, k 7→ v, k′ 7→ v′ denotes the
sequence k1 7→ v1, . . . , kn 7→ vn, k

′ 7→ v′.
Node nonces, labels, native immutable values, and metapro-

gram identifiers may have any coherent form. In the case
of BSJ, for instance, u represents values of types such as
String, int, or the API-specific BsjSourceLocation.
In this algebra, values include native immutables, node
nonces, records, and lists. We treat records as maps, using
K 7→ v̂ ∈ R to denote that a mapping exists in a map and
using RJK 7→ v̂K to denote map substitution.

Our algebra seeks to represent object programs as struc-
tured data; the most common way to do so is in the form
of an abstract syntax tree. We choose a somewhat unusual
representation of this syntax tree: each node is mapped via a
nonce to its structural representation. This can be viewed as
an AST in which the children of each node are boxed refer-
ences. In our algebra, every edit script only affects one AST
node at a time; the tree-structured relationship between the
nodes is semantically irrelevant. As a result, this record en-
coding considerably simplifies our semantics. For clarity, an
example visualization of a simplified BSJ AST in this record
encoding appears in Figure 16.

Our representations of AST nodes in the algebra are
divided into two categories: record nodes and list nodes.
Record nodes are constructs which are described by a fixed
number of mappings from property labels to values. For ex-
ample, nonces ηa, ηb, and ηd in Figure 16 all refer to record
nodes; ηa, for instance, has the properties id and body.

By contrast, list nodes are AST nodes whose sole purpose
is to contain a variable number of child nodes in a specific
order. The nonces ηc and ηe

′′ in Figure 16 refer to list
nodes. List nodes are distinct entities in order to prevent false
positives in the conflict detection system which would be
invoked by the simplistic representation of lists as a doubly-

linked series of record nodes. This is discussed in detail
when we present the algebra’s semantics in Section 3.3.

Our algebra describes each list element as a three-tuple.
The first element in this tuple is a “list nonce”, which is
either a node nonce (indicating the position of a node in the
list) or a marker representing the beginning (.) or end (/) of
the list. The tuple also contains the ID of the metaprogram
that inserted the node and a set of metaprograms which have
deleted the element. The action of removing a node from a
list simply marks its element as deleted for reasons that, as
above, will become clear in Section 3.3.

In light of the above structure, we define the formal rep-
resentation of a program as follows:

Definition 3.5. A program ρ = {η 7→ v̂} where, for all
mappings η 7→ v̂, either v̂ = {l 7→ v̂′} (for record nodes)
or v̂ = [◦η] (for list nodes).

As an example, the AST in Figure 16b is encoded as the
record shown in Figure 16c.

Every edit script in the algebra consists of at most six
types of edit script elements. Each edit script element is
annotated with the ID of the metaprogram which produced
it, although we often elide this prefix in cases where it is
unimportant. That is, if it is irrelevant thatM� δ̊ was created
by metaprogramM, we simply write δ̊ instead.

The record and list node creation elements have the effect
of mapping new nodes into a program. The record node cre-
ation element accepts as input a series of initial mappings.
The list node creation element does not require such map-
pings; newly created list nodes are always initialized to con-
tain two elements. The first element of a new list node con-
tains the beginning marker; the second contains the ending
marker. These markers are always present in a list to guara-
tee further list operations some points of reference.

The record assignment element changes a mapping in a
specific record node. The newly-mapped value is always an
optional value; as a result, it may be represented by b−.

Two types of list addition element exist: add-before and
add-after. All additions to a list are specified relative to an
element which already exists in the list. This is the primary
motivation for the beginning and end markers included in
every list: such markers guarantee that list addition has a
reference point even in an empty list. Our choice of notation
is intended to reflect the operation being performed. The
arrow in a list addition routine always points towards the
newly inserted element and away from the reference point.
For instance, η : η′ " M

η′′ indicates that η′ was inserted
into the list η immediately before the element containing M

η′′

(which may be a beginning or end marker). On the other
hand, η :

M
η′′ # η′ indicates that η′ was inserted after

the element containing M
η′′. The removal element’s notation

mirrors that of the addition elements; while the addition
elements show the arrow originating from the bottom of the
line, the list removal element’s arrow points in that direction.

1 public class EditScriptExample {
2 private int foo() {}
3 [:
4 BsjNodeFactory factory = context.getFactory();
5 for (MethodDeclarationNode m : context.getPeers().
6 filterByType(MethodDeclarationNode.class)) {
7 MethodDeclarationNode m2 = m.deepCopy(factory);
8 m2.setIdentifier(factory.makeIdentifierNode(
9 m2.getIdentifier().getIdentifier()+"A"));

10 context.addAfter(m2);
11 }
12 :]
13 [:
14 BsjNodeFactory factory = context.getFactory();
15 for (MethodDeclarationNode m : context.getPeers().
16 filterByType(MethodDeclarationNode.class)) {
17 MethodDeclarationNode m2 = m.deepCopy(factory);
18 m2.setIdentifier(factory.makeIdentifierNode(
19 m2.getIdentifier().getIdentifier()+"B"));
20 context.addAfter(m2);
21 }
22 :]
23 }

Figure 17. Edit Script Example Code

δ̄M1


+
Rηa(identifier = fooA) create identifier

+
Lη′a create empty body

+
Rη′′a(id = ηa, body = η′a) create fooA method
ηc : η′′a " / add fooA to class

δ̄M2


+
Rηb(identifier = fooB) create identifier

+
Lη′b create empty body

+
Rη′′b (id = ηb, body = η′b) create fooB method
ηc : η′′b " / add fooB to class

Figure 18. Example Edit Scripts

As an example of the edit script algebra in use, we pro-
vide the simple program in Figure 17. Both metaprograms in
the figure perform similar operations. The first creates a copy
of every method in the class, suffixing A onto the method
name. The second metaprogram suffixes B instead.

In a traditional metaprogramming environment, we would
always see methods foo, fooA, and fooB. However, we
would also see either fooBA or fooAB depending on the
metaprograms’ execution order. This is an example of how
a traditional metaprogramming model produces a read-write
conflict: the metaprogram which is executed last is basing
its behavior on the metaprogram which is executed first even
though the two metaprograms are unordered.

In a difference-based metaprogramming environment,
however, each metaprogram is executed independently over
a copy of the program to calculate its edit script. Consider
the case in which each BSJ metaprogram in Figure 17 is exe-
cuted over its original AST. The first metaprogram produces
method fooA and the second metaprogram produces method
fooB. Because neither metaprogram can see the method pro-
duced by the other, neither fooBA nor fooAB would be cre-
ated. These facts are represented algebraically by the edit
scripts in Figure 18: δ̄M1

represents the behavior of the first
metaprogram and δ̄M2 represents the behavior of the second.

If we had desired the fooAB method in Figure 17, we
could simply make the second metaprogram in our example

depend upon the first. When the second metaprogram exe-
cuted, it would be able to see the changes applied by the first
metaprogram and react accordingly. This is not a conflict be-
cause a dependency exists between the two metaprograms;
as a result, every respectful ordering will ensure that the first
metaprogram executes before the second.

Gathering edit scripts instead of executing the metapro-
gram directly over a changed tree trivially obviates read-
write conflicts: because a metaprogram’s input only includes
the scripts from its dependencies, it cannot see the effects of
unordered metaprograms and is therefore unable to react to
them. But the mere gathering of edit scripts does not prevent
dual-write conflicts. Dual-write conflicts are captured in the
form of merge failures as described in the next section.

3.3 Edit Script Semantics
This section defines the semantics of the edit script algebra.
We relate operations that BSJ metaprograms can perform
on a node to edit script elements (δ). We also describe the
evaluation semantics ⇒ (as in δ(ρ) ⇒ ρ′) for applying an
edit script element to a program.

When a node is created in a BSJ metaprogram, the node
factory generates an appropriate edit script element repre-
senting node creation. Any method invocations which alter
that node (such as a property setter or a list addition) gen-
erate edit script elements to capture the modification logic
of those actions. Because every child of a BSJ node is ei-
ther itself a node or is an immutable value, all changes to the
tree will occur through the AST API; thus, every change is
recorded in the form of an edit script element.

List nodes in the BSJ API may be changed either through
the addition or removal of their child elements. Removal is
specified in terms of the child to remove. Addition is spec-
ified in terms of a reference child (which is already in the
list), the new child to add, and a direction (before or af-
ter). The java.util.List interface is implemented in the
API over list nodes, but the implementation translates such
calls to a series of these primitives; for instance, an invo-
cation of List.add generates an edit script element of the
form η : η′ " /. We do this to map the relatively full-
featured Java List interface onto our algebra. In our expe-
rience, metaprograms operating over an AST’s list are con-
cerned with relative operations (such as “insert print state-
ment before variable assignment”) rather than with absolute
operations (such as “insert print statement at index 5”).

Application of edit script elements to programs is defined
in terms of the big-step semantics in Figure 19. The evalu-
ation relation (⇒) relates algebraic expressions to their val-
ues. Expressions include edit script application; values in-
clude object programs. The ϑ function is defined in terms of
this algebra:

Definition 3.6. ϑ(δ, ρ) = ρ′ iff δ ρ⇒ ρ′.

These semantics make use of a list search function Σ
defined in the discussion below.

RECORD NODE CREATION RULE

η 7→ v̂ /∈ ρ ρJη 7→ {l 7→ v̂}K⇒ ρ′

(+
Rη(l = v̂)) ρ⇒ ρ′

LIST NODE CREATION RULE
η 7→ v̂ /∈ ρ ρJη 7→ [(.,M, ∅), (/,M, ∅)]K⇒ ρ′

(M � +
Lη) ρ⇒ ρ′

RECORD ASSIGNMENT RULE
η 7→ R ∈ ρ ρJη 7→ RJl 7→ v̂KK⇒ ρ′

(η.l← v̂) ρ⇒ ρ′

LIST ADD BEFORE RULE
M
η3 6= .

η1 7→ L ∈ ρ ◦η3 = Σ(
M
η3,M, L) L = [◦η′, ◦η3,

◦η′′]

L′ = [◦η′, (η2,M, ∅), ◦η3,
◦η′′] ρJη1 7→ L′K⇒ ρ′

(M � η1 : η2 "
M
η3) ρ⇒ ρ′

LIST ADD AFTER RULE
M
η3 6= /

η1 7→ L ∈ ρ ◦η3 = Σ(
M
η3,M, L) L = [◦η′, ◦η3,

◦η′′]

L′ = [◦η′, ◦η3, (η2,M, ∅), ◦η′′] ρJη1 7→ L′K⇒ ρ′

(M � η1 :
M
η3 # η2) ρ⇒ ρ′

LIST REMOVE RULE
η1 7→ L ∈ ρ

◦η2 = (η2,M
′, S) = Σ(η2,M, L) L = [◦η′, ◦η2,

◦η′′]

L′ = [◦η′, (η2,M
′, S ∪ {M}), ◦η′′] ρJη1 7→ L′K⇒ ρ′

(M � η1 : ↓ η2) ρ⇒ ρ′

RECURSIVE APPLICATION RULE
δ′ e⇒ ρ δ ρ⇒ ρ′

δ (δ′ e)⇒ ρ′

VALUE RULE

v̂ ⇒ v̂

Figure 19. Edit Script Semantics

Certain properties of this algebra are worth observing.
First, recall that programs ρ are merely mappings R from
nonces to node structures. As a result, each nonce added by
the creation rules must be unique. This property is enforced
by the rules themselves as they will not overwrite a mapping
for an existing node; thus, any sequence of edit script ele-
ments applied to a program which contains two creations of
the same nonce will not evaluate.

Record assignment is simplistic compared to the other
rules in this algebra. We locate the record corresponding
to the nonce for which the assignment is taking place. In
that record, we substitute the label’s current mapping for one
which reflects the new value. We then substitute the resulting
record into the program to obtain our new program.

The list addition rules appear somewhat more complex.
Addition to a list always occurs relative to another element
which is already in the list. This is the motivation for the
begin (.) and end (/) elements: because they are always
present in the list, they provide available reference points

even if the list is empty. Addition before the begin element
or after the end element are, of course, prohibited. Each
list cell is a triple composed of the list nonce it represents,
the metaprogram responsible for inserting it, and a set of
metaprograms which have marked it as deleted.

Because every list operation uses a list nonce as a refer-
ence point, that list nonce must uniquely identify a cell in
the list for the metaprogram applying the operation. To do
so, we define the search function Σ:

Definition 3.7. Σ(
M
η,M, L) = ◦η iff {(M

η′,M′, S) : L |
M−− M′ ∧ ∀M′′ ∈ S.M /−− M′′} = {◦η}.

The intuition of the Σ function is to provide a view of
the list consistent with the dependencies of metaprogramM.
Any elements added by metaprograms that M can see will
not be considered by the search. Any elements added by a
metaprogram thatM can see but removed by a metaprogram
that M cannot see will still be considered. This is necessary
to ensure that the metaprogram cannot observe any list op-
erations performed by other metaprograms which are not its
dependencies; otherwise, a read-write conflict would be pos-
sible.

For example, suppose that metaprogramM1 adds an ele-
ment ηi to a list; that M2 M1 and M2 removes the ele-
ment from the list; and that M3 M1 and M4 M2. In
this case, the list would contain a cell (ηi,M1, {M2}). Be-
cause M4 depends on M2, it should not see the element in
the list. BecauseM3 depends onM1 but not onM2, it should
see the element in the list. We must be able to satisfy both
of these conditions at the same time. This is the purpose of
the Σ function: because the only deleting metaprogram of
the cell isM2 and becauseM3 / M2, the cell is not consid-
ered deleted forM3. Similarly, we use the inserting metapro-
gram’s identifier to guarantee that some other metaprogram
M5 which is not ordered with these other metaprograms can-
not see the element in the list (becauseM5 / M1).

In light of the above, both list addition operations are
fairly simple. We locate the list structure in the program and
we locate the appropriate cell in the list. We then define
a new list with the new cell in the appropriate location
and substitute it back into the original program. The list
removal rule works in much the same way, but it does not
actually remove the cell from the list; it is the pervue of each
metaprogram to decide (by use of the Σ function) whether or
not each removal applies, so the removal rule simply updates
the deletion set for that cell.

3.4 Merging Edit Scripts
While read-write conflicts are obviated by the extraction of
edit scripts as described in Section 3.2, dual-write conflicts
are still possible. The conflict shown in Figure 5, for in-
stance, is a type of dual-write conflict. The relevant portions
of the edit scripts are shown in Figure 20. In these scriptlets,
ηc is taken to be the nonce of the method body and ηa and
ηb are taken to be the nonces of the code literal expressions.

· · · creation of code literal expression
M � +

Rηa(· · ·) create print method invocation
M � ηc : .# ηa add method invocation to body

· · · creation of code literal expression
M′ � +

Rηb(· · ·) create print method invocation
M′ � ηc : .# ηb add method invocation to body

Figure 20. Simple Conflict Edit Scriptlets

In light of the semantics of edit scripts described in Fig-
ure 19, it is quite clear that these metaprograms are in con-
flict: their execution order will affect the ordering of ηa and
ηb in the final program. But the very similar edit scripts pre-
sented in Figure 18 are not in conflict. The order in which
they are executed will affect the ordering of the methods in
the resulting program’s class declaration but, unlike state-
ments in a method, that ordering is not significant in Java.

Complicating matters is the fact that this ordering signif-
icance is not a property of the list itself; it is a property of
the node in the list. In Java, for instance, the ordering of el-
ements in the body of a class declaration is largely insignif-
icant: a method can appear before or after another method
without affecting the semantics of the program. But the or-
dering of some of those elements may matter: the ordering
of initializers is significant.

Our algebra accommodates this node-based significance
in ordering by introducing the order-dependence function ω.
This function is simply an abstract fixed predicate over node
nonces. When the algebra is applied to a specific language,
the ω predicate should match those nodes whose order in a
list is significant.

Definition 3.8. A node represented by the nonce η is order-
dependent iff ω(η). For convenience, we say that the nonce
is order-depdendent if the node is order-dependent. The
order-dependence of a node is constant.

Our definition of order-dependence now allows us to
specify the equivalence relation between programs:

Definition 3.9. Two programs ρ = {η 7→ v̂} and ρ′ =
{η 7→ v̂′} are equivalent (equiv., ρ ∼= ρ′) iff all of the
following are true:

• η 7→ R ∈ ρ⇔ η 7→ R ∈ ρ′
• η 7→ L ∈ ρ ⇔ η 7→ L′ ∈ ρ′. Further, E =
{◦η′ : L | ◦ηj = (η′,M, ∅)} = {◦η′ : L′ | ◦ηj = (η′,M, ∅)}.
Finally, for all (◦η′, ◦η′′) ∈ E × E, if ω(η′) ∧ ω(η′′), then
◦η′ appears before ◦η′′ in L iff it also does in L′.

For any two edit scripts δ̄ and δ̄′, the expression δ̄ ∼= δ̄′

indicates that ∀ρ ∈ P.(ϑ(δ̄, ρ)) ∼= (ϑ(δ̄′, ρ)).
For convenience, we use δ̄ (δ̄′ ρ) ∼= δ̄′ (δ̄ ρ) to denote that

ϑ(δ̄, ϑ(δ̄′, ρ)) ∼= ϑ(δ̄′, ϑ(δ̄, ρ)).

Intuitively, the above definition states that two programs
are equivalent as long as they are identical except for the
relative ordering of order-independent elements in their lists.

RECORD ASSIGNMENT CONFLICT RULE
v̂ 6= v̂′

η.l← v̂ = η.l← v̂′

ADD BEFORE CONFLICT RULE
ω(η2) ω(η′2)

η1 : η2 "
M
η3 = η1 : η′2 "

M
η3

ADD AFTER CONFLICT RULE
ω(η2) ω(η′2)

η1 :
M
η3 # η2 = η1 :

M
η3 # η′2

UNORDERED CREATION CONFLICT RULE

δ = +
Rη(l 7→ v̂) ∨ δ = +

Lη η ∈ δ′

δ = δ′

Figure 21. Conflict Semantics

Using the above definitions, we can now combine the edit
scripts produced by each metaprogram. Dual-write conflicts
are detected by defining the element conflict relation (=); we
define this relation as the least symmetric relation following
the rules shown in Figure 21. These rules use the notation
η ∈ δ, which indicates that η appears in the element δ. For
instance, η ∈ (η : ↓ η′) but η′′ /∈ (η : ↓ η′).

We then wish to use this element conflict relation to deter-
mine whether or not two edit scripts can be composed with-
out ambiguity. First, we define a predicate which describes
whether or not two edit scripts are mergable.

Definition 3.10. Two edit scripts δ̄ and δ̄′ are mergable
(equiv., δ̄ ?. δ̄′) iff ∀(M�δ,M′�δ′) ∈ δ̄×δ̄′.M′−− M∨¬(δ =
δ′).

Intuitively, two edit scripts are mergable if (1) the order
in which they should be concatenated is fixed because of
the dependency graph or (2) the composition of the two edit
scripts commutes up to equivalence.

As described above, the mergable relation ?. makes use
of the element conflict relation= defined in Figure 21. This
latter relation holds in the cases in which dual-write conflicts
can occur. Node creation between unordered metaprograms,
for example, only causes a conflict when they attempt to
create nodes using the same nonce. In practice, this should
never occur; the BSJ compiler guarantees that every AST
node in a compilation is given a unique ID.

List insertion between unordered metaprograms only
conflicts when the lists and reference points are the same
and both elements are ordered. This ordering exception is
made to ensure that two edit script elements are consid-
ered non-conflicting as long as the programs they produce
are equivalent (even if their ASTs are distinct). Making this
exception for lists considerably improves the programming
experience of languages such as BSJ, as it allows metapro-
grammers to focus on the semantics (rather than the syntax)
of the object program.

Removal of a node from a list never causes a conflict be-
cause it can always be merged. If two metaprograms remove
the same element from a list, the merge of those operations
should simply remove that element from the list.

We then define the merge operator . which successfully
combines two edit scripts if and only if they are mergable.

Definition 3.11. The merge between two edit scripts δ̄ and
δ̄′ (equiv. δ̄ . δ̄′) is defined as:
δ̄ . δ̄′ = δ1, . . . , δn, δ

′
1, . . . , δ

′
m iff δ̄ ?. δ̄′

If ¬(δ̄ ?. δ̄′), then this merge is said to fail.

Our key objective, as stated at the beginning of Section 3,
is that to ensure that a compilation only produces an output
program when every respectful ordering of metaprograms is
equivalent. We state this objective as Theorem 1:

Theorem 1. Given metaprogramsMα,M1, . . . ,Mn in a de-
pendency graph G, let δ̄α, δ̄1, . . . , δ̄n be the edit scripts pro-
duced by those metaprograms. If any respectful ordering k̄ of
these metaprograms successfully merge δ̄α . δ̄k1 . · · · . δ̄kn ,
then every respectful ordering k̄′ of these metaprograms pro-
duces an equivalent object program.

A proof of this theorem appears in Appendix A.
Once all metaprograms have been executed and their edit

scripts have been produced, the compiler chooses a respect-
ful ordering of metaprogram edit scripts k̄ and computes
δ̄∗ = δ̄k1 . · · · . δ̄kn . By Theorem 1 above, every such re-
spectful ordering produces an equivalent program. If the
merge is successful, the resulting δ̄∗ is applied to the origi-
nal AST and the result is serialized into Java source code for
compilation. If this merge is unsuccessful, a compile-time
error is generated and compilation halts.

We have thus accomplished our key objective. The BSJ
compiler follows the algebra above and this algebra ensures
that its behavior is always deterministic: if no element con-
flict is found during the merge of a given respectful ordering
of edit scripts, then every respectful ordering produces the
same program (up to equivalence). As a result, the program-
mer can take successful compilation to mean that the BSJ
program has exactly one meaning.

We can relate the merge operator to software merging,
which can be categorized in several different ways [12]:
the program representation (textual, syntactic, semantic, or
structural), available information about the transformation
process (state-based, changed-based, or operation-based),
and conflict detection strategy (ad-hoc, conflict tables, con-
flict sets, etc.). The algebra presented here represents pro-
grams syntactically and the merge operator describes an
operation-based merge over edit script elements. The ele-
ment conflict relation corresponds to a simple conflict table.

3.5 Injection Conflicts
Metaprogram injection, discussed in Section 2.5, gives rise
to a particularly eldritch problem known as an injection con-
flict. An injection conflict occurs when a metaprogram in-

M1 M2 M3

M4 t

Figure 22. Example Injection Conflict

jected into the AST could result in violating a previously-
satisfied dependency constraint. Like other conflicts, the
presence of an injection conflict in the dependency graph
causes a compilation error.

Figure 22 contains a dependency graph with an injec-
tion conflict. At the start of compilation, three metaprograms
(M1,M2, andM3) are known to exist;M4 does not yet exist
and none of the dashed or dotted lines are present. This graph
demonstrates thatM3 depends on target t and therefore must
not execute until after M2 executes. There are three exe-
cution orders that observe that constraint: {M1,M2,M3},
{M2,M3,M1}, and {M2,M1,M3}.

Presume thatM1, when executed, addsM4 to the depen-
dency graph. Also presume thatM4 declares that it is a mem-
ber of target t. This information is represented by the dotted
portions of Figure 22. In this case, M3 should not run until
afterM4 runs. SinceM4 cannot run until it is created byM1,
we can see that M3 should not run until M1 runs. This in-
validates the execution order {M2,M3,M1}, but we cannot
know this until compilation is partially complete; if we had
initially chosen that execution order, we will find ourselves
inserting M4 after M3 has already executed! Furthermore,
we cannot simply detect when such an ordering is chosen
and produce a compile error; we must produce a compile er-
ror if any legal execution orders (including those we are not
running) become invalid during the process of compilation.
Otherwise, an arbitrary execution order decision by the com-
piler determines whether compilation succeeds or fails and
we no longer have unambiguous compilation.

Recall from Definition 3.3 that all edges in the depen-
dency graph are either explicit or implicit. Edges represent-
ing declared dependencies are always explicit. In the case of
metaprogram injection, however, an implicit target is created
which corresponds to the injecting metaprogram. The in-
jected metaprogram then gains an implicit dependency upon
that target and the injecting program implicitly becomes a
member of it. This models the fact that the injected metapro-
gram (such as M4) cannot execute until after the injecting
metaprogram (such asM1) is finished.

Next, we must define the condition which prevents an in-
jection conflict between two nodes. This condition is termed
an injection dependency and is defined below. Note that in-
jection dependencies are only defined over a well-formed de-
pendency graph.

Definition 3.12. Let the following path-like relations be
defined between nodes in a dependency graph G.

• M • M′: A path exists fromM toM′ in G which consists
entirely of explicit edges.

• M ◦
�M′: A path exists fromM toM′ in G which consists

of an implicit edge fromM to some target and an implicit
edge from that target toM′.
• M•/◦ M′: An injection dependency exists betweenM and
M′ in G: for each metaprogram M̆ in G, let SM̆ =
{M̆′ | M̆ ◦

�M̆
′}. Then,M•/◦ M′ iff (∃M • M′)∨(|SM| >

0 ∧ ∀M′′ ∈ SM,M′′•/◦ M′).

The definition ofM•/◦ M′ identifies the conditions neces-
sary to ensure that the ordering information present in the
dependency graph was already present before injection. The
first term of the conjunction indicates that no new informa-
tion is introduced if M and M′ were already ordered. The
second term expresses a constraint meant to handle cases
of recursive injection: no new ordering is introduced if we
explicitly depend upon whatever our injector depends upon
(or whatever those metaprograms depend upon, recursively).
This recursion is clearly well-founded for a well-formed de-
pendency graph as such graphs are acyclic.

We now define an injection conflict as follows:

Definition 3.13. An injection conflict exists from M over
M′ with the nodes in SM′ iff |SM′ | > 0 and ∀M′′ ∈
SM′ ,¬M•/◦ M′′

Intuitively, Definition 3.13 reads as follows: if any metapro-
gram M depends on another metaprogram M′ and that
metaprogram M′ was generated (directly or indirectly) by
some metaprograms in SM′ , thenMmust not be a candidate
for execution until M′ exists. We ensure that M is not ex-
ecuted until M′ exists by ensuring that M cannot run until
after someM′′ ∈ SM′ runs.

For example, consider Figure 22. We can now see that
an injection conflict exists from M3 over M4 with M1. We
have that SM4

= {M1} and so |SM4
| > 0; we also have

that ¬M3
•/◦ M1 because ¬M3

• M1 and because M3 is not
an injected metaprogram (meaning that |SM3 | = 0).

We have thus reached our goal of detecting injection
conflicts independent of the chosen execution order. Also,
the phrasing of the injection conflict conveys a solution
which can be communicated to the programmer: if M has
an injection conflict overM′ with SM′′ , then the conflict can
be resolved by explicitly declaring any dependency such that
M M′′ forM′′ ∈ SM′ .

While the BSJ reference implementation treats an injec-
tion conflict as an error, we observe that this is not strictly
necessary. In cases in which we chose an execution order that
triggered the conflict, our difference-based metaprogram-
ming model allows us to simply recompute the edit scripts
for any affected metaprograms and their dependents. Con-
sider, for instance, the case in which we have the graph in
Figure 22 and we chose the execution order {M2,M3,M1}.
Upon executingM1 and discovering the injection conflict, it
would be possible to prepare another input AST forM3 (this
time including the edit script from M4) and recompute its
edit script, discarding the old one. In effect, we would then

have the execution order {M2,M1,M4,M3}. This would
not be possible in a traditional metaprogramming model,
as it would not be possible in the general case to undo the
changes a metaprogram made to the AST. The BSJ refer-
ence implementation does not include this feature – we be-
lieve that the metaprogrammer would wish to fix the incon-
sistency – but this solution helps to illustrate the nature of
injection conflicts.

3.6 Restrictions
Our compiler reference implementation uses the edit script
algebra to ensure unambiguous output (although a proof of
correctness of the reference implementation is clearly be-
yond the scope of this paper). This property of unambiguity
relies upon the compiler’s ability to isolate metaprograms
from each other. Because BSJ metaprograms are capable
of escaping the JVM in several ways (I/O, JNI, etc.), per-
fect conflict identification would require significant informa-
tion flow instrumentation from the JVM and underlying op-
erating system. In order to make implementation tractable
and prevent excessive restrictions, two sacrifices were made.
These represent potential false negatives in the BSJ conflict
detection system, so metaprogrammers should observe them
with care:

• Unordered metaprograms must never communicate.
This includes all forms of communication. For instance,
a metaprogram must not write to a file that another
metaprogram reads or use the same global variables that
another metaprogram uses.
• Metaprograms may not use any external resource

to obtain access to AST nodes. The creation of new
nodes must be done via the node factory provided by the
metaprogram’s context; access to existing nodes must
be obtained by following references from the metapro-
gram’s anchor.

These two restrictions prove easy to follow in practice;
accidental violation, for instance, does not appear to be a
concern. Pending further experience, we accept these restric-
tions in exchange for the conflict detection behavior that they
provide.

4. Code Literals
As discussed in Section 2.6, BSJ provides a quasiquoting
syntax known as a code literal. Code literals permit a very
readable and terse form of AST construction. Unfortunately,
the meaning of some code literals can be difficult to ascer-
tain. The literal <:x:>, for instance, could be interpreted as
an identifier, a simple name, a singleton list of type refer-
ences (as in an implements clause), or any of thirteen other
meanings. A parser would normally distinguish based on its
internal state but, since this code has been removed from its
context, this is not possible.

Previous work has explored the problem of correctly in-
ferring the type of the code literal. MetaAspectJ [9] uses
“guess-parsing”: parse rules are tried in order and the first
match is used. Unfortunately, when multiple rules match, the
values corresponding to those parses which were not chosen
cannot be expressed. A more elegant approach exists in [3].
This approach involves lifting the code (translating object
program code to a metaprogram AST which creates it) into
a set of construction forms and then eliminates those forms
which do not successfully typecheck. If exactly one form
typechecks correctly, this form is used as the meaning of the
object program code fragment.

BSJ uses a solution similar to that of [3] but defers the
lifting of code until after typechecking is complete. Instead,
the code literal is directly represented as a family of types in
the BSJ type system. This has two effects. First, it provides
opportunities for improving the performance of the disam-
biguation process: BSJ does not need to parse or lift code
literal productions that it knows will not successfully type-
check. Second, it becomes clearer the impact that the code
literals will have on the semantics of the metaprogram in
which they are used.

We begin this section by introducing selection types, the
family of types which represents code literals in the BSJ
language. We then explain the evaluation process for code
literals. Finally, we provide an analysis of the properties of
the code literal model of quasiquoting.

4.1 Selection Types
BSJ introduces a new type family over those it inherits from
Java: selection types. Selection types are similar to Java’s
intersection types in that they are used in a very constrained
fashion and are impossible to represent explicitly using the
language’s syntax. BSJ programmers should generally not
require a deep understanding of selection types.

A selection type is formed over a bag of types. We use the
notation {A,B}& to represent the selection type between A
and B. This selection type contains all selection bags which
contain a value of type A and a value of type B. We use the
notation {x,y}& to denote the selection bag of the values x
and y; if x : A and y : B, then {x,y}& : {A,B}&. Because
bags are unordered, {A,B}& = {B,A}& and {x,y}& =
{y,x}&. Selection types are not reference types and are not
related via subtyping.

The type rules for selection types, presented in Figure 23,
are similar to those of record types in most languages. Un-
like record types, selection types are unlabeled, making tra-
ditional projection impossible. Projection from a selection
bag is performed implicitly: via the selection conversion.
We write A _ B to indicate that type A can be selection-
converted to type B. The Selection Type Projection Rule al-
lows a selection type to be converted to another type τ ′ if
exactly one of its component types is a subtype of τ ′. The

SELECTION BAG TYPE RULE
Γ ` e1 : τ1 · · · Γ ` en : τn

Γ ` {e1,. . . ,en}& : {τ1,. . . ,τn}&

SELECTION TYPE REORDERING RULE
∀(k 7→ v) ∈ m, (k′ 7→ v′) ∈ m.(k = k′ ⇔ v = v′)

τ1 = τ ′m[1] · · · τn = τ ′m[n]

{τ1,. . . ,τn}& ∼= {τ ′1,. . . ,τ ′n}&

EQUIVALENCE RULE

e′ : τ ′ e ∼= e′ τ ∼= τ ′

e : τ

SELECTION TYPE PROJECTION RULE
∃!k.τk <: τ ′

Γ ` {τ1,. . . ,τn}& _ τ ′

Figure 23. Selection Type Rules

selection conversion is legal in the conversion contexts of
assignment, method invocation, and casting.2

The choice of notation for selection types was inspired by
the additive conjunction from linear logic. An additive con-
junction represents an alternative occurrence of resources,
the choice of which belongs to the consumer. In this case,
the selection type is analogous to the resources and the pro-
grammer is the consumer. The selection conversion is an in-
ference mechanism for determining the choice of resource
on the programmer’s behalf.

4.2 Evaluating Code Literals
We can use selection types to capture the meaning of code
literals. This is demonstrated by the equivalences defined in
Figure 24 which use the notation from the definition below.

Definition 4.1. The following notation is used in Figure 24.

• R is the set of all parse rules: a set of functions which
accept a sequence of tokens and produce a selection bag
of AST node values. Each element is of the form rπ ,
where π is the set of output types for the rule r.
• rπ(c) is used to describe the processing of the token

sequence c by the parse rule rπ . This is an evaluation
which is performed by the compiler and so can be used
to affect the static typing of object program expressions.
• x T→ τ is used to indicate that x has the runtime type
τ . This is distinct from x : τ in that the latter expresses
a statically provable relationship in the object program.
The prior expresses a dynamically proven relationship in
the metaprogram.
• e +⇒ v is used to indicate that metaprogram expression
e evaluates to metaprogram expression v at metaprogram
runtime.

2 Chapter 5 of The Java Language Specification [8] provides a complete
definition of conversions and conversion contexts in the Java language.

CODE LITERAL EQUIVALENCE RULE

Γ ` <:c:> ∼= {rπ(c) : rπ ∈ R ∧ rπ(c)
+⇒ v}&

PARSE EXECUTION TYPE RULE

rπ(c)
+⇒ v v T→ τ ′ τ ′ <: τ τ ∈ π

Γ ` rπ(c) : τ

Figure 24. Code Literal Rules

1 LocalVariableDeclarationNode n1 = <: TypeNode t = <: 5 :>; :>;
2 LocalVariableDeclarationNode n2 = <: int x = y; :>;

Figure 25. Nested Code Literal Example

The Code Literal Equivalence Rule in Figure 24 is used to
specify a selection bag to which the code literal is equivalent.
If there exists exactly one value in the selection bag which
has a type corresponding to the expected type in the code
literal’s context, the Selection Type Projection Rule would
project that value, making the code literal expression equiv-
alent to it. To accommodate these semantics, the reference
implementation lifts the projected value into an expression
which will, when executed, produce that value. This expres-
sion then replaces the code literal in the AST after type-
checking is complete. This is to say that, after the process of
lifting is complete, the code in Figure 12a will be replaced
by the code in Figure 12b.

BSJ code literals are not typechecked across multiple
stages. Consider the code in Figure 25. The inner code lit-
eral on line 1 contains an expression which appears to be in
error; there seems to be no context into which that code can
be inserted without causing a type error (because an integer
literal is not a type). In line 2, however, we create an AST
which expresses the instantiation of a variable x and its ini-
tialization to the value of y. Unlike some metaprogramming
languages, BSJ cannot guarantee in which scope the gener-
ated code will be used; this is based on the runtime seman-
tics of the metaprogram. For this reason, it is impossible to
know at metaprogram compile time if the code literal will be
inserted into a context where the type of y will be assignable
to int (or even if y will be bound!). Likewise, it would be
incorrect to assume that the name TypeNode in the first line
is bound to the BSJ AST type of that name.

While BSJ cannot perform n-stage typechecking of
metaprograms, this does not appear to be a concern in prac-
tice. Metaprograms are executed by the compiler, meaning
that any errors of this nature will be detected before a binary
object program is produced.

4.3 Code Splicing
Code literals in BSJ permit splicing. As with quasiquotes in
LISP or Scheme, splicing allows the value of a metaprogram
AST expression to be used in literal code. This is modeled
in the BSJ AST by typing each node reference as a disjoint
union between its expected type and the type SpliceNode;

VariableNode

SpliceNode IdentifierNode

VariableAccessNode

type

expression

identifier

Figure 26. <:~:vartype:~ x:> splicing as TypeNode

VariableNode

UnparameterizedTypeNode IdentifierNode

SpliceNode VariableAccessNode

type

name

expression

identifier

Figure 27. <:~:vartype:~ x:> splicing as NameNode

Type ::= PrimitiveType | ReferenceType |
Splice(TypeNode− {PrimitiveTypeNode ∪
ReferenceTypeNode})

ReferenceType ::= UnparamType | · · · |
Splice(ReferenceTypeNode−
{UnparameterizedTypeNode ∪ · · · })

UnparamType ::= Name | Splice(UnparameterizedTypeNode)
Name ::= Identifier | Name . Identifier |

Splice(NameNode)
Identifier ::= IdentifierToken | Splice(IdentifierNode)

Figure 28. Splice Grammar Rule Example

for instance, SimpleNameNode has a reference which is
effectively of type IdentifierNode ∪ SpliceNode.3

Consider the code literal <:~:vartype:~ x:> in the
context of a variable declaration. The expression vartype

refers to a variable declared in the context of the metapro-
gram containing the code literal. The splice clearly repre-
sents the type of the variable; the token x is the identifier
to which it is bound (such as int x). Evaluating that code
literal produces the AST in Figure 26.

Unfortunately, splicing is not this simple. The AST we
produced in Figure 26 assumes that the splice expres-
sion is a TypeNode, the type of the type property for a
VariableNode. Figure 27 shows the AST that would be
constructed if vartype was bound to a SimpleNameNode.
Thus, the AST that is built depends upon the metaprogram
scope in which we interpret the splice.

To address this problem without introducing grammar
ambiguity, we introduce a parameter to the splice grammar
rule and use this parameter in a semantic predicate [13]
determining whether or not the rule can be accepted. The
argument we provide is a set of types in the form τ −
{τ1 ∪ · · · ∪ τn}. If, in the context of the metaprogram, the
expression which appears in the splice is not of a type which
is assignable to the argument, the splice does not parse.

For instance, consider the abbreviated grammar
rules for types which appear in Figure 28. Because

3 Java’s type system does not support a general disjoint union type. In
specific cases such as this one, however, they can be encoded.

ReferenceTypeNode is a subtype of TypeNode, the Type
rule ignores splices of type ReferenceTypeNode and
allows the ReferenceType rule to capture them instead.
Because UnparameterizedTypeNode and NameNode are
not subtypes, this precaution is not necessary for Unparam-
Type. This approach permits the parsing of code literals
to disambiguate splices by using the metaprogram type
environment.

4.4 Analysis
There are two key effects of code literals compared with the
approach outlined in [3] which we believe to be of interest.
First, because we have deferred lifting the code literal until
after typechecking, we are able to exploit performance opti-
mizations which were not previously available. For instance,
consider the assignment expression IdentifierNode i =

<:x:>. Rather than evaluating each parse of the literal im-
mediately, we can wait until a selection conversion τ ′ _ τ
and evaluate only those parse rules which are compatible
with τ . This prevents the unnecessary parsing and lifting
which would inevitably be eliminated by the typechecking
process.

Additionally, the semantic impact of the BSJ code literal
is more evident. Consider the following method signatures:

String foo(A a, B b);

int foo(B b, A a);

If some variable c of a node type C exists which is a subtype
of both A and B, §15.12.2.5 of [8] indicates that the method
invocation String s = foo(c,c) is ambiguous (because
it is not clear which overloading is intended). If c : {C}&,
then this is also true with code literals. [3], however, gener-
alizes disambiguation up to statements when quasiquoting is
used and would thus select the first method signature above
(as its return type satisfies the assignment). This disconti-
nuity arises because the disambiguation technique used in
[3] does not match the one specified by the Java language.
BSJ resolves this issue by integrating selection types into the
conversion rules in the host language’s type system.

5. Implementation
We have developed a BSJ compiler reference implementa-
tion consisting of 54,000 lines of source and 193,000 lines
of generated code. This generated code largely represents the
numerous design patterns which appear throughout the BSJ
compiler (underscoring the need for compile-time metapro-
gramming in Java). The implementation is comprised of
three parts. The first is the BSJ API, which all BSJ compiler
implementations are expected to meet; it includes diagnostic
interfaces, utilities, and over 200 types of AST nodes. The
AST type hierarchy was structured to ensure that as many
errors as possible are caught by the Java type system.

The second part of the compiler project is the reference
implementation of the API. This implementation supports

the full Java language and, while not yet complete, is capa-
ble of operating correctly on all of the examples in this paper.
We have developed a Java typechecker, allowing metapro-
grams to be aware of and sensitive to type declarations. The
typechecker evaluates lazily; metaprograms tend to type-
check only part of the AST at a time, making the lazy design
considerably more efficient.

The third part of the project is a set of BSJ standard li-
braries, which includes meta-annotations such as @@Memoized
and @@BigIntegerOperatorOverloading shown in Fig-
ure 7b. It also currently includes meta-annotations imple-
menting design patterns such as Builder, Observer, and
Proxy as well as useful code manipulations such as loop
unrolling and method delegation.

6. Related Work
To our knowledge, no previous work exists which models
metaprogramming using the difference-based technique we
have described. However, the designs of this model and of
BSJ draw heavily from the work listed below.

Template Haskell BSJ was largely inspired by existing
compile-time metaprogramming literature [7, 17] and other
theoretical metaprogramming work [16, 23]. In many ways,
BSJ is most similar to Template Haskell: metaprograms use
an embedded syntax, have a clearly-defined execution order,
and have access to declarations in scope at the call site.

Unlike Template Haskell, however, BSJ allows non-local
changes as discussed in Section 2.1. Non-local changes
are critical for expressing complex Java abstractions (such
as @@ComparedBy) without duplication of logic. Template
Haskell, on the other hand, restricts the programmer to in-
serting code into the metaprogram’s position in the AST.

Template Haskell provides n-stage typechecking: a metapro-
gram code fragment [|x|] cannot be constructed unless the
identifier x is bound by the object program in the scope
where the metaprogram. BSJ cannot provide n-stage type-
checking because non-local changes make identifying the
bindings of a code literal undecidable. We consider this
tradeoff acceptable because any resulting typechecking er-
rors will manifest at object program compilation time, al-
lowing the programmer to address them accordingly.

Scheme Scheme and BSJ both treat code fragments as
simple ASTs. Scheme macros only expand in-place, how-
ever, and have the concern of variable hygiene – prevent-
ing global names used in macros from being locally shad-
owed – which is addressed by built-in tools like gensym.
BSJ metaprograms share the concern of variable hygiene
but, since metaprograms may inspect their environemnts, it
is possible to determine which variables are bound in scope
through use of simple library functions.

Scheme has been used to demonstrate the value of ab-
stracting design patterns using metaprogramming [25]. BSJ
introduces this philosophy to the Java language using an an-

notation syntax which is more amenable to the Java commu-
nity. BSJ metaprograms are also somewhat simpler to use
than Scheme macros for non-generative purposes such as
static analysis.

Groovy and OJ Groovy [5] and OJ [20] are Java-like
languages which allow compile-time metaprogramming
through meta-object protocols. OJ programmers write metapro-
gramming modules which specify new declaration-modifying
keywords. Groovy is a dynamically typed Java language
derivative which uses annotations to drive AST transforma-
tions (similar to BSJ meta-annotations). Both Groovy and OJ
provide MOPs which allow some form of non-local changes.
However, neither language is capable of detecting conflicts if
they occur; thus, they admit ambiguous programs which are
not detected at compile-time, a quite undesirable property.

MetaAspectJ MetaAspectJ [9] is a compile-time metapro-
gramming system for the AspectJ language, a Java lan-
guage extension for aspect-oriented programming. Unlike
the other languages listed here, MetaAspectJ attempts to
perform inference over a significant number of quasiquot-
ing forms. Unlike BSJ, quasiquotes in MetaAspectJ are dis-
ambiguated using a simple type system; it is unclear from
the paper whether this type system would be sufficient to
disambiguate BSJ code literals. MetaAspectJ also permits
annotation-driven transformations of ASTs but, like Groovy
and OJ, does not detect conflicts between metaprograms.

OpenC++ OpenC++ [4] is a C++ language extension quite
similar to OJ: the programmer may use the provided MOP
to enhance the syntax of the language. These new syntac-
tic constructs are defined with handlers which specify AST
transformations. OpenC++ programs are not ambiguous, but
this is not by virtue of conflict detection; like Scheme, trans-
formations are only permitted to expand in place, disallow-
ing non-local changes.

ROSE The ROSE compiler infrastructure [14] is unique
in that all of its program transformations must have a total
ordering. Rather than assembling metaprogram fragments
which are embedded in the object program source, ROSE
requires the metaprogrammer to write a single metaprogram
which executes all transformations in sequence. This tech-
nique applies to a different set of domains; while ROSE
coordinates large, sweeping changes across a source base,
BSJ’s inline syntax is more suitable for abstracting design
patterns and other descriptive code properties.

Stratego Stratego/XT [24] is a framework which abstracts
the task of building program transformation systems, pro-
viding a language for specifying source-to-source transfor-
mations. While Stratego is a very general system, it is tar-
geted toward more localized transformations than that of
BSJ. It also assumes that the transformation pipeline can be
expressed as a composition sequence, making it presently
unsuitable for difference-based metaprogramming.

Runtime Metaprogramming Mint [26], MetaOCaml [18]
and MetaML [19] are runtime metaprogramming extensions
of Java, OCaml, and ML (respectively). Runtime metapro-
gramming eases the process of generating code based on
runtime input (such as by inlining an input matrix into an im-
age transformation routine for performance). The user then
lifts the generated code into the current runtime. While not
directly related to BSJ, runtime metaprogramming systems
are based on like principles.

7. Conclusions
We have explored difference-based metaprogramming, a
technique which permits a metaprogrammer to effect non-
local changes without losing the crcitical guarantee of un-
ambiguous compilation. We presented an algebra to define
the semantics of this programming technique and related it
to our reference implementation of BSJ, a Java language
extension for difference-based metaprogramming. We also
demonstrated a technique by which the meaning of code
fragments in metaprograms can be inferred by introducing
a type family based on linear logic. BSJ metaprograms are
easier to understand and maintain than their equivalent Java
counterparts due to BSJ’s terse and expressive syntax.

We ensure that non-local changes do not introduce am-
biguity by treating metaprograms as transformation genera-
tors: rather than executing each metaprogram in turn over the
same object program, we use the metaprograms to produce
edit scripts. These edit scripts are then merged and, in the
event of a successful merge, are applied to the original ob-
ject program to produce the final result. A successful merge
implies that any legal ordering of the edit scripts we select
will have the same effect; a merge failure indicates that two
metaprograms are in conflict. A proof of these property ap-
pears in Appendix A.

We also demonstrate a variation on the disambiguation
technique described in [3]. We defer lifting of object pro-
gram code until after typechecking, a technique that permits
us further opportunities for optimization and that, in BSJ, in-
tegrates more smoothly into the Java language specification.

7.1 Future Work
As discussed in Section 3.4, the edit script algebra presented
here is strictly of a syntactic nature; it has no support for
representing semantic information. Techniques for semantic
software merging have already been developed [12], but it
remains to be seen how those techniques would apply in a
difference-based metaprogramming environment.

BSJ metaprograms are currently quite verbose and we are
investigating remedies for this problem. The BSJ standard
libraries may be expanded to include meta-annotations rep-
resenting difference-based metaprogramming-specific de-
sign patterns; syntactic sugar should prove helpful in cases
in which such libraries are insufficient. BSJ metaprograms
must also use explicit type coercion on AST nodes as they

inspect their environments; further extensions to the BSJ
type system could prevent the need for these coercions.

The call sites for BSJ always include explicit delimiter
syntax. While this conveniently emphasizes that the code
may be changed at compile time, it prevents elegant con-
struction of language extensions in BSJ. A syntax rewriter
front-end (similar to Stratego [24] or Maya [1]) would be
useful; this would permit new syntactic constructs to be rei-
fied as metaprograms in BSJ. This would also ensure that no
two syntax extensions’ encodings conflict with each other.

Before BSJ can achieve widespread adoption, significant
library development is necessary. While part of the attraction
of compile-time metaprogramming is the ability to express
domain-specific encodings, BSJ programmers would benefit
considerably from a rich set of general metaprogramming
tools and prepared meta-annotations. BSJ will also require
an IDE comparable to those available to Java programmers;
to this end, we have begun development of a BSJ plugin for
Eclipse. This project poses several questions: how should
metaprograms be debugged? How are metaprograms’ effects
visualized? How do we automate refactoring when some of
the target code is generated?

Acknowledgments
This work would not have been possible without the ef-
forts of several of our colleagues. Harisanker Menon toler-
ated many impromptu discussions on the topic. Joseph Riley
helped with the core implementation of the compiler; Uday
Garikipati and Nathan Krasnopoler contributed to the BSJ
standard library. An anonymous PLDI reviewer’s feedback
led to our investigation of the difference-based approach.

References
[1] J. Baker and W. C. Hsieh. Maya: Multiple-dispatch syntax

extension in Java. In PLDI, pages 270–281, 2002.

[2] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for
implementing domain-specific languages. Software Reuse,
International Conference on, 0:143, 1998.

[3] M. Bravenboer, R. Vermaas, J. Vinju, and E. Visser. Gener-
alized type-based disambiguation of meta programs with con-
crete object syntax. In Proceedings of the Fourth International
Conference on Generative Programming and Component En-
gineering (GPCE05), volume 3676 of Lecture Notes in Com-
puter Science, pages 157–172. Springer, 2005.

[4] S. Chiba. A metaobject protocol for C++, 1995.

[5] Codehaus Foundation. Groovy - building AST guide, May
2010. http://groovy.codehaus.org/Building+AST+

Guide.

[6] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional, 1 edition, November
1994.

[7] S. E. Ganz, A. Sabry, and W. Taha. Macros as multi-
stage computations: Type-safe, generative, binding macros in

MacroML. In MacroML. In the International Conference
on Functional Programming (ICFP 01, pages 74–85. ACM
Press, 2001.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Lan-
guage Specification, Third Edition. Addison-Wesley Long-
man, Amsterdam, 3 edition, June 2005.

[9] S. S. Huang, D. Zook, and Y. Smaragdakis. Domain-specific
languages and program generation with Meta-AspectJ. ACM
Trans. Softw. Eng. Methodol., 18:6:1–6:32, November 2008.

[10] S. Kamin, L. Clausen, and A. Jarvis. Jumbo: Run-time code
generation for Java and its applications. In CGO ’03: Pro-
ceedings of the international symposium on Code generation
and optimization, pages 48–56, Washington, DC, USA, 2003.
IEEE Computer Society.

[11] E. Lippe and N. van Oosterom. Operation-based merging.
SIGSOFT Softw. Eng. Notes, 17:78–87, November 1992.

[12] T. Mens. A state-of-the-art survey on software merging. IEEE
Trans. Softw. Eng., 28:449–462, May 2002.

[13] T. J. Parr and R. W. Quong. Adding semantic and syntactic
predicates to LL(k): pred-LL(k). In In Computational Com-
plexity, pages 263–277. Springer-Verlag, 1994.

[14] D. J. Quinlan. ROSE: Compiler support for object-oriented
frameworks. Parallel Processing Letters, 10(2/3):215–226,
2000.

[15] A. D. Robison. Impact of economics on compiler optimiza-
tion. In Proceedings of the 2001 joint ACM-ISCOPE confer-
ence on Java Grande, JGI ’01, pages 1–10, New York, NY,
USA, 2001. ACM.

[16] T. Sheard. Accomplishments and research challenges in meta-
programming. In SAIG 2001: Proceedings of the Second In-
ternational Workshop on Semantics, Applications, and Imple-
mentation of Program Generation, pages 2–44, London, UK,
2001. Springer-Verlag.

[17] T. Sheard and S. P. Jones. Template meta-programming for
Haskell. In ACM SIGPLAN Haskell Workshop 02, pages 1–
16. ACM Press, 2002.

[18] W. Taha and et. al. MetaOCaml: A compiled, type-safe multi-
stage programming language. http://www.metaocaml.

org/.

[19] W. Taha and T. Sheard. MetaML and multi-stage program-
ming with explicit annotations. Theor. Comput. Sci., 248(1-2):
211–242, 2000.

[20] M. Tatsubori and S. Chiba. Programming support of design
patterns with compile-time reflection, 1998.

[21] L. Tratt. Compile-time meta-programming in a dynamically
typed oo language. In Proceedings of the 2005 symposium on
Dynamic languages, DLS ’05, pages 49–63, New York, NY,
USA, 2005. ACM.

[22] T. L. Veldhuizen. C++ templates are turing complete. Techni-
cal report, 2003.

[23] T. L. Veldhuizen. Tradeoffs in metaprogramming. In PEPM
’06: Proceedings of the 2006 ACM SIGPLAN symposium on
Partial evaluation and semantics-based program manipula-
tion, pages 150–159, New York, NY, USA, 2006. ACM.

[24] E. Visser. Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in StrategoXT 0.9, 2004.

[25] D. von Dincklage. Making patterns explicit with metapro-
gramming. In GPCE ’03: Proceedings of the 2nd interna-
tional conference on Generative programming and compo-
nent engineering, pages 287–306, New York, NY, USA, 2003.
Springer-Verlag New York, Inc.

[26] E. Westbrook, M. Ricken, J. Inoue, Y. Yao, T. Abdelatif,
and W. Taha. Mint: Java multi-stage programming using
weak separability. In ACM SIGPLAN 2010 Conference on
Programming Language Design and Implementation (PLDI
’10), June 2010.

A. Proof of Correctness
The determinism of difference-based metaprogramming re-
lies on the crucial property that, for all orderings k̄ of a set
of metaprograms, the sequences ϑ(δ̄kn , (· · ·ϑ(δ̄k1 , ∅)) of the
edit scripts are equivalent, either in that they produce equiv-
alent object programs or in that they all fail to merge. This
appendix provides a proof of that property based on the se-
mantics in Section 3.

A general outline of this proof is as follows. First, we
show that any pairing of edit script elements which are
produced by unordered metaprograms are commutative up
to equivalence. Then, we demonstrate that the edit scripts
of unordered metaprograms commute up to equivalence.
Finally we demonstrate that, if no conflicts exist, a merge
over any respectful ordering is equivalent to a merge over
every other respectful ordering.

We start by defining a lemma for the commutativity of the
record substitution operator.

Lemma A.1. The record substitution operator is commuta-
tive for different substitution keys; that is, rJk 7→ vKJk′ 7→
v′K = rJk′ 7→ v′KJk 7→ vK when k 6= k′. Further, the record
substitution operator is commutative when both the substi-
tution keys and values are the same.

Proof. Trivial by the nature of mappings.

Next, we highlight that any edit script that performs op-
erations over the wrong type of node will always commute
with every other edit script.

Lemma A.2. Any record assignment element which refers
to a list node commutes with every other edit script element.
Any list add or list remove element which refers to a record
node commutes with every other edit script element.

Proof. Let δ be an edit script of the form η.l← v̂ and as-
sume that η 7→ L ∈ ρ. The application δ ρ diverges as
no evaluation rule matches it. Thus, for any δ′, we have
δ (δ′ ρ) ∼= δ′ (δ ρ) (since both sides diverge).

For list add and list remove elements, the same strategy is
applied with η 7→ R.

In the definition of Lemmas A.3, A.4, A.5, A.6, and A.7,
we assume that the input elements are applied to the correct
types (since any case in which this is not true can be proven
to commute by the above).

We can now demonstrate that individual edit script el-
ements generated by unordered metaprograms either com-
mute or are defined to conflict. To do so, we must analyze
each pairwise case of edit script element types.

Lemma A.3. Given any two edit script elements M � δ
and M′ � δ′ where M /−−

 M′ and either edit script element
is a record creation or list creation element, then either
δ (δ′ ρ) ∼= δ′ (δ ρ) or δ = δ′.

Proof. Assume w.l.o.g. that δ is either a record creation el-
ement or a list creation element containing the nonce η. If
η ∈ δ′, then δ = δ′ by the Unordered Creation Conflict
Rule. Otherwise, as indicated in Figure 19, the application
of any type of edit script results in the substitution of ex-
actly one nonce in the input program. Because η /∈ δ′, its
semantics do not substitute η. The semantics of δ involve
the substitution η and no other nonce. By Lemma A.1, these
edit script elements commute.

Lemma A.4. Given any two edit script elementsM � δ and
M′�δ′ whereM /−−

 M′ and one edit script element is a record
assignment, either δ (δ′ ρ) ∼= δ′ (δ ρ) or δ = δ′.

Proof. Suppose w.l.o.g. that δ is a record assignment ele-
ment of the form η.l← v̂. If δ′ is a creation element, then
these two elements commute by Lemma A.3. Otherwise, the
application of δ′ either substitutes η or it does not. If it does
not, these edit script elements commute by Lemma A.1.

If it does, then δ′ is either a record assignment element,
a list addition element, or a list removal element. If δ′ is not
a record assignment element, then it commutes with δ via
Lemma A.2.

Otherwise, δ′ is a record assignment element of the form
η′.l′ ← v̂′. If η 6= η′, then these edit script elements com-
mute by Lemma A.1 as they replace different keys in ρ. Oth-
erwise, if l 6= l′ then these edit script elements commute
by Lemma A.1 as they replace different keys in the record
to which η is mapped in ρ. Otherwise, we have η = η′

and l = l′. Either v̂ = v̂′ (in which case both elements
perform the same substitution and therefore commute by
Lemma A.1) or v̂ 6= v̂′ (in which case δ = δ′ by the Value
Assignment Conflict Rule in Figure 21).

Lemma A.5. Given any two edit script elementsM � δ and
M′ � δ where M /−−

 M′ and one edit script element is a list
add before element, either δ (δ′ ρ) ∼= δ′ (δ ρ) or δ = δ′.

Proof. Suppose w.l.o.g. that δ = M � η1 : η2 "
M
η3. If

δ′ is a creation element or a record assignment element,
then these elements commute by Lemma A.3 or Lemma A.4
(respectively). Otherwise, δ′ is a list addition element or a
list removal element. If the list affected by δ′ has nonce

η′1 and η1 6= η′1, then these two elements commute by
Lemma A.1. Otherwise, η1 = η′1 and η1 7→ L ∈ ρ and
we proceed by deconstructing the type of δ′.

Suppose δ′ is a list add before element of the form M′ �
η1 : η′2 "

M
η′3. If M

η3 6=
M
η′3, then these two additions occur

in different positions of the list. Suppose w.l.o.g. that M
η3

appears before M
η′3 in the list. Let ◦η3 = Σ(

M
η3,M, L) and ◦η′3 =

Σ(
M
η′3,M

′, L). If either of these two evaluations fail, at least
one edit script element application does not evaluate and so
we have divergence. The commutation of the elements will
not affect this as the addition of an element by an unordered
metaprogram does not change the result of Σ andM /

 M′.
If Σ succeeds in finding ◦η3 and ◦η′3, then we have

δ′ (δ {η1 7→ [◦η∗,
◦η3,
◦η′∗,
◦η′3,
◦η′′∗],K 7→ v̂})

⇒ δ′ {η1 7→ [◦η∗, (η2,M, ∅), ◦η3, ◦η′∗,
◦η′3,
◦η′′∗],K 7→ v̂}

⇒ {η1 7→ [◦η∗, (η2,M, ∅), ◦η3, ◦η′∗, (η′2,M′, ∅),
◦η′3,
◦η′′∗],K 7→ v̂}

and

δ (δ′ {η1 7→ [◦η∗,
◦η3,
◦η′∗,
◦η′3,
◦η′′∗],K 7→ v̂})

⇒ δ {η1 7→ [◦η∗,
◦η3,
◦η′∗, (η

′
2,M

′, ∅), ◦η′3,
◦η′′∗],K 7→ v̂}

⇒ {η1 7→ [◦η∗, (η2,M, ∅), ◦η3, ◦η′∗, (η′2,M′, ∅),
◦η′3,
◦η′′∗],K 7→ v̂}

Thus, these two list add before elements commute when
they refer to different positions in the list. If they refer to the
same position in the list, we have M

η3 =
M
η′3. Either one of η2

and η′2 is unordered or both are ordered. If both are ordered,
these two edit script elements conflict by the Add Before
Conflict Rule; otherwise, they commute by Definition 3.9
(program equivalence). Therefore, two list add before ele-
ments from unordered metaprograms always commute.

Otherwise, suppose δ′ is a list add after element of the
form M′ � η1 :

M
η′3 # η′2. When these two elements refer

to different positions in the list or when Σ returns different
list elements for each metaprogram, the strategy described
above for list add before elements suffices to show that the
elements commute. In the case that M

η3 =
M
η′3 and ◦η3 = ◦η′3,

we have

δ′ (δ {η1 7→ [◦η∗,
◦η3,
◦η′∗],K 7→ v̂})

⇒ δ′ {η1 7→ [◦η∗, (η2,M, ∅), ◦η3, ◦η′∗],K 7→ v̂}
⇒ {η1 7→ [◦η∗, (η2,M, ∅), ◦η3, (η′2,M′, ∅),

◦η′∗],K 7→ v̂}

and

δ′ (δ {η1 7→ [◦η∗,
◦η3,
◦η′∗],K 7→ v̂})

⇒ δ′ {η1 7→ [◦η∗,
◦η3, (η′2,M

′, ∅), ◦η′∗],K 7→ v̂}
⇒ {η1 7→ [◦η∗, (η2,M, ∅), ◦η3, (η′2,M′, ∅),

◦η′∗],K 7→ v̂}

Thus, when δ is a list add before element and δ′ is a list
add after element, these edit script elements commute.

Otherwise, δ′ must be a list remove element of the form
M′ � η1 : ↓ η′3. We know that M /−−

 M′; suppose that η1 7→
L ∈ ρ. The application of δ′ will add M′ to the removal set
of some cell; the application of δ will invoke Σ(

M
η3,M, L).

We have that Σ(
M
η3,M, L) is unaffected by the actions of δ′

because it is based upon the set {(M
η′,M′′, S) : L |M−− M′′∧

∀M′′′ ∈ S.M /−− M′′′}. Because M /−−

 M′, the addition of M′

to a removal set will not change this set. We use a similar
strategy to demonstrate that Σ(

M
η′3,M

′, L) will be unaffected
by δ and then use the strategy above to demonstrate commu-
tativity between δ and δ′.

Lemma A.6. Given any two edit script elementsM � δ and
M′ � δ′ where M /−−

 M′ and one edit script element is a list
add after element, either δ (δ′ ρ) ∼= δ′ (δ ρ) or δ = δ′.

Proof. By the same strategy as Lemma A.5.

Lemma A.7. Given any two edit script elementsM � δ and
M′ � δ′ where M /−−

 M′ and one edit script element is a list
removal element, δ (δ′ ρ) ∼= δ′ (δ ρ).

Proof. Suppose w.l.o.g. that δ has the form M � η1 : ↓ η2.
If δ′ is not a list removal element, then these two elements
commute by one of Lemma A.3, A.4, A.5, or A.6. Other-
wise, δ′ has the form M′ � η′1 : ↓ η′2. If η1 6= η′1, then these
two edit script elements commute by Lemma A.1.

Otherwise, η1 = η′1. If η2 6= η′2, then these two edit
scripts affect different portions of the list and clearly com-
mute. Otherwise, both edit script elements have the form
η1 : ↓ η2. We observe that the semantics of this operation
place the ID of the metaprogram in the removal set for the
element corresponding to η2.

In this case, suppose η1 7→ L ∈ ρ. Let ◦η2 = Σ(
M
η2,M, L)

and let◦η′2 = Σ(
M
η2,M

′, L). If ◦η2 6= ◦η′2 then these edit script
elements replace different elements in the list (by adding
to their respective removal sets) and therefore commute by
Lemma A.1.

Otherwise, ◦η2 = ◦η′2. We show that each element’s search
function is unaffected by the semantics of the applica-
tion of the other element. w.l.o.g., we choose to show that
Σ(

M
η2,M, L) is unaffected by the addition of M′ to the re-

moval set of ◦η2. The result of Σ(
M
η2,M, L) is determined by

the set {(M
η′,M′′, S) : L | M−− M′′ ∧ ∀M′′′ ∈ S.M /−− M′′′}.

Because M /−−

 M′, this set is the same whether or not M′ is
in any element of L.

Finally, we show that these elements commute in their be-
havior. The semantics of a list removal involves the addition
of the metaprogram’s ID to the list cell’s removal set. Thus,
the removal set of ◦η2 will be S∪M∪M′ (if δ is applied first)
or S ∪M′ ∪M (if δ′ is applied first). Because set union is
commutative, these sets are equivalent. Therefore, δ and δ′

are commutative.

Lemma A.8. Given any two edit script elementsM � δ and
M′ � δ′ whereM /−−

 M′, either δ (δ′ ρ) ∼= δ′ (δ ρ) or δ = δ′.

Proof. By Lemmas A.3, A.4, A.5, A.6, and A.7.

Now that we have proven commutativity up to equiva-
lence of individual edit script elements, we begin proving
properties about whole edit scripts. First, we demonstrate
that the merge of two edit scripts containing only elements

from different, unordered metaprograms is commutative up
to equivalence if the merge does not fail.

Lemma A.9. Given any two edit scripts δ̄ and δ̄′ such that
∀(M � δ,M′ � δ′) ∈ δ̄ × δ̄′.M /−−

 M′, δ̄ ?. δ̄′ implies that
δ̄ . δ̄′ ∼= δ̄′ . δ̄.

Proof. For every pair of edit script elements M � δ ∈ δ̄ and
M′ � δ′ ∈ δ̄′, we know that M /−−

 M′. If for any such pairing
we have δ = δ′, then the merge fails by Definition 3.11 and
we are finished.

Otherwise, there exists no such pairing. By Definition 3.11,
we have that δ̄ . δ̄′ = δ1, . . . , δn, δ

′
1, . . . , δ

′
m. By induction

over Lemma A.8, we have

δ̄ . δ̄′ = δ1, . . . , δn−1, δn, δ
′
1, δ
′
2, . . . , δ

′
m

= δ1, . . . , δn−1, δ
′
1, δn, δ

′
2, . . . , δ

′
m

= δ′1, δ1, . . . , δn, δ
′
2, . . . , δ

′
m

= δ′1, . . . , δ
′
m, δ1, . . . , δn

= δ̄′ . δ̄

We now specify an intermediate lemma which nearly
completes our proof.

Lemma A.10. Given metaprograms M1, . . . ,Mn in a de-
pendency graph G, let δ̄1, . . . , δ̄n be the edit scripts pro-
duced by those metaprograms. For any respectful ordering
k̄ of these metaprograms, a successful merge δ̄1 δ̄n
implies that none of the metaprograms are in conflict.

Proof. By Definition 3.2, it suffices to show that, for ev-
ery pair of respectful orderings k̄ and k̄′, δ̄k1 . · · · . δ̄kn

∼=
δ̄k′1 . · · · . δ̄k′n .

w.l.o.g., let k̄ and k̄′ be any two respectful orderings over
the metaprogramsM1, . . . ,Mn. Because k̄ and k̄′ are order-
ings over the same set of metaprograms, k̄′ is a permuta-
tion of k̄. Therefore, there exists a set J of lists of inver-
sions (pairs of positions representing an adjacent transposi-
tion) which transform k̄′ into k̄. Let I be a list of inversions
in J such that no other list in J has fewer members. We
know that I does not contain any inversions between ordered
metaprograms; if such an inversion existed, its reverse would
also exist (since ordered metaprograms are correctly ordered
in k̄′ with respect to k̄ by the definition of a respectful order-
ing) and I would no longer be minimal.

We proceed by induction on the length of I. If |I| is zero,
then k̄ = k̄′ and thus δ̄k1 . · · · . δ̄kn = δ̄k′1 . · · · . δ̄k′n and
we are done.

Otherwise, I contains at least one inversion; let ι be
that inversion and let I ′ be the remainder of the list. Let
k̄′′ be the ordering created by applying ι to k̄′. We know
that this inversion is between unordered metaprograms, so
we apply Lemma A.9 and thus have that δ̄k′′1 . · · · . δ̄k′′n

∼=
δ̄k′1 . · · · . δ̄k′n . Furthermore, I ′ is now a list of inversions

which transforms k̄′′ into k̄ and |I ′| < |I|. Thus, by induc-
tion, δ̄k1 . · · · . δ̄kn

∼= δ̄k′1 . · · · . δ̄k′n .

Finally, we demonstrate the well-foundedness of our con-
flict detection system by proving Theorem 1 (which appears
at the end of Section 3.4):

Proof. Let M′1 = Mα and, for all i ∈ 1 . . . n, let M′i+1 =
Mi. We have that, for all i ∈ 2 . . .m, M′m M′1 (because
of the nature ofMα). By Lemma A.10, none of the metapro-
gramsM′1, . . . ,M

′
n are in conflict. By Definition 3.2 this im-

plies that, for every pair of respectful orderings k̄ and k̄′, we
have ϑ(δ̄kn , (· · ·ϑ(δ̄k1 , ∅)) ∼= ϑ(δ̄kn , (· · ·ϑ(δ̄k1 , ∅)).

Theorem 1 demonstrates that every ordering of edit
scripts is equivalent if any of them successfully merge.
This gives us the guarantee that any metaprogram execu-
tion which follows the semantics of this algebra will always
produce an unambiguous output. If we assume that the BSJ
reference compiler is a faithful implementation of this alge-
bra, then every BSJ program which compiles successfully is
unambiguous.

