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Scripting: Good and Bad

print "What number?"
number = raw_input();
if number < 4:

print "Small!"
else:

print "Not small!"

Scripting languages are...

Terse and legible: easy to read and write
Flexible
High-level

® 6 o o

Error-prone
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Scripting: Good and Bad

1 import java.util.*;
> public class SmallnessDetector {

3 public static void main(String[] arg) {

4 Scanner scanner = new Scanner(System.in);
5 System.out.println("What number?");

6 int number = scanner.nextLine();

7 if (number < 4) {

8 System.out.println("Small!");

9 } else {

10 System.out.println("Not small!");
11 T

12 ¥

13 }
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Scripting: Good and Bad

1 import java.util.*;
> public class SmallnessDetector {

3 public static void main(String[] arg) {

4 Scanner scanner = new Scanner(System.in);
5 System.out.println("What number?");

6 int number = scanner.nextLine();

7 if (number < 4) {

8 System.out.println("Small!");

9 } else {

10 System.out.println("Not small!");
11 T

12 ¥

13 }

o Expression has type String
o Variable declared with type int
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The Best of Both Worlds

Why can’t we just create a type system?
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The Best of Both Worlds

Why can’t we just create a type system? We have.

Rubydust
MyPy
TeJaS
Diamondback Ruby
PHP+QB

Hack

TypeScript

4/63



Retrofitting is Challenging

@ Retrofitting: appealing, but very hard.
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o Retrofitting: appealing, but very hard.

@ Scripting languages: designed without type systems in mind.

: ;(Z:;j/;;:::::::::::::i int
2 print<:::::>////

5/63



AW N =

Retrofitting is Challenging

o Retrofitting: appealing, but very hard.

@ Scripting languages: designed without type systems in mind.

fs = [str, str.strip, len]

xs [True, " very ", "ab"]

for (f,x) in zip(fs,xs):
print f(x)
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Retrofitting is Challenging

o Retrofitting: appealing, but very hard.

@ Scripting languages: designed without type systems in mind.

fs = [str, str.strip, len]

xs [True, " very ", "ab"]

for (f,x) in zip(fs,xs):
print f(x)

x =5
locals() [raw_input ()] = "foo"
print x + 1
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Retrofitting is Challenging

o Retrofitting: appealing, but very hard.

@ Scripting languages: designed without type systems in mind.

fs = [str, str.strip, len]

xs [True, " very ", "ab"]

for (f,x) in zip(fs,xs):
print f(x)

x =5
locals() [raw_input ()] = "foo"
print x + 1

exec (open(raw_input()).read())
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Retrofitting is Challenging

o Retrofitting: appealing, but very hard.

@ Scripting languages: designed without type systems in mind.
Observations:

o Fundamentally dynamic operations

o Contrived — not necessary for “scripting”

o Alternative: build a typed scripting language from scratch

o Include “scripty” expressiveness
e Avoid dynamic operations
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This Talk

Building a Typed Scripting Language
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This Talk

Building a Typed Scripting Language

@ Primary contribution: synthesis
o Underused type theory
o Some abstract interpretation
o New type theory
@ Thesis: It is possible to construct a language which has the
static analyzability of traditional languages and the flexibility
of scripting languages.
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Conclusion
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Duck Typing

“When | see a bird that walks like a duck and swims like a duck
and quacks like a duck, | call that bird a duck.”
James Whitcomb Riley
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Duck Typing

“When | see a bird that walks like a duck and swims like a duck
and quacks like a duck, | call that bird a duck.”
James Whitcomb Riley

Duck typing: categorizing data based on its exhibited properties
(as opposed to by explicit grouping).
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Java: No Duck Typing

public interface Animal {

public void speak();
}
public class Dog implements Animal {

public void speak() {

System.out.println("Woof!");
}

Animal animal = new Dog();
animal.speak() ;

animal = new Sheep();
animal.speak();
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Java: No Duck Typing

public interface Animal {

public void speak();
}
public class Dog implements Animal {

public void speak() {

System.out.println("Woof!");
}

Animal animal = new Dog();
animal.speak() ;
animal = new Sheep();
animal.speak();

Lo

Dog

| Sheep |
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Python: Duck Typing

class Dog:
def speak(self): print "Woof!"

animal = Dog();
animal.speak() ;
animal = Sheep();
animal.speak() ;
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Python: Duck Typing

class Dog:
def speak(self): print "Woof!"

animal = Dog();
animal.speak() ;
animal = Sheep();
animal.speak() ;

‘SpeakyTWﬁng?‘
777777777 4>‘

+speak ‘
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How do we type it?
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Constraint Types

Let's use constraint types!

o Commonly used to type existing scripting languages
o Well-suited to type inference

o Type described by restrictions on variables
o a\{a < has speak ()}
o Expressive:
o Union types: a\{a > int,« > char}
o Recursive types: a1\{nil < ay,cons ap a1 < as}
o etc.
o Inhabited iff deductive closure is consistent
o a;\{az > int,aq > ap,char > ay}
o ag\{ap > int,a; > ap, char > ay,char > int}
e char > int is false, so this type does not exist!

12/63



Intuition
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Intuition

1 (Ax. x>4) (2+1)

Q7 2 af O,
05 > int+int
af > ax — ap \{ay > ax > int}
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Intuition
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Intuition

1 (Ax. x4) (2+1)

L4

o Similar to abstract
interpretation

@ Monotonic closure, invariant
constraints
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Conditional Reasoning

@ Soundness of code based on case analysis
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Conditional Reasoning

@ Soundness of code based on case analysis
@ Common tactic in scripting

@ Works particularly well with duck typing
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Conditional Reasoning

def processHooks(tgt, data):

if callable(tgt): -
fns = [tgt]

else:
fns = tgt

for fn in fns:
data = fn(data)

return data

function list
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Conditional Reasoning

def processHooks(tgt, data):
— function list

if callable(tg§ : — function

fns = [tgt

else:

for fn in fﬁ%:
data = fn(data)

return data

@ Program analyses with conditional reasoning: “path-sensitive”
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Typing Path-Sensitivity

@ Soundness reasoning by case analysis on value
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1

let x = (if somebool then 4 else ’z’) in

case x of
int -> x + 1
z >0

Filtered Types
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1

Filtered Types

let x = (if somebool then 4 else ’z’) in
case x of
int > x + 1
z >0

known to be an int!

o We want refinement on case analysis, but

o We'd like to preserve the invariance of types and
e We have to keep decidability in mind
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Filtered Types

let x = (if somebool then 4 else ’z’) in
case x of

y * int >y + 1

z >0
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Filtered Types

let x = (if somebool then 4 else ’z’) in
case x of
y * int >y + 1
z >0
@ ay > ayMNint
@ General intersections are infeasible [?]
o Filtered types: TN N N...

@ Also includes negation (top level only): o, > 1 — int
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Filtered Types

1 def processHooks(tgt, data):

2 let fns =

3 case tgt of

4 f % fun -> [f]
5 X —> X

6 for fn in fmns:

7 fn(data)

8 return data
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Filtered Types

1 def processHooks(tgt, data):

let fns = /////”__“‘*“*ﬂnuﬁm]
of

case tgt

f * fun > [;1\\‘.ﬂ’/-'
X > x (fun U [fun]) N fun = fun
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fn(data)
return data
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Filtered Types

1 def processHooks(tgt, data):

let fns = //////’__“*“*ﬂnuﬁm]
of

case tgt

f *x fun -> [@1\\‘.ﬂ’/l~'
X > x (fun U [fun]) N fun = fun

for fn in fns :\ (fun U [fun]) N (1 — fun) = [fun]
fn(data)
return data
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Contextual Reasoning

def strange(Db):
if b: return (lambda n: n+1)
else: return 4

f = strange(True)

x = strange(False)

print f(x)

@ f is a function from integers to integers
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Contextual Reasoning

def strange(Db):
if b: return (lambda n: n+1)
else: return 4

f = strange(True)

x = strange(False)

print f(x)

o f is a function from integers to integers
@ x is a single integer value
@ Return types are different based on invocation context

@ Program analyses with contextual reasoning:
“context-sensitive”
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Context Sensitivity

@ Let-bound polymorphism
@ Existing program analyses [?]

e Conditional constraints [?]
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Context Sensitivity

Let-bound polymorphism (too weak)
Existing program analyses [?] (too brittle, not suited)
Conditional constraints [?] (too coarse)

Call-site polymorphism [?, ?]
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Call-Site Polymorphism

@ All functions inferred polymorphic types

o Polyinstantiation at call sites

@ Expressiveness:

1
2
3
4
5

let £
let
g5
let h
let q

X

g

y =y in

£03;;
(h 1, h’z%);;

def £QO

def h =
def q =

=funy >y

£0)
(h 1, h ’2?)
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Bounding Call-Site Polymorphism
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Bounding Call-Site Polymorphism

o Variables named by program point and contour
o Contour: restricted regular expression

o Concatenation of literals and Kleene closures over literals
o Each literal token may appear at most once

>
o

@ Contours are joined at recursion

3
@ @
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Flexible Data Model

Scripting languages have flexible data models:

class MyClass:

obj

obj.
.msg = types.MethodType(lambda s: print "Bar", obj)
.msg() # Prints "Bar"

obj
obj

def msg(self):
print "Foo"
= MyClass()
msg() # Prints "Foo"
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Flexible Data Model

Scripting languages have flexible data models:

class MyClass:

obj
obj
obj
obj

e 6 o6 o

def msg(self):
print "Foo"
= MyClass()

.msg() # Prints "Foo"

.msg = types.MethodType(lambda s: print "Bar", obj)
.msg() # Prints "Bar"

Mutating/adding methods
Multiple inheritance
Dynamic mixins

etc.
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Encoding

Reduces complexity of type system
Ensures consistency in reasoning
No artificial distinctions (e.g. strategy object = function)

Programmer can work “under the hood” as necessary
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Encoding
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encode

; ] typecheck Typecheckin
TinyBang | presuhl g
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o Primitives (e.g. 5)

o Labels (e.g. ‘A 5)

o Partial functions

fun int -> 0 matches any integer

fun x:int -> x is integer identity

(fun x:int -> x + 1) 4 returns 5

(fun x -> x + 1) "badness" crashes
(fun int -> 0) "badness" also crashes

© 6 6 o o
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TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions

Onions: type-indexed records [?]

o

]
]

(]

“Normal” records: {Name="Ann", Age=43}
4 & "word" is an onion with an int and a str
Onions of labels: records/structs
o ‘Name "Ann" & ‘Age 43
Functions match onions by type
o (fun ‘Name n -> n) (‘Name "Ann" & ‘Age 43)
returns "Ann"
Leftmost onion element wins
o (fun ‘A x ->x) (‘A2 & ‘B3 & ‘A 4) returns 2
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TinyBang Language Features

Primitives (e.g. 5)

Labels (e.g. ‘A 5)

Partial functions

Onions: type-indexed records [?]

Onion dispatch: leftmost function wins

o (int -> 0) & (char -> ’a’) matches int or char onions
((int -> 0) & (char —> ’a’)) (5) =0

((int -> 0) & (char -> ’a’)) (’z’) — ’a’

((int -> 0) & (char -> ’a’)) (6 & ’z’) = 0

e © o
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Primitives (e.g. 5)

Labels (e.g. ‘A 5)

Partial functions

Onions: type-indexed records [?]

Onion dispatch: leftmost function wins

o (int -> 0) & (char -> ’a’) matches int or char onions
((int -> 0) & (char —> ’a’)) (5) =0

((int -> 0) & (char -> ’a’)) (’z’) — ’a’

((int -> 0) & (char -> ’a’)) (6 & ’z’) = 0

((int -> 0) & (char -> ’a’)) (‘A 5 & ‘B 4) crashes

e 6 o o

36/63



TinyBang Language Features

Primitives (e.g. 5)

Labels (e.g. ‘A 5)

Partial functions

Onions: type-indexed records [?]
Onion dispatch: leftmost function wins
That's it!
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Why These Features?

Together, onions and partial functions can encode:

Records

Conditionals (on ‘True () and ‘False ())
Variant-based objects

Operator overloading

Classes, inheritance, subclasses, etc.
Mixins, dynamic functional object extension
First-class cases

Optional arguments
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etc.

And we can type them!

37/63



Encoding Example

LittleBang
def inc(x,y=1):

return x +y
print inc(3,5)
print inc(7)

AW N =
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Encoding Example

LittleBang
def inc(x,y=1):

return x +y
print inc(3,5)
print inc(7)

AW N =

TinyBang
1 let inc = fun a * ‘x x —>
2 let y = ( (fun ‘y v -> v)
3 & (fun _ -> 1) ) a
4 inx +y

5 print (inc (‘x 3 & ‘y 5))
6 print (inc (‘x 7))
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Working Under the Hood

1 let obj = if somebool
then object {

N

3 m(s:str) = print(s)
4 }

5 else object {

6 inc(x:int) = x + 1
7 }

s obj.m("hello") # static type error if no m

9

10 def dynamic(msg): throw MethodError ()

11 (obj & dynamic).m("hello") # exzception if mo m
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Working Under the Hood

let obj = if somebool
then
fun (‘msg ‘m OO * ‘s (s * str)) -> print(s)

else
fun (‘msg ‘inc () * ‘x (x * int)) -> x + 1

[4

obj (‘msg ‘m () & ‘s "hello") # static type error if no m

let dynamic = fun msg -> throw MethodError()
(obj & dynamic) (‘msg ‘m () & ‘s "hello") # exception if mo m
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What We Don’t Get

TinyBang is:
@ Aware of conditionals
@ Aware of calling context

o Flexible on data
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What We Don’t Get

TinyBang is: TinyBang isn't:
@ Aware of conditionals @ Perfect on recursion
@ Aware of calling context o Modular
o Flexible on data o Aware of time
1 def ¢c = 4
2 ¢ = "hello"

3 (str > "") ¢

(4]

No typestate

No mutable monkeypatching (use functional extension!)
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Conclusion

Outline
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Typechecking Process

To typecheck a LittleBang program:

(]

Encode LittleBang operations into TinyBang

(]

A-translate TinyBang into A-normal form
o Like assembly language: lots of small steps

(7]

Derive type constraints from program
o e.g. x=5 implies ax > int
@ Perform deductive logical closure

o Reach every conclusion we can from what we've learned
o Similar to running the program

@ Check consistency of result
o If the program is bad, we will reach a false conclusion
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Synthesis

TinyBang type grammar is shallow (unusual)
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(]

e.g ar\{‘Aaz < ay,int < ap}
not ‘A int

o Corresponds to A-normalized expression grammar

o In general, correspondence between evaluation and type

systems

(]
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value <> type

clause <+ constraint

expression <+ constraint type

operational semantics rule <+ constraint closure rule
evaluation <> constraint closure

Forms adjoint (as in abtract interpretation)

Proof of soundness: simulation rather than progress &
preservation

Difference: all facts gathered here are invariant
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Not Shown Here

@ Union alignment invariants
@ The interesting encodings (dynamic mixins, subclasses, etc.)

@ Novel object extension properties [?]
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What's Left?

o Current Research
o Function patterns (e.g. int ~> int)
o Encode type signatures

o First overloading of higher-order functions
o Potentially solves modularity issues

o Chronological constraints
o Enable flow-sensitivity (awareness of time)
o Possibly improves typechecking performance
o Layout calculus
@ Hari's dissertation focus
o Efficient onion memory layout and dispatch

@ Future Research

(4]

Type error processing

Modularity

User-specified encodings / language features
Type-aware script metaprogramming

®© 6 o
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Conclusions

We can build a typed scripting language from scratch.

@ Subtype constraints allow for duck typing
o Feature encodings keep type system simple
o Asymmetry of onions allows encoding of subclasses,
overloading, etc.

o Path-sensitivity (via onion dispatch) enables case-based
reasoning

o Context-sensitivity (via call-site polymorphism) allows
complex, intuitive soundness arguments

@ Exploit connection to abstract interpretation while remaining
in type theory
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Typechecking by Example

First, we will typecheck this program:

1 let b = ...
21+ 2+ (if b then 5 else 1)
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Typechecking by Example

First, we will typecheck this program:

1 let b = ...
21+ 2+ (if b then 5 else 1)

Then, we will typecheck this program:

1 let b = ...
>1 + 2 + (if b then ’z’ else 1)
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Encoding and A-normalization
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Preparing to Typecheck

1 let b = ...

LittleBang 1", 5 ., (it b then 5 else 1)
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Preparing to Typecheck

. 1 let b = ...
LittleBang 1", 5 ., (it b then 5 else 1)
1 let b= ... 1in
TinyBang 21+ 2+ ( ((‘True O -> 5)
3
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Preparing to Typecheck

. 1 let b = ...
LittleBang 1", 5, (i% b then 5 else 1)
1 let b = ... in
TinyBang 21+ 2+ ( ((‘True () -> 5)
3 &(‘False () -> 1)) b)
1 b=...;
2 x1 =1;
3 X2 = 2;
. 4 x3 = + x1 x2;
TinyBang s5x4={pl=0; p2= ‘Truepl } ->{rl =513
ANF 6x6={p3=(Q; pd= ‘Falsep3} >{r2=11%
7 x6 = x4 & x5;
8 X7 = x6 b;
9 X8 = + x3 X7;
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AW N e

©w ~N o o

x1
X2
x3
x4
x5
x6
X7
x8

An Aside: Execution

{p1=0; p2
{p3=0; pé

= x4 & x5;

‘True p1 } > { r1 =5 };
‘False p3 } > {r2 =1 };
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x1

X2 =
x3 =

x4

x5 =

X6
X7
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An Aside: Execution

1=0; p2
O; p4

g o
w
]

= x4 & x5;

‘True p1 } > { r1 =5 };
‘False p3 } > {r2 =1 };
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‘False ...;
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= (); p4

~
el

w
|
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x1
X2
x3
x4
x5
x6
r2’
x8

{pt=0; p2
= (); p4

~
el

w
|

x4 & x5;

=1; X7 =

+ x3 X7;

ey

An Aside: Execution

r2’;

‘True p1 } > { r1 =5 };
‘False p3 } > {r2 =1 };
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An Aside: Execution

b = ‘False ...;
x1 = 1;
X2 = 2;
x3 = 3;

x4 ={pl=0; p2
x6={p3=0Q; p4

x6 = x4 & x5;
r2’ = 1; x7 = r2’;
x8 = + x3 X7;

‘True p1 } > { r1 =5 };
‘False p3 } > {r2 =1 };
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©w ~N o o

An Aside: Execution

b = ‘False ...;

x1 = 1;

X2 = 2;

x3 = 3;

x4 ={pl=0; p2
x6={p3=0; p4
x6 = x4 & x5;

r2’ = 1; x7 = 1;
x8 = + x3 x7;

‘True p1 } > { r1 =5 };
‘False p3 } > {r2 =1 };
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AW N e

©w ~N o o

b = ‘False
x1 = 1;
X2 = 2;
x3 = 3;

ey

An Aside: Execution

x4 ={pl=0; p2=‘Truepl } > {rl=513;

x6 = {p3=(Q; p4 = ‘False p3 } > { r2 = 1 };
x6 = x4 & x5;
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© o N o oA W N =

x1
X2
x3

x4 =

x5
x6
x7
x8

1

+ x1 x2;
{p1=0; p2
{p3=0; p4
x4 & x5;

x6 b;

+ x3 X7;

Initial Alignment

‘True p1 } > { r1 =5 };
‘False p3 } > { r2 =1 };
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b= ..

x1 = int;

X2 = int;

x3 = + x1 x2;

x4 ={pt=0; p2
x6={p3=0; p4
x6 = x4 & x5;

X7 = x6 b;

x8 = + x3 x7;

@ Replace primitive

Initial Alignment

= ‘True pl1 } -> { r1l = int };
‘False p3 } -> { r2 = int };

data with its type
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Initial Alignment

ap > ‘True ..., ap > ‘False ...,

Oy > int,

Qyo > int,

Qx3 Z + ax Qx2,

Qxa > {op1 > O ,ap2 > ‘Trueap } — {ar; > int},
axs > {opz > O, aps > ‘Falseaps} — {arp > int},
Qxe Z Qx4 &QXSv

Qx7 2 Oixg Qip,

Qxg Z + Qg3 Qx7,

@ Replace primitive data with its type

o Convert to constraints (for e.g. duck typing)
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Perform Constraint Closure

ap > ‘True ..., > ‘False ...,

Qixq 2 inta

(629} 2 iIlt,

Qg3 2 + Oix1 O,

axs > {apr > O, 0pp > ‘True apr } — {ary > int},
axs > {aps > ), aps > ‘Falseaps} — {app > int},
Qxe Z Qxq & Quys,

Qg7 Z Qxg Op,

Qxg Z + Qx3 Olix7
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Perform Constraint Closure

ap > ‘True ..., > ‘False ...,

Qixq 2 inta

(629} 2 int,

Qg3 2 + Oix1 O,

axs > {apr > O, 0pp > ‘True apr } — {ary > int},
axs > {aps > ), aps > ‘Falseaps} — {app > int},
Qxe Z Qxq & Quys,

Qg7 Z Qxg Op,

Qxg Z + Qx3 Olix7
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Perform Constraint Closure

ap > ‘True ..., > ‘False ...,

Qx1 > int,

(629} 2 iIlt,

Qx3 2 + Oy Qx2, Qx3 Z int7
axa > {op1 > O ,ap2 > ‘Trueap } — {ay > int},

axs > {op3 > O, aps > ‘Falseaps} — {arp > int},

Ox6 Z Qx4 & Qxs,

Qx7 Z Qxe Oy,

Qxg Z + Qg3 Qix7
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Perform Constraint Closure

ap > ‘True ..., > ‘False ...,

Qixq 2 inta

(629} 2 iIlt,

Ox3 >+ Ox1 Qo Ox3 > int,
axs > {apr > O, 0pp > ‘True apr } — {ary > int},

axs > {aps > ), aps > ‘Falseaps} — {app > int},

Qxe Z Qxq & Quys,

Qg7 Z Qyg Oy,

Qxg Z + Qg3 Qix7
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ap > ‘True ..., ap > ‘False ...,

Qixq 2 inta

(629} 2 iIlt,

Ox3 >+ Ox1 Qo Ox3 > int,
axs > {apr > O, 0pp > ‘True apr } — {ary > int},

axs > {aps > ), aps > ‘Falseaps} — {app > int},

Qxe Z Qxq & Quys,
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Perform Constraint Closure

ap > ‘True ..., ap > ‘False ...,

Qixq 2 inta

(629} 2 iIlt,

Ox3 >+ Ox1 Qo Ox3 > int,
axs > {apr > O, 0pp > ‘True apr } — {ary > int},

axs > {aps > ), aps > ‘Falseaps} — {app > int},

Qxe Z Qxq &ax57

Qg7 Z Qyg Oy,

Qxg Z + Qg3 Qix7
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Perform Constraint Closure

ap > ‘True ..., ap > ‘False ...,

Qixq 2 inta

(629} 2 iIlt,

Ox3 2 + Qx1 Qio, Ox3 > int,
axa > {apr > O, 0p0 > ‘True opi } — {ayy > int},

axs > {aps > ), aps > ‘Falseaps} — {app > int},

Qxe Z Qxq &ax57

Qg7 Z Qyg Oy,

Qxg Z + Qg3 Qix7
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Perform Constraint Closure

ap > ‘True ..., > ‘False ...,

Qixq 2 inta

(629} 2 iIlt,

Qx3 2 + iz Oy, Ox3 2 int,
axa > {ap1 > O, app > ‘Trueopr ) — {agg > int}, oy > int,
axs > {aps > ), aps > ‘Falseaps} — {app > int},

Qxe Z Qx4 & Qxs,

Qx7 2 Qizg iy, Qx7 2 Qo
Qxg Z + Qg3 Oix7
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Perform Constraint Closure

ap > ‘True ..., ap, > ‘False ...,

Qixq 2 inta

(629} 2 iIlt,

Qx3 2 + iz Oy, Ox3 2 int,
axa > {apt > O, 0p0 > ‘True i} — {apg > int}, oy > int,
axs > {aps > ), aps > ‘Falseaps} — {app > int},

Ox6 Z Qx4 &ax57

Qx7 = Oz Qip, Ox7 = Oy,
Qxg Z + Qg3 Qix7
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Perform Constraint Closure

ap > ‘True ..., ap, > ‘False ...,

Qixq 2 inta

(629} 2 iIlt,

Qx3 2 + iz Oy, Ox3 2 int,
Oxa > {apr > O, 0pp > ‘Trueopr } — {agg > int}, oy > int,
axs > {aps > ), aps > ‘Falseaps} — {app > int},

Ox6 Z Qx4 & Qix5,

Qx7 2 Qxp Op, Ox7 = Oy,
Qxg Z + Qg3 Qix7
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Perform Constraint Closure

ap > ‘True ..., ap, > ‘False ...,

Qixq 2 inta

(629} 2 iIlt,

Qx3 2 + iz Oy, Ox3 2 int,
Oxa > {apr > O, 0pp > ‘Trueopr } — {agg > int}, oy > int,
axs > {apz > ), aps > ‘False s} — {arp > int},

Ox6 Z Qx4 & Qix5,

Qx7 2 Qxp Op, Ox7 = Oy,
Qxg Z + Qg3 Qix7
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Perform Constraint Closure

ap > ‘True ..., > ‘False ...,

Qixq 2 inta

(629} 2 iIlt,

Qg3 2 + Oix1 O,

axs > {apr > O, 0pp > ‘True apr } — {ary > int},
axs > {aps > ), aps > ‘Falseaps} — {app > int},
Qxe Z Qxq & Quys,

Qg7 Z Qxg Op,

Qxg Z + Qx3 Olix7

Qy3 2 int,
Qiyq> 2 int,
Qg > int,

Q7 Z Qryo,
Qx7 2> Olrpo s
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ap > ‘True ..

Qixq
Qx2
Qx3
Qxa
Qxs
Qxe
Qx7

Qxg

VIVIVIVIVIVIV

v

Perform Constraint Closure

e
int,
int,

+ Oy Qx2,

{apl Z () y Op2 Z ‘True OZpl}’ — {arl Z int}7
{ops > O ,aps > ‘Falseaps} — {arp > int},

Qixq & Qxs,
Qxe Olp,

+ Qg3 Oix7

ap > ‘False ...

Q7 > int,

Qy3 2 int,
Olpq> 2 iIlt,
Qiyo» 2 int,

2% > Qry0,
Q7 2 Qrgo,
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ap > ‘True ..

Qixq
Qx2
Qx3
Qxa
Qxs
Qxe
Qx7

Qxg

VIVIVIVIVIVIV

v

Perform Constraint Closure

e
int,
int,

+ Qg1 k2,

{apl Z () y Op2 Z ‘True OZpl}’ — {arl Z int}7
{ops > O ,aps > ‘Falseaps} — {arp > int},

Qixq & Qxs,
Qxe Olp,

+ Qg3 Oix7

ap > ‘False ...

Q7 > int,

Qy3 2 int,
Qiyq> 2 int,
Qg > int,

Q7 Z Qryo,
Qx7 2 Olrpo s
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ap > ‘True ..

Qlx1
Qixo
Qg3

Perform Constraint Closure

e
int,
int,

+ Qg1 k2,

VIV IV IV

Z Qixq & Qxs,
Z Qxe Olp,

2 + Qg3 Oix7

ap > ‘False ...

{apl Z () y Op2 Z ‘True OZpl}’ — {arl Z int}7
> {opz > O, aps > ‘Falseaps} — {ago > int},

Q7 > int,

Qx3 > int,
Qiyq> 2 int,
Qiyo» Z int,

Q7 Z Qryo,
Ox7 2> Olrpo s
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Perform Constraint Closure

ap > ‘True ..., > ‘False ...,

Qixq 2 inta

(629} 2 iIlt,

Qx3 2> + Oz Qo Ox3 > int,

Oxa > {apr > O, 0pp > ‘Trueopr } — {agg > int}, oy > int,

axs > {0p3 > ), aps > ‘Falseaps} — {arp > int}, apo > int,

Ox6 Z Qx4 & Qxs,

Qx7 Z Qxe Olp, Q7 2 iIlt, Q7 Z Qryo,
Qx7 > Qo

Qxg >+ Qg3 Qx7, Qixs > int
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Check Consistency

ap > ‘True ..., > ‘False ...,

Qixq 2 inta

(629} 2 iIlt,

Qx3 2> + Oz Qo Ox3 > int,

Oxa > {apr > O, 0pp > ‘Trueopr } — {agg > int}, oy > int,

axs > {0p3 > ), aps > ‘Falseaps} — {arp > int}, apo > int,

Ox6 Z Qx4 & Qxs,

Qx7 Z Qxe Oy, Q7 2 iIlt, Ox7 Z Qryo,
Qx7 > Qo

Oxg 2> + Oix3 Qi Oxg > int

v
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Typechecking by Example

First, we will typecheck this program:

1 let b = ... /

21+ 2+ (if b then 5 else 1)

Then, we will typecheck this program:

1 let b = ...
>1 + 2 + (if b then ’z’ else 1)

60/63



© o N o U A W N =

x1
x2
x3

x4 =

x5
x6
x7
x8

1;

+ x1 x2;
{p1=0; p2
{p3=0; p4
x4 & x5;

x6 b;

+ x3 X7;

Initial Alignment

‘True p1 } > { r1 =
‘False p3 } > { r2 =

)z
1}

};

’
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Initial Alignment

ap > ‘True ..., oap > ‘False...,

Qy1 2 int,

Qx2 Z inta

Qx3 Z + Qxi Qx2,

axa > {apr > O, 0pp > ‘True opr } — {ayy > char},
axs > {op3 > O, aps > ‘Falseaps} — {arp > int},
Qxe 2 Qx4 &les,

Q7 2 Qixe Oy,

[05%] Z + Qg3 Qx7,

@ Same as last time, but with a char
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Perform Constraint Closure

True ..., «p > ‘False...,

int,

+ Qg1 Ok,

{op1 > O ,ap2 > ‘True apy } — {ay; > char},
> {aps > O, aps > ‘Falseaps} — {arp > int},
Z Qxq &les,

> Q6 Qp,

IV I

Z + Qix3 Qix7
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Perform Constraint Closure

ap > ‘True ..., ap > ‘False ...,

Oy > int,

Qx2 Z inta

Qx3 2> + Q1 Qxa,

Oxa > {op1 > O, ap2 > ‘True apy } — {ay; > char},

axs > {apz > O, aps > ‘Falseops} — {ayp > int},
Qx6 Z Qx4 &les,
Q7 2 Qzg Qp,

Qixg Z + Qix3 Qix7

62/63



Perform Constraint Closure

True ..., «p > ‘False...,

int,

+ Qg1 Ok,

{op1 > O ,ap2 > ‘True apy } — {ay; > char},
> {ops > O ,aps > ‘Falseaps} — {ag2 > int},
Z Qxq &les,

> Q6 Qp,

IV I

Z + Qix3 Qix7

Qi3 2 inta
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Qx1
Qx2
O3
Qx4
Qx5

Qx7

Qixg

Perform Constraint Closure

True ..., «p > ‘False...,

int,

+ ayx Qx2,

{op1 > O ,ap2 > ‘True apy } — {ay; > char},
> {ops > O ,aps > ‘Falseaps} — {ag2 > int},
Z Qx4 &les,

> Q6 O,

IV I

Z + Qix3 Qix7

Olx3 > inta
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Perform Constraint Closure

ap > ‘True ..., ap > ‘False ...,

0y > int,

Qxo 2> int,

Qx3 Z + ayx Qx2, Qix3 Z int,
Oxa > {op1 > O, ap2 > ‘True apy } — {ay; > char},

axs > {apz > O, aps > ‘Falseops} — {ayp > int},
Qx6 Z Qx4 &les,
Qx7 2 Oixg Olp,

Qixg Z + Qix3 Qix7
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Perform Constraint Closure

ap > ‘True ..., ap > ‘False ...,

0y > int,

Qxo 2> int,

Qx3 Z + ayx Qx2, Qix3 Z int,
Oxa > {op1 > O, ap2 > ‘True apy } — {ay; > char},

axs > {apz > O, aps > ‘Falseops} — {ayp > int},
Qxe 2 Qza & Qs
Qx7 2 Oixg Olp,

Qixg Z + Qix3 Qix7
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Perform Constraint Closure

ap > ‘True ..., ap > ‘False ...,

0y > int,

Qxo 2> int,

Qx3 Z + ayx Qx2, Qix3 Z int,
Oxa > {op1 > O, 0p0 > ‘True ap } — {ay; > char},

axs > {apz > O, aps > ‘Falseops} — {ayp > int},
Qxe 2 Qza & Qs
Qx7 2 Oixg Olp,

Qixg Z + Qix3 Qix7
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Perform Constraint Closure

True ..., «p > ‘False...,

int,

+ Qg1 Ok,

{op1 > O ,ap2 > ‘True apy } — {ay; > char},
> {ops > O ,aps > ‘Falseaps} — {ag2 > int},
Z Qxq &QXSv

> Q6 Qp,

IV I

Z + Qix3 Qix7

Olx3 > inta
Qipq» > char

Qx7 2 Qlr1o,y

9
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Perform Constraint Closure

True ..., «p > ‘False...,

int,

+ Qg1 Ok,

{op1 > O, ap2 > ‘True ap } — {ay; > char},
> {ops > O ,aps > ‘Falseaps} — {ag2 > int},
> Qizg & Oiys,

> Q6 Qp,

IV I

Z + Qix3 Qix7

Olx3 > inta
Qiy» > char,

OQx7 2 Qr1o,
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Perform Constraint Closure

True ..., «p > ‘False...,

int,

+ Qg1 Ok,

{op1 > O ,ap2 > ‘True apy } — {ay; > char},
> {ops > O ,aps > ‘Falseaps} — {ag2 > int},
> iz & Ouys,

> Q6 Qp,

IV I

Z + Qix3 Qix7

Olx3 > inta
Qiy» > char,

OQx7 2 Qr1o,
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IV I

>
>
>

>

Perform Constraint Closure

True ..., «p > ‘False...,

int,
+ Qg1 Ok,

{op1 > O ,ap2 > ‘True apy } — {ay; > char},
{ops > O ,ps > ‘Falseaps} — {arp > int},
Qxq & Quys,

Qxe Qp,

+ Qg3 Ox7

Olx3 > inta
Qiy» > char,

OQx7 2 Qr1o,
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Perform Constraint Closure

True ..., «p > ‘False...,

int,

+ Qg1 Ok,

{op1 > O ,ap2 > ‘True apy } — {ay; > char},
> {ops > O ,aps > ‘Falseaps} — {ag2 > int},
Z Qxq &QXSv

> Q6 Qp,

IV I

Z + Qix3 Qix7

Olx3 > inta
Qiy» > char,
gy > int,

OQx7 2 Qr1o,
Qix7 2 Qoo
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Perform Constraint Closure

int,
+ Qg1 Ok,

IV I

Z Qx4 & Qxs,
> Qxp Oip,

2 + Qix3 Qix7

ap > ‘False ...

{op1 > O ,ap2 > ‘True apy } — {ay; > char},
> {ops > O ,aps > ‘Falseaps} — {ag2 > int},

Q7 2> char,

Olx3 > inta
Q1> > char,

Qo> 2 inta

Qx7 2 Qlr1o,y
Qx7 = Q2o
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Perform Constraint Closure

int,
+ Qg1 Ok,

IV I

Z Qx4 & Qxs,
> Qxp Oip,

Z + Qix3 Qg7

ap > ‘False ..

Q7 > char,

*

{op1 > O ,ap2 > ‘True apy } — {ay; > char},
> {ops > O ,aps > ‘Falseaps} — {ag2 > int},

Qix7 > int,

Olx3 > inta
Qiy» > char,
gy > int,

OQx7 2 Qr17,
Qix7 2 Qoo
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Perform Constraint Closure

ap > ‘True ...,

Qx1
Qx2
O3
Qx4
Qx5
Qxe
Qx7

Qixg

>

VIV IVIVIVIV

Vv

int,
int,
+ ayx Qx2,

{op1 > O ,ap2 > ‘True apy } — {ay; > char},
{ops > O ,aps > ‘Falseaps} — {ay2 > int},

Qx4 & Qxs,
Qxe Qp,

+ Qix3 Qix7

ap > ‘False ..

Q7 > char,

*

Qix7 > int,

Qi3 2 inta
Qiy» > char,
Qo> 2 inta

OQx7 2 Qr17,
Qx7 = Qirpo s
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Perform Constraint Closure

True ..., «p > ‘False...,

int,

+ ayx Qx2,

{op1 > O ,ap2 > ‘True apy } — {ay; > char},
> {ops > O ,aps > ‘Falseaps} — {ag2 > int},
Z Qx4 &QXSv

> Qg6 Qp, Qx7 > char,  ayy > int,

IV I

Z + Qg3 O7,

Olx3 > inta
Qiy» > char,
Qo> 2 inta

Q7 > Qr1o,
Qlx7
(ixg

Qroo,
int

IV IV
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Check Consistency

ap > ‘True ..., ap > ‘False ...,

0y > int,

Qxo 2> int,

O3 >+ Qxy Ox2, Qlx3 > int,

Oxa > {op1 > O ,ap2 > ‘True apy } — {ay; > char}, agq> > char,

Oxs > {0p3 > O, aps > ‘Falseaps} — {arp > int}, g > int,

Qixe Z Qxq &CVXSv

Qy7 2 Qg Qp, Q7 > char, g7 > int, Q7 2 Qo
Qx7 2 Qo

Qixg 2 + x3 Qix7, Qixg 2 int
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ap > ‘True ...,

Qx1
Qx2
O3
Qx4

> int,
int,
+ ayx Qx2,

VIV IV

Z Qx4 & Qxs,
> Qxp Oip,

2 + Qg3 O7,

Check Consistency

ap > ‘False ...,

Q7 > char,

{op1 > O ,ap2 > ‘True apy } — {ay; > char},
> {ops > O ,aps > ‘Falseaps} — {ag2 > int},

Q7 2 int,

X

Qi3 Z inta
Qiy» > char,
Qo> 2 inta

OQx7 2 Qr17,
Qx7 = Qirpo s
Oxg > int
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Typechecking by Example

First, we will typecheck this program:

1 let b = ... /

21+ 2+ (if b then 5 else 1)

Then, we will typecheck this program:

L let b = ... X

>1 + 2 + (if b then ’z’ else 1)
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