Building a Typed Scripting Language

Zachary Palmer

The Johns Hopkins University
April 16th, 2015

Scripting: Good and Bad

1 print "What number?"
2 number = raw_input();
3 if number < 4:
4 print "Small!"
5 else:
6 print "Not small!"

Scripting: Good and Bad

1 print "What number?"
2 number = raw_input();
3 if number < 4:
4 print "Small!"
5 else:
6 print "Not small!"

Scripting languages are...

- Terse and legible: easy to read and write

Scripting: Good and Bad

1 print "What number?"
2 number = raw_input();
3 if number < 4:
4 print "Small!"
5 else:

6

```
print "Not small!"
```

Scripting languages are...

- Terse and legible: easy to read and write
- Flexible

Scripting: Good and Bad

1 print "What number?"
2 number = raw_input();
3 if number < 4:
4 print "Small!"
5 else:

6

```
print "Not small!"
```

Scripting languages are...

- Terse and legible: easy to read and write
- Flexible
- High-level

Scripting: Good and Bad

1 print "What number?"
2 number = raw_input();
3 if number < 4:
4 print "Small!"
5 else:

6

```
print "Not small!"
```

Scripting languages are...

- Terse and legible: easy to read and write
- Flexible
- High-level
- Error-prone

Scripting: Good and Bad

```
import java.util.*;
public class SmallnessDetector {
    public static void main(String[] arg) {
        Scanner scanner = new Scanner(System.in);
        System.out.println("What number?");
        int number = scanner.nextLine();
        if (number < 4) {
            System.out.println("Small!");
        } else {
        System.out.println("Not small!");
        }
    }
}
```


Scripting: Good and Bad

1 import java.util.*;
2 public class SmallnessDetector \{

```
3 public static void main(String[] arg) {
```

 Scanner scanner = new Scanner(System.in);
 System.out.println("What number?");
 int number \(=\) scanner.nextLine();
 if (number < 4) \{
 System.out.println("Small!");
 \} else \{
 System.out.println("Not small!");
 \}
 \}
 - Expression has type String
- Variable declared with type int

The Best of Both Worlds

Why can't we just create a type system?

The Best of Both Worlds

Why can't we just create a type system? We have.

The Best of Both Worlds

Why can't we just create a type system? We have.

Rubydust	Flow	
TeJaS	MyPy	
	Diamondback Ruby	\ldots
PHP+QB	Hack	
	TypeScript	

Retrofitting is Challenging

- Retrofitting: appealing, but very hard.

Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind.

Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind.
$1 \mathrm{x}=5$
2 print $\mathrm{x}+1$

Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind.
${ }_{1} x=5 \quad$ int
2 print x + 1

Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind.

Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind.

Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind.

```
1 fs = [str, str.strip, len]
2 xs = [True, " very ", "ab"]
3 for (f,x) in zip(fs,xs):
    print f(x)
```


Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind.

```
1 fs = [str, str.strip, len]
2 xs = [True, " very ", "ab"]
3 for (f,x) in zip(fs,xs):
4 print \(f(x)\)
\(1 \mathrm{x}=5\)
2 locals()[raw_input()] = "foo"
3 print \(\mathrm{x}+1\)
```


Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind.

```
1 fs \(=\) [str, str.strip, len]
2 xs = [True, " very ", "ab"]
3 for (f,x) in zip(fs,xs):
4
    print \(f(x)\)
\(1 \mathrm{x}=5\)
2 locals()[raw_input()] = "foo"
3 print \(\mathrm{x}+1\)
1 exec(open(raw_input()).read())
```


Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind. Observations:
- Fundamentally dynamic operations

Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind. Observations:
- Fundamentally dynamic operations
- Contrived - not necessary for "scripting"

Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind. Observations:
- Fundamentally dynamic operations
- Contrived - not necessary for "scripting"
- Alternative: build a typed scripting language from scratch

Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind.

Observations:

- Fundamentally dynamic operations
- Contrived - not necessary for "scripting"
- Alternative: build a typed scripting language from scratch
- Include "scripty" expressiveness

Retrofitting is Challenging

- Retrofitting: appealing, but very hard.
- Scripting languages: designed without type systems in mind.

Observations:

- Fundamentally dynamic operations
- Contrived - not necessary for "scripting"
- Alternative: build a typed scripting language from scratch
- Include "scripty" expressiveness
- Avoid dynamic operations

This Talk

Building a Typed Scripting Language

This Talk

Building a Typed Scripting Language

- Primary contribution: synthesis

This Talk

Building a Typed Scripting Language

- Primary contribution: synthesis
- Underused type theory

This Talk

Building a Typed Scripting Language

- Primary contribution: synthesis
- Underused type theory
- Some abstract interpretation

This Talk

Building a Typed Scripting Language

- Primary contribution: synthesis
- Underused type theory
- Some abstract interpretation
- New type theory

This Talk

Building a Typed Scripting Language

- Primary contribution: synthesis
- Underused type theory
- Some abstract interpretation
- New type theory
- Thesis: It is possible to construct a language which has the static analyzability of traditional languages and the flexibility of scripting languages.

Outline

- Duck Type Inference
- Conditional Reasoning
- Contextual Reasoning
- Flexible Data Model
- Formal Development
- What's Left?
- Conclusion

Outline

- Duck Type Inference
- Conditional Reasoning
- Contextual Reasoning
- Flexible Data Model
- Formal Development
- What's Left?
- Conclusion

Duck Typing

"When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call that bird a duck."

James Whitcomb Riley

Duck Typing

"When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call that bird a duck."

James Whitcomb Riley
Duck typing: categorizing data based on its exhibited properties (as opposed to by explicit grouping).

Java: No Duck Typing

${ }_{1}$ public interface Animal \{
2 public void speak();
3 \}
4 public class Dog implements Animal \{
5 public void speak() \{
6 System.out.println("Woof!");
7 \}
8 \}
9 ...
10 Animal animal $=$ new $\operatorname{Dog}()$;
11 animal.speak();
12 animal = new Sheep();
13 animal.speak();

Java: No Duck Typing

1 public interface Animal \{
2 public void speak();
3 \}
4 public class Dog implements Animal \{
5 public void speak() \{
6 System.out.println("Woof!");
$7\}$
8 \}
9 ...
10 Animal animal = new Dog();
11 animal.speak();
12 animal $=$ new Sheep();
13 animal.speak();

Python: Duck Typing

1 class Dog:

```
    def speak(self): print "Woof!"
```

animal $=\operatorname{Dog}()$;

5 animal.speak();
6 animal $=$ Sheep();
7 animal.speak();

Python: Duck Typing

1 class Dog:
2 def speak(self): print "Woof!"
3 ...
4 animal $=\operatorname{Dog}()$;
5 animal.speak();
6 animal $=$ Sheep();
7 animal.speak();

How do we type it?

Constraint Types

Let's use constraint types!

Constraint Types

Let's use constraint types!

- Commonly used to type existing scripting languages

Constraint Types

Let's use constraint types!

- Commonly used to type existing scripting languages
- Well-suited to type inference

Constraint Types

Let's use constraint types!

- Commonly used to type existing scripting languages
- Well-suited to type inference
- Type described by restrictions on variables

Constraint Types

Let's use constraint types!

- Commonly used to type existing scripting languages
- Well-suited to type inference
- Type described by restrictions on variables
- $\alpha \backslash\{\alpha \leq$ has speak() $\}$

Constraint Types

Let's use constraint types!

- Commonly used to type existing scripting languages
- Well-suited to type inference
- Type described by restrictions on variables
- $\alpha \backslash\{\alpha \leq$ has speak() $\}$
- Expressive:
- Union types: $\alpha \backslash\{\alpha \geq$ int , $\alpha \geq$ char $\}$
- Recursive types: $\alpha_{1} \backslash\left\{\right.$ nil $\leq \alpha_{1}$, cons $\left.\alpha_{2} \alpha_{1} \leq \alpha_{1}\right\}$
- etc.

Constraint Types

Let's use constraint types!

- Commonly used to type existing scripting languages
- Well-suited to type inference
- Type described by restrictions on variables
- $\alpha \backslash\{\alpha \leq$ has speak() $\}$
- Expressive:
- Union types: $\alpha \backslash\{\alpha \geq$ int,$\alpha \geq$ char $\}$
- Recursive types: $\alpha_{1} \backslash\left\{\right.$ nil $\leq \alpha_{1}$, cons $\left.\alpha_{2} \alpha_{1} \leq \alpha_{1}\right\}$
- etc.
- Inhabited iff deductive closure is consistent

Constraint Types

Let's use constraint types!

- Commonly used to type existing scripting languages
- Well-suited to type inference
- Type described by restrictions on variables
- $\alpha \backslash\{\alpha \leq$ has speak() $\}$
- Expressive:
- Union types: $\alpha \backslash\{\alpha \geq$ int,$\alpha \geq$ char $\}$
- Recursive types: $\alpha_{1} \backslash\left\{\right.$ nil $\leq \alpha_{1}$, cons $\left.\alpha_{2} \alpha_{1} \leq \alpha_{1}\right\}$
- etc.
- Inhabited iff deductive closure is consistent
- $\alpha_{1} \backslash\left\{\alpha_{2} \geq\right.$ int,$\alpha_{1} \geq \alpha_{2}$, char $\left.\geq \alpha_{1}\right\}$

Constraint Types

Let's use constraint types!

- Commonly used to type existing scripting languages
- Well-suited to type inference
- Type described by restrictions on variables
- $\alpha \backslash\{\alpha \leq$ has speak() $\}$
- Expressive:
- Union types: $\alpha \backslash\{\alpha \geq$ int,$\alpha \geq$ char $\}$
- Recursive types: $\alpha_{1} \backslash\left\{\right.$ nil $\leq \alpha_{1}$, cons $\left.\alpha_{2} \alpha_{1} \leq \alpha_{1}\right\}$
- etc.
- Inhabited iff deductive closure is consistent
- $\alpha_{1} \backslash\left\{\alpha_{2} \geq\right.$ int,$\alpha_{1} \geq \alpha_{2}$, char $\left.\geq \alpha_{1}\right\}$
- $\alpha_{1} \backslash\left\{\alpha_{2} \geq\right.$ int, $\alpha_{1} \geq \alpha_{2}$, char $\geq \alpha_{1}$, char \geq int $\}$

Constraint Types

Let's use constraint types!

- Commonly used to type existing scripting languages
- Well-suited to type inference
- Type described by restrictions on variables
- $\alpha \backslash\{\alpha \leq$ has speak() $\}$
- Expressive:
- Union types: $\alpha \backslash\{\alpha \geq$ int,$\alpha \geq$ char $\}$
- Recursive types: $\alpha_{1} \backslash\left\{\right.$ nil $\leq \alpha_{1}$, cons $\left.\alpha_{2} \alpha_{1} \leq \alpha_{1}\right\}$
- etc.
- Inhabited iff deductive closure is consistent
- $\alpha_{1} \backslash\left\{\alpha_{2} \geq\right.$ int,$\alpha_{1} \geq \alpha_{2}$, char $\left.\geq \alpha_{1}\right\}$
- $\alpha_{1} \backslash\left\{\alpha_{2} \geq\right.$ int, $\alpha_{1} \geq \alpha_{2}$, char $\geq \alpha_{1}$, char \geq int $\}$
- char \geq int is false, so this type does not exist!

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Intuition

$$
1(\lambda x . \quad x>4) \quad(2+1)
$$

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Intuition

$$
\begin{gathered}
1(\lambda \mathrm{x} . \mathrm{x}>4)(2+1) \\
\left\{\begin{array}{l}
\alpha_{\mathrm{z}} \geq \alpha_{\mathrm{f}} \alpha_{\mathrm{a}} \\
\alpha_{\mathrm{a}} \geq \text { int }+ \text { int } \\
\alpha_{\mathrm{f}} \geq \alpha_{\mathrm{x}} \rightarrow \alpha_{\mathrm{r}} \backslash\left\{\alpha_{\mathrm{r}} \geq \alpha_{\mathrm{x}}>\text { int }\right\}
\end{array}\right\}
\end{gathered}
$$

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Intuition

$$
1(\lambda \mathrm{x} . \mathrm{x}>4) \quad(2+1)
$$

Outline

- Duck Type Inference
- Conditional Reasoning
- Contextual Reasoning
- Flexible Data Model
- Formal Development
- What's Left?
- Conclusion

Conditional Reasoning

- Soundness of code based on case analysis

Conditional Reasoning

- Soundness of code based on case analysis
- Common tactic in scripting

Conditional Reasoning

- Soundness of code based on case analysis
- Common tactic in scripting
- Works particularly well with duck typing

Conditional Reasoning

[^0]
Conditional Reasoning

1

```
def processHooks(tgt, data):
    if callable(tgt):
    fns = [tgt]
    else:
    fns = tgt
    for fn in fns:
    data = fn(data)
    return data
```


Conditional Reasoning

1

```
def processHooks(tgt, data):
    if callable(tgt):
    fns = [tgt]
    else:
    fns=tgt
    for fn in fns:
    data = fn(data)
    return data
```


Conditional Reasoning

```
1
def processHooks(tgt, data):
    if callable(tgt):
    fns = [tgt]
    else:
        fns= tgth
    for fn in fns:
    data = fn(data)
    return data
```


Conditional Reasoning

$\begin{array}{ll}1 \text { def processHooks(tgt, data): } \\ 2 & \text { if callable(tgt): } \\ 3 & \text { fns }=\text { [tgt] } \\ 4 & \text { else: } \\ 5 & \text { fns }=\text { tgt } \\ 6 & \text { for fn in fns: } \\ 7 & \text { data }=\text { fn(data) } \\ 8 & \text { return data }\end{array}$

Conditional Reasoning

```
1 def processHooks(tgt, data):
    if callable(tgt):
    \(\mathrm{fns}=[\mathrm{tg} \mathrm{t}]\)
    else:
    \(f n s=t g t\)
for \(f n\) in \(f n s\) :
    fns \(=t g t\)
for \(f n\) in fns:
    data \(=\mathrm{fn}(\) data \()\)
    return data
\(\longrightarrow \quad\) function list
\(\longrightarrow\) function

\section*{Conditional Reasoning}

\footnotetext{
1 def processHooks(tgt, data):
```

 if callable(tgt):
 fns=[tgt]
    ```
    else:
    data \(=\mathrm{fn}(\) data \()\)
    return data
```

 fns = tgt
 for fn in fns:
    ```
}
\(\longrightarrow \quad\) function list
\(\longrightarrow\) function

\section*{Conditional Reasoning}

\footnotetext{
1 def processHooks(tgt, data):

```

 else:
    ```
    \(\mathrm{fns}=\mathrm{tg} \mathrm{t}\)
    for \(f n\) in \(f n s:\)
    data \(=\mathrm{fn}(\) data \()\)
    return data
}
\(\longrightarrow \quad\) function list
\(\longrightarrow\) function

\section*{Conditional Reasoning}
    return data
\(\longrightarrow \quad\) function list
\(\longrightarrow\) function

\section*{Conditional Reasoning}


\section*{Conditional Reasoning}

- Program analyses with conditional reasoning: "path-sensitive"

\section*{How do we type it?}

\section*{Typing Path-Sensitivity}
- Soundness reasoning by case analysis on value

\section*{Typing Path-Sensitivity}
- Soundness reasoning by case analysis on value
- Thus, use case analysis types

\section*{Typing Path-Sensitivity}
- Soundness reasoning by case analysis on value
- Thus, use case analysis types
- Use only those constraints associated with correct case

\section*{Typing Path-Sensitivity}
- Soundness reasoning by case analysis on value
- Thus, use case analysis types
- Use only those constraints associated with correct case
```

1 let x = 4 in
2 case x of
3 int -> 0
4 char -> 'a'

```

\section*{Typing Path-Sensitivity}
- Soundness reasoning by case analysis on value
- Thus, use case analysis types
- Use only those constraints associated with correct case


\section*{Typing Path-Sensitivity}
- Soundness reasoning by case analysis on value
- Thus, use case analysis types
- Use only those constraints associated with correct case


\section*{Typing Path-Sensitivity}
- Soundness reasoning by case analysis on value
- Thus, use case analysis types
- Use only those constraints associated with correct case


\section*{Typing Path-Sensitivity}
- Soundness reasoning by case analysis on value
- Thus, use case analysis types
- Use only those constraints associated with correct case


\section*{Outline}
- Duck Type Inference
- Conditional Reasoning
- Filtered Types
- Contextual Reasoning
- Flexible Data Model
- Formal Development
- What's Left?
- Conclusion

\section*{Filtered Types}
```

1 let $\mathrm{x}=$ (if somebool then 4 else 'z') in
2 case x of
3 int -> $\mathrm{x}+1$
4 z -> 0

```

\section*{Filtered Types}


\section*{Filtered Types}

- We want refinement on case analysis

\section*{Filtered Types}

- We want refinement on case analysis, but
- We'd like to preserve the invariance of types

\section*{Filtered Types}

- We want refinement on case analysis, but
- We'd like to preserve the invariance of types and
- We have to keep decidability in mind

\section*{Filtered Types}

1 let \(\mathrm{x}=\) (if somebool then 4 else ' \(\mathrm{z}^{\prime}\) ) in
2 case x of
3
\[
y * \operatorname{int}->y+1
\]
\[
z->0
\]

\section*{Filtered Types}

1 let \(\mathrm{x}=\) (if somebool then 4 else ' \(\mathrm{z}^{\prime}\) ) in
2 case x of
3
\[
\begin{aligned}
& \mathrm{y} * \text { int }->\mathrm{y}+1 \\
& \mathrm{z} \rightarrow 0
\end{aligned}
\]
- \(\alpha_{\mathrm{y}} \geq \alpha_{\mathrm{x}} \cap\) int

\section*{Filtered Types}

1 let \(\mathrm{x}=\) (if somebool then 4 else ' \(\mathrm{z}^{\prime}\) ) in
2 case x of

3
\[
\begin{aligned}
& \mathrm{y} * \text { int }->\mathrm{y}+1 \\
& \mathrm{z} \rightarrow 0
\end{aligned}
\]
- \(\alpha_{\mathrm{y}} \geq \alpha_{\mathrm{x}} \cap\) int
- General intersections are infeasible [?]

\section*{Filtered Types}

1 let \(\mathrm{x}=\) (if somebool then 4 else ' \(\mathrm{z}^{\prime}\) ) in
2 case x of
\[
\begin{aligned}
& \mathrm{y} * \text { int }->\mathrm{y}+1 \\
& \mathrm{z} \rightarrow 0
\end{aligned}
\]
- \(\alpha_{\mathrm{y}} \geq \alpha_{\mathrm{x}} \cap\) int
- General intersections are infeasible [?]
- Filtered types: \(\tau \cap \pi \cap \pi \cap \ldots\)

\section*{Filtered Types}

1 let \(\mathrm{x}=\) (if somebool then 4 else ' \(\mathrm{z}^{\prime}\) ) in
2 case x of
\[
\begin{aligned}
& \mathrm{y} * \text { int }->\mathrm{y}+1 \\
& \mathrm{z} \rightarrow 0
\end{aligned}
\]
- \(\alpha_{\mathrm{y}} \geq \alpha_{\mathrm{x}} \cap\) int
- General intersections are infeasible [?]
- Filtered types: \(\tau \cap \pi \cap \pi \cap \ldots\)
- Also includes negation (top level only): \(\alpha_{z} \geq 1\) - int

\section*{Filtered Types}
```

def processHooks(tgt, data):
let fns =
case tgt of
f * fun -> [f]
x -> x
for fn in fns:
fn(data)
return data

```

\section*{Filtered Types}
```

def processHooks(tgt, data):
let fns =
fun }\cup[fun
case tgt of
f * fun -> [f]
x -> x
for fn in fns:
fn(data)
return data

```

\section*{Filtered Types}
```

def processHooks(tgt, data):
let fns = fun }\cup\mathrm{ [fun]
case tgt of
f * fun -> [f] (fun }\cup[fun])\capfun
for fn in fns:
fn(data)
return data

```

\section*{Filtered Types}
```

def processHooks(tgt, data):
let fns =
case tgt of
f * fun -> [f] (fun }\cup[fun])\capfun = fun
for fn in fns:
fn(data)
return data

```

\section*{Filtered Types}
```

def processHooks(tgt, data):
let fns = fun }\cup\mathrm{ [fun]
case tgt of
f * fun -> [f] (fun
for fn in fns:
fn(data)
return data

```

\section*{Filtered Types}
```

def processHooks(tgt, data):
let fns = fun }\cup\mathrm{ [fun]
case tgt of

```

```

 for fn in fns: (fun U[fun])\cap(1-fun)=[fun]
 return data
    ```

\section*{Outline}
- Duck Type Inference
- Conditional Reasoning
- Filtered Types
- Contextual Reasoning
- Flexible Data Model
- Formal Development
- What's Left?
- Conclusion

\section*{Contextual Reasoning}

1 def strange(b):
2 if \(\mathrm{b}:\) return (lambda \(\mathrm{n}: \mathrm{n}+1\) )
3 else: return 4
\(4 \mathrm{f}=\) strange (True)
\(5 \mathrm{x}=\) strange(False)
\({ }_{6}\) print \(\mathrm{f}(\mathrm{x})\)
- \(f\) is a function from integers to integers

\section*{Contextual Reasoning}

1 def strange(b):
2 if \(\mathrm{b}:\) return (lambda \(\mathrm{n}: \mathrm{n}+1\) )
3 else: return 4
\(4 \mathrm{f}=\) strange (True)
\(5 \mathrm{x}=\) strange(False)
6 print \(f(x)\)
- f is a function from integers to integers
- x is a single integer value

\section*{Contextual Reasoning}

1 def strange(b):
```

2 if b: return (lambda n: n+1)
3 else: return 4
4 f = strange(True)
5 x = strange(False)
6 print f(x)

```
- f is a function from integers to integers
- x is a single integer value
- Return types are different based on invocation context

\section*{Contextual Reasoning}

1 def strange(b):
```

2 if b: return (lambda n: n+1)
3 else: return 4
4 f = strange(True)
5 x = strange(False)
6 print f(x)

```
- f is a function from integers to integers
- x is a single integer value
- Return types are different based on invocation context
- Program analyses with contextual reasoning:
"context-sensitive"

\section*{How do we type it?}

\section*{Context Sensitivity}
- Let-bound polymorphism
- Existing program analyses [?]
- Conditional constraints [?]

\section*{Context Sensitivity}
- Let-bound polymorphism (too weak)
- Existing program analyses [?]
- Conditional constraints [?]

\section*{Context Sensitivity}
- Let-bound polymorphism (too weak)
- Existing program analyses [?] (too brittle, not suited)
- Conditional constraints [?]

\section*{Context Sensitivity}
- Let-bound polymorphism (too weak)
- Existing program analyses [?] (too brittle, not suited)
- Conditional constraints [?] (too coarse)

\section*{Context Sensitivity}
- Let-bound polymorphism (too weak)
- Existing program analyses [?] (too brittle, not suited)
- Conditional constraints [?] (too coarse)
- Call-site polymorphism [?, ?]

\section*{Call-Site Polymorphism}
- All functions inferred polymorphic types

\section*{Call-Site Polymorphism}
- All functions inferred polymorphic types
- Polyinstantiation at call sites

\section*{Call-Site Polymorphism}
- All functions inferred polymorphic types
- Polyinstantiation at call sites
- Expressiveness:
```

1 let $\mathrm{f} x=$
2 let $\mathrm{g} \mathrm{y}=\mathrm{y}$ in
3 g; ;
4 let $h=f() ;$;
4 def $h=f()$
5 let $q=\left(h 1, h z^{\prime}\right) ;$;
1 def $f()=$ fun $y->y$
2
5 def $q=\left(h 1, h{ }^{\prime} z^{\prime}\right)$

```

\section*{Bounding Call-Site Polymorphism}
\[
1(\lambda \mathrm{x} \cdot \mathrm{x} \mathrm{x})(\lambda \mathrm{x} \cdot \mathrm{x} \mathrm{x})
\]


\section*{Bounding Call-Site Polymorphism}
\[
1(\lambda \mathrm{x} \cdot \mathrm{x} \mathrm{x})(\lambda \mathrm{x} \cdot \mathrm{x} \mathrm{x})
\]


\section*{Bounding Call-Site Polymorphism}
\[
1(\lambda \mathrm{x} \cdot \mathrm{x} \mathrm{x})(\lambda \mathrm{x} \cdot \mathrm{x} \mathrm{x})
\]


\section*{Bounding Call-Site Polymorphism}
\(1(\lambda \mathrm{x} . \mathrm{x} \mathrm{x})(\lambda \mathrm{x} . \mathrm{x} \mathrm{x})\)


\section*{Bounding Call-Site Polymorphism}


\section*{Bounding Call-Site Polymorphism}
- Variables named by program point and contour


\section*{Bounding Call-Site Polymorphism}
- Variables named by program point and contour
- Contour: restricted regular expression


\section*{Bounding Call-Site Polymorphism}
- Variables named by program point and contour
- Contour: restricted regular expression
- Concatenation of literals and Kleene closures over literals


\section*{Bounding Call-Site Polymorphism}
- Variables named by program point and contour
- Contour: restricted regular expression
- Concatenation of literals and Kleene closures over literals
- Each literal token may appear at most once


\section*{Bounding Call-Site Polymorphism}
- Variables named by program point and contour
- Contour: restricted regular expression
- Concatenation of literals and Kleene closures over literals
- Each literal token may appear at most once
- Contours are joined at recursion


\section*{Outline}
- Duck Type Inference
- Conditional Reasoning
- Filtered Types
- Contextual Reasoning
- Flexible Data Model
- Formal Development
- What's Left?
- Conclusion

\section*{Flexible Data Model}

Scripting languages have flexible data models:
\({ }_{1}\) class MyClass:
2 def msg(self):
3 print "Foo"
\({ }^{4}\) obj \(=\) MyClass()
5 obj.msg() \# Prints "Foo"
6 obj.msg = types.MethodType(lambda s: print "Bar", obj)
7 obj.msg() \# Prints "Bar"

\section*{Flexible Data Model}

Scripting languages have flexible data models:
\({ }_{1}\) class MyClass:
2 def msg(self):
3 print "Foo"
\({ }^{4}\) obj \(=\) MyClass ()
5 obj.msg() \# Prints "Foo"
\({ }^{6}\) obj.msg = types.MethodType(lambda s: print "Bar", obj)
7 obj.msg() \# Prints "Bar"
- Mutating/adding methods
- Multiple inheritance
- Dynamic mixins
- etc.

\section*{How do we type it?}

\section*{Encoding}
- Reduces complexity of type system

\section*{Encoding}
- Reduces complexity of type system
- Ensures consistency in reasoning

\section*{Encoding}
- Reduces complexity of type system
- Ensures consistency in reasoning
- No artificial distinctions (e.g. strategy object \(\cong\) function)

\section*{Encoding}
- Reduces complexity of type system
- Ensures consistency in reasoning
- No artificial distinctions (e.g. strategy object \(\cong\) function)
- Programmer can work "under the hood" as necessary

\section*{Encoding}

LittleBang

\section*{Encoding}

\section*{LittleBang}

TinyBang

\section*{Encoding}


\section*{Encoding}


\section*{TinyBang Language Features}
- Primitives (e.g. 5)

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- fun int -> 0 matches any integer

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- fun int \(->0\) matches any integer
- fun \(x\) :int \(->x\) is integer identity

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- fun int -> 0 matches any integer
- fun \(x\) :int \(->x\) is integer identity
- (fun \(x\) :int \(->x+1\) ) 4 returns 5

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- fun int \(\rightarrow 0\) matches any integer
- fun \(x\) :int \(->x\) is integer identity
- (fun \(x\) :int \(->x+1\) ) 4 returns 5
- (fun \(x \rightarrow x+1\) ) "badness" crashes

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- fun int -> 0 matches any integer
- fun \(x\) :int \(->x\) is integer identity
- (fun \(x\) :int \(->x+1\) ) 4 returns 5
- (fun \(x->x+1\) ) "badness" crashes
- (fun int -> 0) "badness" also crashes

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]
- "Normal" records: \{Name="Ann", Age=43\}

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]
- "Normal" records: \{Name="Ann", Age=43\}
- 4 \& "word" is an onion with an int and a str

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]
- "Normal" records: \{Name="Ann", Age=43\}
- 4 \& "word" is an onion with an int and a str
- Onions of labels: records/structs
- 'Name "Ann" \& 'Age 43

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]
- "Normal" records: \{Name="Ann", Age=43\}
- 4 \& "word" is an onion with an int and a str
- Onions of labels: records/structs
- 'Name "Ann" \& 'Age 43
- Functions match onions by type
- (fun 'Name n -> n) ('Name "Ann" \& 'Age 43) returns "Ann"

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]
- "Normal" records: \{Name="Ann", Age=43\}
- 4 \& "word" is an onion with an int and a str
- Onions of labels: records/structs
- 'Name "Ann" \& 'Age 43
- Functions match onions by type
- (fun 'Name n -> n) ('Name "Ann" \& 'Age 43) returns "Ann"
- Leftmost onion element wins
- (fun 'A x \(\rightarrow\) x) ('A 2 \& 'B 3 \& 'A 4) returns 2

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]
- Onion dispatch: leftmost function wins

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]
- Onion dispatch: leftmost function wins
- (int -> 0) \& (char -> 'a') matches int or char onions

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]
- Onion dispatch: leftmost function wins
- (int -> 0) \& (char -> 'a') matches int or char onions
- ( (int -> 0) \& (char -> 'a')) (5) \(\Longrightarrow 0\)

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]
- Onion dispatch: leftmost function wins
- (int -> 0) \& (char -> 'a') matches int or char onions
- ((int -> 0) \& (char -> 'a')) (5) \(\Longrightarrow 0\)
- ((int -> 0) \& (char -> 'a')) ('z') \(\Longrightarrow\) 'a'

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]
- Onion dispatch: leftmost function wins
- (int -> 0) \& (char -> 'a') matches int or char onions
- ((int -> 0) \& (char -> 'a')) (5) \(\Longrightarrow 0\)
- ((int -> 0) \& (char -> 'a')) ('z') \(\Longrightarrow\) 'a'
- ((int -> 0) \& (char -> 'a')) ( 5 \& 'z') \(\Longrightarrow 0\)

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]
- Onion dispatch: leftmost function wins
- (int -> 0) \& (char -> 'a') matches int or char onions
- ((int -> 0) \& (char -> 'a')) (5) \(\Longrightarrow 0\)
- ((int -> 0) \& (char -> 'a')) ('z') \(\Longrightarrow\) 'a'
- ((int -> 0) \& (char -> 'a')) ( 5 \& 'z') \(\Longrightarrow 0\)
- ((int -> 0) \& (char -> 'a')) ('A 5 \& 'B 4) crashes

\section*{TinyBang Language Features}
- Primitives (e.g. 5)
- Labels (e.g. 'A 5)
- Partial functions
- Onions: type-indexed records [?]
- Onion dispatch: leftmost function wins
- That's it!

\section*{Why These Features?}

Together, onions and partial functions can encode:

\section*{Why These Features?}

Together, onions and partial functions can encode:
- Records
- Conditionals (on 'True () and 'False ())
- Variant-based objects
- Operator overloading
- Classes, inheritance, subclasses, etc.
- Mixins, dynamic functional object extension
- First-class cases
- Optional arguments
- etc.

\section*{Why These Features?}

Together, onions and partial functions can encode:
- Records
- Conditionals (on 'True () and 'False ())
- Variant-based objects
- Operator overloading
- Classes, inheritance, subclasses, etc.
- Mixins, dynamic functional object extension
- First-class cases
- Optional arguments
- etc.

And we can type them!

\section*{Encoding Example}

\author{
LittleBang \\ 1 def inc ( \(x, y=1\) ): \\ 2 return \(\mathrm{x}+\mathrm{y}\) \\ 3 print inc \((3,5)\) \\ 4 print inc(7)
}

\section*{Encoding Example}

\author{
LittleBang \\ 1 def inc \((x, y=1)\) : \\ 2 return \(\mathrm{x}+\mathrm{y}\) \\ 3 print inc \((3,5)\) \\ 4 print inc(7)
}
```

 TinyBang
 1 let inc = fun a * 'x x ->
2 let y = ((fun 'y v -> v)
\& (fun _ -> 1)) a
in x + y
5 print (inc ('x 3 \& 'y 5))
6 print (inc ('x 7))

```

\section*{Working Under the Hood}
```

let obj = if somebool
then object {
m(s:str) = print(s)
}
else object {
inc(x:int) = x + 1
}
8 obj.m("hello") \# static type error if no m
10 def dynamic(msg): throw MethodError()
11 (obj \& dynamic).m("hello") \# exception if no m

```
9

\section*{Working Under the Hood}
```

1 let obj = if somebool
then
fun ('msg 'm () * 's (s * str)) -> print (s)
else
fun ('msg 'inc () * 'x ($\mathrm{x} *$ int)) $->\mathrm{x}+1$
8 obj ('msg 'm () \& 's "hello") \# static type error if no m
9
10 let dynamic $=$ fun $m s g ~->~ t h r o w ~ M e t h o d E r r o r() ~$
11 (obj \& dynamic) ('msg 'm () \& 's "hello") \# exception if no m

```

\section*{What We Don't Get}

TinyBang is:
- Aware of conditionals
- Aware of calling context
- Flexible on data

\section*{What We Don't Get}

TinyBang is:
- Aware of conditionals
- Aware of calling context
- Flexible on data

TinyBang isn't:
- Perfect on recursion
- Modular
- Aware of time

\section*{What We Don't Get}

TinyBang is:
- Aware of conditionals
- Aware of calling context
- Flexible on data

TinyBang isn't:
- Perfect on recursion
- Modular
- Aware of time
\[
\begin{aligned}
& 1 \text { def } c=4 \\
& 2 c=\text { "hello" } \\
& 3 \text { (str }->\text { "") c }
\end{aligned}
\]

\section*{What We Don't Get}

TinyBang is:
- Aware of conditionals
- Aware of calling context
- Flexible on data

TinyBang isn't:
- Perfect on recursion
- Modular
- Aware of time
\[
\begin{aligned}
& 1 \text { def } c=4 \\
& 2 c=\text { "hello" } \\
& 3(\text { str }->" ") c
\end{aligned}
\]
- No typestate

\section*{What We Don't Get}

TinyBang is:
- Aware of conditionals
- Aware of calling context
- Flexible on data

TinyBang isn't:
- Perfect on recursion
- Modular
- Aware of time
\[
\begin{aligned}
& 1 \text { def c = 4 } \\
& 2 \mathrm{c}=\text { "hello" } \\
& 3 \text { (str -> "") c }
\end{aligned}
\]
- No typestate
- No mutable monkeypatching (use functional extension!)

\section*{Outline}
- Duck Type Inference
- Conditional Reasoning
- Filtered Types
- Contextual Reasoning
- Flexible Data Model
- Formal Development
- What's Left?
- Conclusion

\section*{Typechecking Process}

To typecheck a LittleBang program:

\section*{Typechecking Process}

To typecheck a LittleBang program:
- Encode LittleBang operations into TinyBang

\section*{Typechecking Process}

To typecheck a LittleBang program:
- Encode LittleBang operations into TinyBang
- A-translate TinyBang into A-normal form

\section*{Typechecking Process}

To typecheck a LittleBang program:
- Encode LittleBang operations into TinyBang
- A-translate TinyBang into A-normal form
- Like assembly language: lots of small steps

\section*{Typechecking Process}

To typecheck a LittleBang program:
- Encode LittleBang operations into TinyBang
- A-translate TinyBang into A-normal form
- Like assembly language: lots of small steps


\section*{Typechecking Process}

To typecheck a LittleBang program:
- Encode LittleBang operations into TinyBang
- A-translate TinyBang into A-normal form
- Like assembly language: lots of small steps


\section*{Typechecking Process}

To typecheck a LittleBang program:
- Encode LittleBang operations into TinyBang
- A-translate TinyBang into A-normal form
- Like assembly language: lots of small steps
- Derive type constraints from program

\section*{Typechecking Process}

To typecheck a LittleBang program:
- Encode LittleBang operations into TinyBang
- A-translate TinyBang into A-normal form
- Like assembly language: lots of small steps
- Derive type constraints from program
- e.g. x=5 implies \(\alpha_{\mathrm{X}} \geq\) int

\section*{Typechecking Process}

To typecheck a LittleBang program:
- Encode LittleBang operations into TinyBang
- A-translate TinyBang into A-normal form
- Like assembly language: lots of small steps
- Derive type constraints from program
- e.g. \(\mathrm{x}=5\) implies \(\alpha_{\mathrm{x}} \geq\) int
- Perform deductive logical closure

\section*{Typechecking Process}

To typecheck a LittleBang program:
- Encode LittleBang operations into TinyBang
- A-translate TinyBang into A-normal form
- Like assembly language: lots of small steps
- Derive type constraints from program
- e.g. \(x=5\) implies \(\alpha_{\mathrm{x}} \geq\) int
- Perform deductive logical closure
- Reach every conclusion we can from what we've learned

\section*{Typechecking Process}

To typecheck a LittleBang program:
- Encode LittleBang operations into TinyBang
- A-translate TinyBang into A-normal form
- Like assembly language: lots of small steps
- Derive type constraints from program
- e.g. \(x=5\) implies \(\alpha_{\mathrm{x}} \geq\) int
- Perform deductive logical closure
- Reach every conclusion we can from what we've learned
- Similar to running the program

\section*{Typechecking Process}

To typecheck a LittleBang program:
- Encode LittleBang operations into TinyBang
- A-translate TinyBang into A-normal form
- Like assembly language: lots of small steps
- Derive type constraints from program
- e.g. \(x=5\) implies \(\alpha_{\mathrm{x}} \geq\) int
- Perform deductive logical closure
- Reach every conclusion we can from what we've learned
- Similar to running the program
- Check consistency of result

\section*{Typechecking Process}

To typecheck a LittleBang program:
- Encode LittleBang operations into TinyBang
- A-translate TinyBang into A-normal form
- Like assembly language: lots of small steps
- Derive type constraints from program
- e.g. \(\mathrm{x}=5\) implies \(\alpha_{\mathrm{x}} \geq\) int
- Perform deductive logical closure
- Reach every conclusion we can from what we've learned
- Similar to running the program
- Check consistency of result
- If the program is bad, we will reach a false conclusion

\section*{Synthesis}
- TinyBang type grammar is shallow (unusual)
- e.g. \(\alpha_{1} \backslash\left\{{ }^{\prime} \mathrm{A} \alpha_{2} \leq \alpha_{1}\right.\), int \(\left.\leq \alpha_{2}\right\}\)
- not 'A int

\section*{Synthesis}
- TinyBang type grammar is shallow (unusual)
- e.g. \(\alpha_{1} \backslash\left\{{ }^{\text {' } A} \alpha_{2} \leq \alpha_{1}\right.\), int \(\left.\leq \alpha_{2}\right\}\)
- not 'A int
- Corresponds to A-normalized expression grammar

\section*{Synthesis}
- TinyBang type grammar is shallow (unusual)
- e.g. \(\alpha_{1} \backslash\left\{{ }^{\text {' } A} \alpha_{2} \leq \alpha_{1}\right.\), int \(\left.\leq \alpha_{2}\right\}\)
- not 'A int
- Corresponds to A-normalized expression grammar
- In general, correspondence between evaluation and type systems
- value \(\leftrightarrow\) type
- clause \(\leftrightarrow\) constraint
- expression \(\leftrightarrow\) constraint type
- operational semantics rule \(\leftrightarrow\) constraint closure rule
- evaluation \(\leftrightarrow\) constraint closure

\section*{Synthesis}
- TinyBang type grammar is shallow (unusual)
- e.g. \(\alpha_{1} \backslash\left\{{ }^{'} \mathrm{~A} \alpha_{2} \leq \alpha_{1}\right.\), int \(\left.\leq \alpha_{2}\right\}\)
- not 'A int
- Corresponds to A-normalized expression grammar
- In general, correspondence between evaluation and type systems
- value \(\leftrightarrow\) type
- clause \(\leftrightarrow\) constraint
- expression \(\leftrightarrow\) constraint type
- operational semantics rule \(\leftrightarrow\) constraint closure rule
- evaluation \(\leftrightarrow\) constraint closure
- Forms adjoint (as in abtract interpretation)

\section*{Synthesis}
- TinyBang type grammar is shallow (unusual)
- e.g. \(\alpha_{1} \backslash\left\{{ }^{'} \mathrm{~A} \alpha_{2} \leq \alpha_{1}\right.\), int \(\left.\leq \alpha_{2}\right\}\)
- not 'A int
- Corresponds to A-normalized expression grammar
- In general, correspondence between evaluation and type systems
- value \(\leftrightarrow\) type
- clause \(\leftrightarrow\) constraint
- expression \(\leftrightarrow\) constraint type
- operational semantics rule \(\leftrightarrow\) constraint closure rule
- evaluation \(\leftrightarrow\) constraint closure
- Forms adjoint (as in abtract interpretation)
- Proof of soundness: simulation rather than progress \& preservation

\section*{Synthesis}
- TinyBang type grammar is shallow (unusual)
- e.g. \(\alpha_{1} \backslash\left\{{ }^{'} \mathrm{~A} \alpha_{2} \leq \alpha_{1}\right.\), int \(\left.\leq \alpha_{2}\right\}\)
- not 'A int
- Corresponds to A-normalized expression grammar
- In general, correspondence between evaluation and type systems
- value \(\leftrightarrow\) type
- clause \(\leftrightarrow\) constraint
- expression \(\leftrightarrow\) constraint type
- operational semantics rule \(\leftrightarrow\) constraint closure rule
- evaluation \(\leftrightarrow\) constraint closure
- Forms adjoint (as in abtract interpretation)
- Proof of soundness: simulation rather than progress \& preservation
- Difference: all facts gathered here are invariant

\section*{Proof of Soundness}

Progress \& Preservation

\section*{Proof of Soundness}

Progress \& Preservation


\section*{Proof of Soundness}

Progress \& Preservation


\section*{Proof of Soundness}

Progress \& Preservation


\section*{Proof of Soundness}

Progress \& Preservation


\section*{Proof of Soundness}

Progress \& Preservation


\section*{Proof of Soundness}

Simulation


\section*{Proof of Soundness}

Simulation


\section*{Proof of Soundness}

Simulation


\section*{Not Shown Here}
- Union alignment invariants

\section*{Not Shown Here}
- Union alignment invariants
- The interesting encodings (dynamic mixins, subclasses, etc.)

\section*{Not Shown Here}
- Union alignment invariants
- The interesting encodings (dynamic mixins, subclasses, etc.)
- Novel object extension properties [?]

\section*{Outline}
- Duck Type Inference
- Conditional Reasoning
- Filtered Types
- Contextual Reasoning
- Flexible Data Model
- Formal Development
- What's Left?
- Conclusion

\section*{What's Left?}
- Current Research

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int ~> int)

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int ~> int)
- Encode type signatures

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int \(\sim>\) int)
- Encode type signatures
- First overloading of higher-order functions

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int \(\sim>\) int)
- Encode type signatures
- First overloading of higher-order functions
- Potentially solves modularity issues

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int ~> int)
- Encode type signatures
- First overloading of higher-order functions
- Potentially solves modularity issues
- Chronological constraints

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int ~> int)
- Encode type signatures
- First overloading of higher-order functions
- Potentially solves modularity issues
- Chronological constraints
- Enable flow-sensitivity (awareness of time)

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int ~> int)
- Encode type signatures
- First overloading of higher-order functions
- Potentially solves modularity issues
- Chronological constraints
- Enable flow-sensitivity (awareness of time)
- Possibly improves typechecking performance

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int \(\sim>\) int)
- Encode type signatures
- First overloading of higher-order functions
- Potentially solves modularity issues
- Chronological constraints
- Enable flow-sensitivity (awareness of time)
- Possibly improves typechecking performance
- Layout calculus

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int \(\sim>\) int)
- Encode type signatures
- First overloading of higher-order functions
- Potentially solves modularity issues
- Chronological constraints
- Enable flow-sensitivity (awareness of time)
- Possibly improves typechecking performance
- Layout calculus
- Hari's dissertation focus

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int \(\sim>\) int)
- Encode type signatures
- First overloading of higher-order functions
- Potentially solves modularity issues
- Chronological constraints
- Enable flow-sensitivity (awareness of time)
- Possibly improves typechecking performance
- Layout calculus
- Hari's dissertation focus
- Efficient onion memory layout and dispatch

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int \(\sim>\) int)
- Encode type signatures
- First overloading of higher-order functions
- Potentially solves modularity issues
- Chronological constraints
- Enable flow-sensitivity (awareness of time)
- Possibly improves typechecking performance
- Layout calculus
- Hari's dissertation focus
- Efficient onion memory layout and dispatch
- Future Research

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int \(\sim>\) int)
- Encode type signatures
- First overloading of higher-order functions
- Potentially solves modularity issues
- Chronological constraints
- Enable flow-sensitivity (awareness of time)
- Possibly improves typechecking performance
- Layout calculus
- Hari's dissertation focus
- Efficient onion memory layout and dispatch
- Future Research
- Type error processing

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int \(\sim>\) int)
- Encode type signatures
- First overloading of higher-order functions
- Potentially solves modularity issues
- Chronological constraints
- Enable flow-sensitivity (awareness of time)
- Possibly improves typechecking performance
- Layout calculus
- Hari's dissertation focus
- Efficient onion memory layout and dispatch
- Future Research
- Type error processing
- Modularity

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int \(\sim>\) int)
- Encode type signatures
- First overloading of higher-order functions
- Potentially solves modularity issues
- Chronological constraints
- Enable flow-sensitivity (awareness of time)
- Possibly improves typechecking performance
- Layout calculus
- Hari's dissertation focus
- Efficient onion memory layout and dispatch
- Future Research
- Type error processing
- Modularity
- User-specified encodings / language features

\section*{What's Left?}
- Current Research
- Function patterns (e.g. int \(\sim>\) int)
- Encode type signatures
- First overloading of higher-order functions
- Potentially solves modularity issues
- Chronological constraints
- Enable flow-sensitivity (awareness of time)
- Possibly improves typechecking performance
- Layout calculus
- Hari's dissertation focus
- Efficient onion memory layout and dispatch
- Future Research
- Type error processing
- Modularity
- User-specified encodings / language features
- Type-aware script metaprogramming

\section*{Outline}
- Duck Type Inference
- Conditional Reasoning
- Filtered Types
- Contextual Reasoning
- Flexible Data Model
- Formal Development
- What's Left?
- Conclusion

\section*{Conclusions}

\section*{Conclusions}

We can build a typed scripting language from scratch.

\section*{Conclusions}

We can build a typed scripting language from scratch.
- Subtype constraints allow for duck typing

\section*{Conclusions}

\section*{We can build a typed scripting language from scratch.}
- Subtype constraints allow for duck typing
- Feature encodings keep type system simple

\section*{Conclusions}

\section*{We can build a typed scripting language from scratch.}
- Subtype constraints allow for duck typing
- Feature encodings keep type system simple
- Asymmetry of onions allows encoding of subclasses, overloading, etc.

\section*{Conclusions}

\section*{We can build a typed scripting language from scratch.}
- Subtype constraints allow for duck typing
- Feature encodings keep type system simple
- Asymmetry of onions allows encoding of subclasses, overloading, etc.
- Path-sensitivity (via onion dispatch) enables case-based reasoning

\section*{Conclusions}

\section*{We can build a typed scripting language from scratch.}
- Subtype constraints allow for duck typing
- Feature encodings keep type system simple
- Asymmetry of onions allows encoding of subclasses, overloading, etc.
- Path-sensitivity (via onion dispatch) enables case-based reasoning
- Context-sensitivity (via call-site polymorphism) allows complex, intuitive soundness arguments

\section*{Conclusions}

\section*{We can build a typed scripting language from scratch.}
- Subtype constraints allow for duck typing
- Feature encodings keep type system simple
- Asymmetry of onions allows encoding of subclasses, overloading, etc.
- Path-sensitivity (via onion dispatch) enables case-based reasoning
- Context-sensitivity (via call-site polymorphism) allows complex, intuitive soundness arguments
- Exploit connection to abstract interpretation while remaining in type theory

\section*{Thanks!}
- Scott F. Smith (advisor)
- Alexander Rozenstheyn (collaborator)
- Pottayil Harisanker Menon (collaborator)
- Rebekah Palmer (wife, best friend)
- JHU Computer Science Department
- All those people who did all that research

\section*{Questions?}

\section*{Bibliography}

Typechecking Example

\section*{Typechecking by Example}

First, we will typecheck this program:
1 let b = ...
2 1 + 2 + (if b then 5 else 1)

\section*{Typechecking by Example}

First, we will typecheck this program:
1 let b = ...
\(21+2+(i f b\) then 5 else 1 )

Then, we will typecheck this program:
1 let \(\mathrm{b}=\ldots\)
\(21+2+(i f \mathrm{~b}\) then ' z ' else 1 )

\section*{Encoding and A-normalization}

\section*{Preparing to Typecheck}

LittleBang
```

1 let b = ...
1 + 2 + (if b then 5 else 1)

```

\section*{Preparing to Typecheck}

LittleBang
\[
\begin{aligned}
& 1 \text { let b = ... } \\
& 21+2+\text { (if b then } 5 \text { else 1) } \\
& 1 \text { let } b=\ldots \text { in } \\
& 21+2+\left(\left({ }^{2} T r u e()->5\right)\right. \\
& \text { \& ('False () -> 1)) b) }
\end{aligned}
\]

TinyBang

\section*{Preparing to Typecheck}

LittleBang

TinyBang
```

```
2 1 + 2 + ((('True () -> 5)
```

```
2 1 + 2 + ((('True () -> 5)
                                    &('False () -> 1)) b)
```

```
                                    &('False () -> 1)) b)
```

```
    \(1 \mathrm{~b}=\ldots\);
    2 x1 = 1;
    3 x2 = 2;

TinyBang
ANF
```

1 let b = ...
2 1 + 2 + (if b then 5 else 1)
1 let b = ... in

```
\(4 \mathrm{x} 3=+\mathrm{x} 1 \mathrm{x} 2\);
\(5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=\) 'True p 1\(\}->\{\mathrm{r} 1=5\) \};
\(6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=\) 'False p 3 \} \(->\{\mathrm{r} 2=1\} ;\)
\(7 \mathrm{x} 6=\mathrm{x} 4 \& \mathrm{x} 5\);
\(8 \mathrm{x} 7=\mathrm{x} 6 \mathrm{~b}\);
\(9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7\);

\section*{An Aside: Execution}
```

$1 \mathrm{~b}=\ldots$;
2 x1 = 1;
$3 \mathrm{x} 2=2$;
$4 \mathrm{x} 3=+\mathrm{x} 1 \mathrm{x} 2$;
$5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=$ 'True p 1$\} \rightarrow$ \{ $\mathrm{r} 1=5\} ;$
$6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=$ 'False p 3$\}->\{\mathrm{r} 2=1\}$;
$7 \mathrm{x} 6=\mathrm{x} 4$ \& x 5 ;
$8 \mathrm{x} 7=\mathrm{x} 6 \mathrm{~b}$;
$9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7$;

```

\section*{An Aside: Execution}
```

$1 \mathrm{~b}=\ldots$;
2 x1 = 1;
3 x2 = 2;
4 x3 = 3;
$5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=$ 'True p 1$\} \rightarrow$ \{ $\mathrm{r} 1=5\} ;$
$6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=$ 'False p 3$\}->\{\mathrm{r} 2=1\}$;
$7 \mathrm{x} 6=\mathrm{x} 4$ \& x 5 ;
$8 \mathrm{x} 7=\mathrm{x} 6 \mathrm{~b}$;
$9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7$;

```

\section*{An Aside: Execution}
```

$1 \mathrm{~b}=$ 'False ...;
$2 \mathrm{x} 1=1$;
$3 \mathrm{x} 2=2$;
4 x3 = 3;
$5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=$ 'True p 1$\} \rightarrow$ \{ $\mathrm{r} 1=5$ \};
$6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=$ 'False p 3$\}->\{\mathrm{r} 2=1\}$;
$7 \mathrm{x} 6=\mathrm{x} 4 \& \mathrm{x} 5$;
$8 \mathrm{x} 7=\mathrm{x} 6 \mathrm{~b}$;
$9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7$;

```

\section*{An Aside: Execution}
```

$1 \mathrm{~b}=$ 'False ...;
$2 \mathrm{x} 1=1$;
$3 \mathrm{x} 2=2$;
4 x3 = 3;
$5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=$ 'True p 1$\} \rightarrow \mathrm{f}$, $\mathrm{r} 1=5\} ;$
$6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=$ 'False p 3$\} \rightarrow>\{\mathrm{r} 2=1\}$;
$7 \mathrm{x} 6=\mathrm{x} 4$ \& x 5 ;
$8 \mathrm{x} 7=\mathrm{x} 6 \mathrm{~b}$;
$9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7$;

```

\section*{An Aside: Execution}
```

$1 \mathrm{~b}=$ 'False ...;
$2 \mathrm{x} 1=1$;
$3 \mathrm{x} 2=2$;
4 x3 = 3;
$5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=$ 'True p 1$\} \rightarrow$ \{ $\mathrm{r} 1=5\} ;$
$6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=$ 'False p 3$\}->\{\mathrm{r} 2=1\}$;
7 x 6 = x 4 \& x 5 ;
$8 \mathrm{x} 7=\mathrm{x} 6 \mathrm{~b}$;
$9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7$;

```

\section*{An Aside: Execution}
```

$1 \mathrm{~b}=$ 'False ...;
$2 \mathrm{x} 1=1$;
$3 \mathrm{x} 2=2$;
4 x3 = 3;
$5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=$ 'True p 1$\} \rightarrow \mathrm{f}$, $\mathrm{r} 1=5\} ;$
$6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=$ 'False p 3$\} \rightarrow>\{\mathrm{r} 2=1\}$;
$7 \mathrm{x} 6=\mathrm{x} 4$ \& x 5 ;
$8 \mathrm{x} 7=\mathrm{x} 6 \mathrm{~b}$;
$9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7$;

```

\section*{An Aside: Execution}
```

$1 \mathrm{~b}=$ 'False ...;
$2 \mathrm{x} 1=1$;
$3 \mathrm{x} 2=2$;
4 x3 = 3;
$5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=$ 'True p 1$\} \rightarrow \mathrm{f}$, $\mathrm{r} 1=5\} ;$
$6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=$ 'False p 3$\} \rightarrow>\{\mathrm{r} 2=1\}$;
$7 \mathrm{x} 6=\mathrm{x} 4 \& \mathrm{x} 5$;
$8 \mathrm{x} 7=\mathrm{x} 6 \mathrm{~b}$;
$9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7$;

```

\section*{An Aside: Execution}
```

$1 \mathrm{~b}=$ 'False ...;
$2 \mathrm{x} 1=1$;
3 x2 = 2;
4 x3 = 3;
$5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=$ 'True p 1$\} \rightarrow \mathrm{f}$, $\mathrm{r} 1=5\} ;$
$6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=$ 'False p 3$\} \rightarrow>\{\mathrm{r} 2=1\}$;
$7 \mathrm{x} 6=\mathrm{x} 4$ \& x 5 ;
$8 \mathrm{r} 2^{\prime}=1 ; \mathrm{x} 7=r 2^{\prime} ;$
$9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7$;

```

\section*{An Aside: Execution}
```

$1 \mathrm{~b}=$ 'False ...;
$2 \mathrm{x} 1=1$;
$3 \mathrm{x} 2=2$;
4 x3 = 3;
$5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=$ 'True p 1$\} \rightarrow \mathrm{f}$, $\mathrm{r} 1=5\} ;$
$6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=$ 'False p 3$\} \rightarrow>\{\mathrm{r} 2=1\}$;
7 x 6 = x 4 \& x 5 ;
$8 \mathrm{r} 2^{\prime}=1 ; \mathrm{x} 7=r 2^{\prime}$;
$9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7$;

```

\section*{An Aside: Execution}
```

$1 \mathrm{~b}=$ 'False ...;
$2 \mathrm{x} 1=1$;
$3 \mathrm{x} 2=2$;
4 x3 = 3;
$5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=$ 'True p 1$\} \rightarrow \mathrm{f}$, $\mathrm{r} 1=5\} ;$
$6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=$ 'False p 3$\} \rightarrow>\{\mathrm{r} 2=1\}$;
$7 \mathrm{x} 6=\mathrm{x} 4 \& \mathrm{x} 5$;
$8 \mathrm{r}^{\prime}=1$; $\mathrm{x} 7=1$;
$9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7$;

```

\section*{An Aside: Execution}
```

$1 \mathrm{~b}=$ 'False ...;
$2 \mathrm{x} 1=1$;
3 x2 = 2;
4 x3 $=3$;
$5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=$ 'True p 1$\} \rightarrow \mathrm{f}$, $\mathrm{r} 1=5\} ;$
$6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=$ 'False p 3$\} \rightarrow>\{\mathrm{r} 2=1\}$;
$7 \mathrm{x} 6=\mathrm{x} 4 \& \mathrm{x} 5$;
$8{ }^{\prime} 2^{\prime}=1$; $x 7=1$;
$9 \mathrm{x} 8=4$;

```

\section*{Initial Alignment}
```

1 b = ...;
2 x1 = 1;
3 x2 = 2;
4 x3 = + x1 x2;
5 x4 = { p1 = (); p2 = 'True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = 'False p3 } -> { r2 = 1 };
7 x6 = x4 \& x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

```

\section*{Initial Alignment}
\(1 \mathrm{~b}=\ldots\);
2 x1 = int;
3 x2 = int;
4 x3 = + x1 x2;
\(5 \mathrm{x} 4=\{\mathrm{p} 1=() ; \mathrm{p} 2=\) 'True p 1\(\} \rightarrow \mathbf{~}\}\) r1 = int \(\} ;\)
\(6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=\) 'False p3 \} -> \{ r2 = int \};
\(7 \mathrm{x} 6=\mathrm{x} 4\) \& x 5 ;
\(8 \mathrm{x} 7=\mathrm{x} 6 \mathrm{~b}\);
\(9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7\);
- Replace primitive data with its type

\section*{Initial Alignment}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\} \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7},
\end{array}\right\}
\]
- Replace primitive data with its type
- Convert to constraints (for e.g. duck typing)

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\} \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\} \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}} \\
\\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\} \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\} \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}} \\
\\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}} \\
\\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\text {'False } \left.\alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}},\right. \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\prime} \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\prime} \text { False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq{ }^{\prime} \text { True } \ldots, \quad \alpha_{\mathrm{b}} \geq{ }^{\prime} \text { False } . ., \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int }, & \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \alpha_{\mathrm{x} 3} \geq \text { int }, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\}, & \alpha_{\mathrm{r} 1}{ }^{\prime} \geq \text { int }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\prime} \text { False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1}, \\
& \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} &
\end{array}\right\}
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, & \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int }, & \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \alpha_{\mathrm{x} 3} \geq \text { int }, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\}, & \alpha_{\mathrm{r} 1} \prime \geq \text { int }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\prime} \text { False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1} \prime, \\
& \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} &
\end{array}\right\}
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, & \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int }, & \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \alpha_{\mathrm{x} 3} \geq \text { int }, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\}, & \alpha_{\mathrm{r} 1} \prime \geq \text { int }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\prime} \text { False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1} \prime, \\
& \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} &
\end{array}\right\}
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, & \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int }, & \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \alpha_{\mathrm{x} 3} \geq \text { int }, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\}, & \alpha_{\mathrm{r} 1} \prime \geq \text { int }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1} \prime, \\
& \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} &
\end{array}\right\}
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq{ }^{\prime} \text { True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, & \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int }, & \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \alpha_{\mathrm{x} 3} \geq \text { int }, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\}, & \alpha_{\mathrm{r} 1}{ }^{\prime} \geq \text { int }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \alpha_{\mathrm{r} 2} \prime \geq \text { int }, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1}, \\
& \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 2}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} &
\end{array}\right\}
\]

\section*{Perform Constraint Closure}

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq{ }^{\prime} \text { True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, & \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int }, & \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \alpha_{\mathrm{x} 3} \geq \text { int }, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { int }\right\}, & \alpha_{\mathrm{r} 1}{ }^{\prime} \geq \text { int }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \alpha_{\mathrm{r} 2} \prime \geq \text { int }, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \alpha_{\mathrm{x} 7} \geq \text { int }, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1} \prime \\
& \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 2}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} &
\end{array}\right\}
\]

\section*{Perform Constraint Closure}

\section*{Perform Constraint Closure}

\section*{Check Consistency}

\section*{Typechecking by Example}

First, we will typecheck this program:
1 let b = ...
\(21+2+(i f b\) then 5 else 1 )

Then, we will typecheck this program:
1 let \(\mathrm{b}=\ldots\)
\(21+2+(i f \mathrm{~b}\) then ' z ' else 1 )

\section*{Initial Alignment}
```

$1 \mathrm{~b}=\ldots$;
$2 \mathrm{x} 1=1$;
3 $\mathrm{x} 2=2$;
4 x3 = + x1 x2;

```

```

$6 \mathrm{x} 5=\{\mathrm{p} 3=() ; \mathrm{p} 4=$ 'False p3 \} -> \{ r2 = 1 \};
$7 \mathrm{x} 6=\mathrm{x} 4 \& \mathrm{x} 5$;
$8 \mathrm{x} 7=\mathrm{x} 6 \mathrm{~b}$;
$9 \mathrm{x} 8=+\mathrm{x} 3 \mathrm{x} 7$;

```

\section*{Initial Alignment}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { char }\right\} \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\} \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7},
\end{array}\right\}
\]
- Same as last time, but with a char

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { char }\right\}, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { char }\right\} \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { char }\right\}, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}} \\
\\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { char }\right\}, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { char }\right\}, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { char }\right\}, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{l}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, \\
\alpha_{\mathrm{x} 2} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { char }\right\}, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq \text { 'False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7}
\end{array}\right.
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq{ }^{\prime} \text { True } \ldots, \quad \alpha_{\mathrm{b}} \geq{ }^{\prime} \text { False } \ldots, & \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int }, & \alpha_{\mathrm{x} 3} \geq \text { int }, \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { char }\right\}, & \alpha_{\mathrm{r} 1}{ }^{\prime} \geq \text { char }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\prime} \text { False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1}, \\
& \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} &
\end{array}\right\}
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq{ }^{\prime} \text { True } \ldots, \quad \alpha_{\mathrm{b}} \geq{ }^{\prime} \text { False } \ldots, & \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int }, & \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \alpha_{\mathrm{x} 3} \geq \text { int }, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq '^{\prime} \text { True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { char }\right\}, & \alpha_{\mathrm{r} 1} \prime^{\geq} \geq \text {char }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\prime} \text { False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1}, \\
& \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} &
\end{array}\right\}
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq{ }^{\prime} \text { True } \ldots, \quad \alpha_{\mathrm{b}} \geq{ }^{\prime} \text { False } \ldots, & \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int }, & \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \alpha_{\mathrm{x} 3} \geq \text { int }, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq '^{\prime} \text { True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { char }\right\}, & \alpha_{\mathrm{r} 1} \prime^{\geq} \geq \text {char }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\prime} \text { False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1}, \\
& \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} &
\end{array}\right\}
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, & \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int, } & \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \alpha_{\mathrm{x} 3} \geq \text { int }, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \operatorname{char}\right\}, & \alpha_{\mathrm{r} 1}{ }^{\prime} \geq \text { char }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\prime} \text { False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1}, \\
& \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} &
\end{array}\right\}
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq{ }^{\prime} \text { True } \ldots, \quad \alpha_{\mathrm{b}} \geq{ }^{\prime} \text { False } \ldots, & \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int, } & \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \alpha_{\mathrm{x} 3} \geq \text { int }, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \operatorname{char}\right\}, & \alpha_{\mathrm{r} 1}{ }^{\prime} \geq \text { char }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\prime} \text { False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \alpha_{\mathrm{r} 2}{ }^{\prime} \geq \text { int }, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1}, \\
& \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 2}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} &
\end{array}\right\}
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq \text { 'True } \ldots, \quad \alpha_{\mathrm{b}} \geq \text { 'False } \ldots, & \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int, } & \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \alpha_{\mathrm{x} 3} \geq \text { int }, \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \operatorname{char}\right\}, & \alpha_{\mathrm{r} 1}{ }^{\prime} \geq \text { char }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\prime} \text { False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \alpha_{\mathrm{r} 2}, \geq \text { int }, \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \alpha_{\mathrm{x} 7} \geq \text { char, } \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1}, \\
& \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 2}, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} &
\end{array}\right\}
\]

\section*{Perform Constraint Closure}
\[
\left\{\begin{array}{ll}
\alpha_{\mathrm{b}} \geq{ }^{\prime} \text { True } \ldots, \quad \alpha_{\mathrm{b}} \geq{ }^{\prime} \text { 'False } \ldots, \\
\alpha_{\mathrm{x} 1} \geq \text { int }, & \\
\alpha_{\mathrm{x} 2} \geq \text { int }, & \\
\alpha_{\mathrm{x} 3} \geq+\alpha_{\mathrm{x} 1} \alpha_{\mathrm{x} 2}, & \alpha_{\mathrm{x} 3} \geq \text { int } \\
\alpha_{\mathrm{x} 4} \geq\left\{\alpha_{\mathrm{p} 1} \geq(), \alpha_{\mathrm{p} 2} \geq{ }^{\prime} \text { 'True } \alpha_{\mathrm{p} 1}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 1} \geq \text { char }\right\}, & \alpha_{\mathrm{r} 1}{ }^{\prime} \geq \text { char }, \\
\alpha_{\mathrm{x} 5} \geq\left\{\alpha_{\mathrm{p} 3} \geq(), \alpha_{\mathrm{p} 4} \geq{ }^{\prime} \text { False } \alpha_{\mathrm{p} 3}\right\} \rightarrow\left\{\alpha_{\mathrm{r} 2} \geq \text { int }\right\}, & \alpha_{\mathrm{r} 2} \geq \geq \text { int } \\
\alpha_{\mathrm{x} 6} \geq \alpha_{\mathrm{x} 4} \& \alpha_{\mathrm{x} 5}, & \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{x} 6} \alpha_{\mathrm{b}}, & \alpha_{\mathrm{x} 7} \geq \text { char, }, \\
& \alpha_{\mathrm{x} 7} \geq \text { int }, \\
\alpha_{\mathrm{x} 8} \geq+\alpha_{\mathrm{x} 3} \alpha_{\mathrm{x} 7} & \alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 1}{ }^{\prime}, \\
\alpha_{\mathrm{x} 7} \geq \alpha_{\mathrm{r} 2},
\end{array}\right\}
\]

\section*{Perform Constraint Closure}

\section*{Perform Constraint Closure}

\section*{Check Consistency}

\section*{Check Consistency}

\section*{Typechecking by Example}

First, we will typecheck this program:
1 let b = ...
\(21+2+(i f b\) then 5 else 1 )

Then, we will typecheck this program:
\(\begin{array}{ll}1 & \text { let } \mathrm{b}=\ldots \\ 2 & 1+2+(\text { if } \mathrm{b} \text { then ' } \mathrm{z} \text { ' else } 1)\end{array}\)```


[^0]:    1 def processHooks(tgt, data):
    if callable(tgt):

    $$
    \mathrm{fns}=[\mathrm{tg} \mathrm{t}]
    $$

    else:

    $$
    \mathrm{fns}=\mathrm{tg} \mathrm{t}
    $$

    $$
    \text { for } f n \text { in fns: }
    $$

    $$
    \text { data }=\mathrm{fn}(\text { data) }
    $$

    return data

