
Building a Typed Scripting Language

Zachary Palmer

The Johns Hopkins University

April 16th, 2015

Scripting: Good and Bad

1 print "What number?"
2 number = raw_input();
3 if number < 4:
4 print "Small!"
5 else:
6 print "Not small!"

Scripting languages are...

Terse and legible: easy to read and write
Flexible
High-level
Error-prone

2/63

Scripting: Good and Bad

1 print "What number?"
2 number = raw_input();
3 if number < 4:
4 print "Small!"
5 else:
6 print "Not small!"

Scripting languages are...

Terse and legible: easy to read and write

Flexible
High-level
Error-prone

2/63

Scripting: Good and Bad

1 print "What number?"
2 number = raw_input();
3 if number < 4:
4 print "Small!"
5 else:
6 print "Not small!"

Scripting languages are...

Terse and legible: easy to read and write
Flexible

High-level
Error-prone

2/63

Scripting: Good and Bad

1 print "What number?"
2 number = raw_input();
3 if number < 4:
4 print "Small!"
5 else:
6 print "Not small!"

Scripting languages are...

Terse and legible: easy to read and write
Flexible
High-level

Error-prone

2/63

Scripting: Good and Bad

1 print "What number?"
2 number = raw_input();
3 if number < 4:
4 print "Small!"
5 else:
6 print "Not small!"

Scripting languages are...

Terse and legible: easy to read and write
Flexible
High-level
Error-prone

2/63

Scripting: Good and Bad
1 import java.util.*;
2 public class SmallnessDetector {
3 public static void main(String[] arg) {
4 Scanner scanner = new Scanner(System.in);
5 System.out.println("What number?");
6 int number = scanner.nextLine();
7 if (number < 4) {
8 System.out.println("Small!");
9 } else {

10 System.out.println("Not small!");
11 }
12 }
13 }

Expression has type String

Variable declared with type int

3/63

Scripting: Good and Bad
1 import java.util.*;
2 public class SmallnessDetector {
3 public static void main(String[] arg) {
4 Scanner scanner = new Scanner(System.in);
5 System.out.println("What number?");
6 int number = scanner.nextLine();
7 if (number < 4) {
8 System.out.println("Small!");
9 } else {

10 System.out.println("Not small!");
11 }
12 }
13 }

Expression has type String

Variable declared with type int

3/63

The Best of Both Worlds

Why can’t we just create a type system?

We have.

. . .

Rubydust

Diamondback Ruby

MyPy
Flow

TypeScript

PHP+QB
Hack

TeJaS
. . .

4/63

The Best of Both Worlds

Why can’t we just create a type system? We have.

. . .

Rubydust

Diamondback Ruby

MyPy
Flow

TypeScript

PHP+QB
Hack

TeJaS
. . .

4/63

The Best of Both Worlds

Why can’t we just create a type system? We have.

. . .

Rubydust

Diamondback Ruby

MyPy
Flow

TypeScript

PHP+QB
Hack

TeJaS
. . .

4/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.

Scripting languages: designed without type systems in mind.

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

1 x = 5
2 print x + 1

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

1 x = 5
2 print x + 1

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

1 x = 5
2 print x + 1

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

1 x = 5
2 print x + 1

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

1 fs = [str, str.strip, len]
2 xs = [True, " very ", "ab"]
3 for (f,x) in zip(fs,xs):
4 print f(x)

1 x = 5
2 locals()[raw_input()] = "foo"
3 print x + 1

1 exec(open(raw_input()).read())

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

1 fs = [str, str.strip, len]
2 xs = [True, " very ", "ab"]
3 for (f,x) in zip(fs,xs):
4 print f(x)

1 x = 5
2 locals()[raw_input()] = "foo"
3 print x + 1

1 exec(open(raw_input()).read())

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

1 fs = [str, str.strip, len]
2 xs = [True, " very ", "ab"]
3 for (f,x) in zip(fs,xs):
4 print f(x)

1 x = 5
2 locals()[raw_input()] = "foo"
3 print x + 1

1 exec(open(raw_input()).read())

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

Observations:

Fundamentally dynamic operations

Contrived – not necessary for “scripting”

Alternative: build a typed scripting language from scratch
Include “scripty” expressiveness
Avoid dynamic operations

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

Observations:

Fundamentally dynamic operations
Contrived – not necessary for “scripting”

Alternative: build a typed scripting language from scratch
Include “scripty” expressiveness
Avoid dynamic operations

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

Observations:

Fundamentally dynamic operations
Contrived – not necessary for “scripting”

Alternative: build a typed scripting language from scratch

Include “scripty” expressiveness
Avoid dynamic operations

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

Observations:

Fundamentally dynamic operations
Contrived – not necessary for “scripting”

Alternative: build a typed scripting language from scratch
Include “scripty” expressiveness

Avoid dynamic operations

int

5/63

Retrofitting is Challenging

Retrofitting: appealing, but very hard.
Scripting languages: designed without type systems in mind.

Observations:

Fundamentally dynamic operations
Contrived – not necessary for “scripting”

Alternative: build a typed scripting language from scratch
Include “scripty” expressiveness
Avoid dynamic operations

int

5/63

This Talk

Building a Typed Scripting Language

Primary contribution: synthesis
Underused type theory
Some abstract interpretation
New type theory

Thesis: It is possible to construct a language which has the
static analyzability of traditional languages and the flexibility
of scripting languages.

6/63

This Talk

Building a Typed Scripting Language

Primary contribution: synthesis

Underused type theory
Some abstract interpretation
New type theory

Thesis: It is possible to construct a language which has the
static analyzability of traditional languages and the flexibility
of scripting languages.

6/63

This Talk

Building a Typed Scripting Language

Primary contribution: synthesis
Underused type theory

Some abstract interpretation
New type theory

Thesis: It is possible to construct a language which has the
static analyzability of traditional languages and the flexibility
of scripting languages.

6/63

This Talk

Building a Typed Scripting Language

Primary contribution: synthesis
Underused type theory
Some abstract interpretation

New type theory

Thesis: It is possible to construct a language which has the
static analyzability of traditional languages and the flexibility
of scripting languages.

6/63

This Talk

Building a Typed Scripting Language

Primary contribution: synthesis
Underused type theory
Some abstract interpretation
New type theory

Thesis: It is possible to construct a language which has the
static analyzability of traditional languages and the flexibility
of scripting languages.

6/63

This Talk

Building a Typed Scripting Language

Primary contribution: synthesis
Underused type theory
Some abstract interpretation
New type theory

Thesis: It is possible to construct a language which has the
static analyzability of traditional languages and the flexibility
of scripting languages.

6/63

Outline

Duck Type Inference
Conditional Reasoning
Contextual Reasoning
Flexible Data Model
Formal Development
What’s Left?
Conclusion

7/63

Outline

Duck Type Inference
Conditional Reasoning
Contextual Reasoning
Flexible Data Model
Formal Development
What’s Left?
Conclusion

8/63

Duck Typing

“When I see a bird that walks like a duck and swims like a duck
and quacks like a duck, I call that bird a duck.”

James Whitcomb Riley

Duck typing: categorizing data based on its exhibited properties
(as opposed to by explicit grouping).

9/63

Duck Typing

“When I see a bird that walks like a duck and swims like a duck
and quacks like a duck, I call that bird a duck.”

James Whitcomb Riley

Duck typing: categorizing data based on its exhibited properties
(as opposed to by explicit grouping).

9/63

Java: No Duck Typing
1 public interface Animal {
2 public void speak();
3 }
4 public class Dog implements Animal {
5 public void speak() {
6 System.out.println("Woof!");
7 }
8 }
9 . . .

10 Animal animal = new Dog();
11 animal.speak();
12 animal = new Sheep();
13 animal.speak();

Animal
+speak():void

Dog

+speak():void

Sheep

+speak():void

10/63

Java: No Duck Typing
1 public interface Animal {
2 public void speak();
3 }
4 public class Dog implements Animal {
5 public void speak() {
6 System.out.println("Woof!");
7 }
8 }
9 . . .

10 Animal animal = new Dog();
11 animal.speak();
12 animal = new Sheep();
13 animal.speak();

Animal
+speak

Dog

+speak

Sheep

+speak

10/63

Python: Duck Typing

1 class Dog:
2 def speak(self): print "Woof!"
3 . . .
4 animal = Dog();
5 animal.speak();
6 animal = Sheep();
7 animal.speak();

SpeakyThing?

+speak
Dog

+speak

Sheep

+speak

10/63

Python: Duck Typing

1 class Dog:
2 def speak(self): print "Woof!"
3 . . .
4 animal = Dog();
5 animal.speak();
6 animal = Sheep();
7 animal.speak();

SpeakyThing?

+speak
Dog

+speak

Sheep

+speak

10/63

How do we type it?

11/63

Constraint Types

Let’s use constraint types!

Commonly used to type existing scripting languages

Well-suited to type inference

Type described by restrictions on variables

α\{α ≤ has speak()}

Expressive:
Union types: α\{α ≥ int , α ≥ char}
Recursive types: α1\{nil ≤ α1, cons α2 α1 ≤ α1}
etc.

Inhabited iff deductive closure is consistent

α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1}
α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1, char ≥ int}
char ≥ int is false, so this type does not exist!

12/63

Constraint Types

Let’s use constraint types!
Commonly used to type existing scripting languages

Well-suited to type inference
Type described by restrictions on variables

α\{α ≤ has speak()}

Expressive:
Union types: α\{α ≥ int , α ≥ char}
Recursive types: α1\{nil ≤ α1, cons α2 α1 ≤ α1}
etc.

Inhabited iff deductive closure is consistent

α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1}
α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1, char ≥ int}
char ≥ int is false, so this type does not exist!

12/63

Constraint Types

Let’s use constraint types!
Commonly used to type existing scripting languages

Well-suited to type inference

Type described by restrictions on variables

α\{α ≤ has speak()}

Expressive:
Union types: α\{α ≥ int , α ≥ char}
Recursive types: α1\{nil ≤ α1, cons α2 α1 ≤ α1}
etc.

Inhabited iff deductive closure is consistent

α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1}
α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1, char ≥ int}
char ≥ int is false, so this type does not exist!

12/63

Constraint Types

Let’s use constraint types!
Commonly used to type existing scripting languages

Well-suited to type inference
Type described by restrictions on variables

α\{α ≤ has speak()}
Expressive:

Union types: α\{α ≥ int , α ≥ char}
Recursive types: α1\{nil ≤ α1, cons α2 α1 ≤ α1}
etc.

Inhabited iff deductive closure is consistent

α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1}
α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1, char ≥ int}
char ≥ int is false, so this type does not exist!

12/63

Constraint Types

Let’s use constraint types!
Commonly used to type existing scripting languages

Well-suited to type inference
Type described by restrictions on variables

α\{α ≤ has speak()}

Expressive:
Union types: α\{α ≥ int , α ≥ char}
Recursive types: α1\{nil ≤ α1, cons α2 α1 ≤ α1}
etc.

Inhabited iff deductive closure is consistent

α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1}
α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1, char ≥ int}
char ≥ int is false, so this type does not exist!

12/63

Constraint Types

Let’s use constraint types!
Commonly used to type existing scripting languages

Well-suited to type inference
Type described by restrictions on variables

α\{α ≤ has speak()}
Expressive:

Union types: α\{α ≥ int , α ≥ char}
Recursive types: α1\{nil ≤ α1, cons α2 α1 ≤ α1}
etc.

Inhabited iff deductive closure is consistent

α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1}
α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1, char ≥ int}
char ≥ int is false, so this type does not exist!

12/63

Constraint Types

Let’s use constraint types!
Commonly used to type existing scripting languages

Well-suited to type inference
Type described by restrictions on variables

α\{α ≤ has speak()}
Expressive:

Union types: α\{α ≥ int , α ≥ char}
Recursive types: α1\{nil ≤ α1, cons α2 α1 ≤ α1}
etc.

Inhabited iff deductive closure is consistent

α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1}
α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1, char ≥ int}
char ≥ int is false, so this type does not exist!

12/63

Constraint Types

Let’s use constraint types!
Commonly used to type existing scripting languages

Well-suited to type inference
Type described by restrictions on variables

α\{α ≤ has speak()}
Expressive:

Union types: α\{α ≥ int , α ≥ char}
Recursive types: α1\{nil ≤ α1, cons α2 α1 ≤ α1}
etc.

Inhabited iff deductive closure is consistent
α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1}

α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1, char ≥ int}
char ≥ int is false, so this type does not exist!

12/63

Constraint Types

Let’s use constraint types!
Commonly used to type existing scripting languages

Well-suited to type inference
Type described by restrictions on variables

α\{α ≤ has speak()}
Expressive:

Union types: α\{α ≥ int , α ≥ char}
Recursive types: α1\{nil ≤ α1, cons α2 α1 ≤ α1}
etc.

Inhabited iff deductive closure is consistent
α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1}
α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1, char ≥ int}

char ≥ int is false, so this type does not exist!

12/63

Constraint Types

Let’s use constraint types!
Commonly used to type existing scripting languages

Well-suited to type inference
Type described by restrictions on variables

α\{α ≤ has speak()}
Expressive:

Union types: α\{α ≥ int , α ≥ char}
Recursive types: α1\{nil ≤ α1, cons α2 α1 ≤ α1}
etc.

Inhabited iff deductive closure is consistent
α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1}
α1\{α2 ≥ int , α1 ≥ α2, char ≥ α1, char ≥ int}
char ≥ int is false, so this type does not exist!

12/63

Intuition

1 (λx. x>4) (2+1)

2

1
+

λx.

x

4
>

· ·

3

3

x

4

>

3

false false

13/63

Intuition

1 (λx. x>4) (2+1)

2

1
+

λx.

x

4
>

· ·

3

3

x

4

>

3

false false

13/63

Intuition

1 (λx. x>4) (2+1)

2

1
+

λx.

x

4
>

· ·

3

3

x

4

>

3

false false

13/63

Intuition

1 (λx. x>4) (2+1)

2

1
+

λx.

x

4
>

· ·

3

3

x

4

>

3

false false

13/63

Intuition

1 (λx. x>4) (2+1)

2

1
+

λx.

x

4
>

· ·

3

3

x

4

>

3

false false

13/63

Intuition

1 (λx. x>4) (2+1)

2

1
+

λx.

x

4
>

· ·

3

3

x

4

>

3

false

false

13/63

Intuition

1 (λx. x>4) (2+1)

2

1
+

λx.

x

4
>

· ·

3

3

x

4

>

3

false

false

13/63

Intuition

1 (λx. x>4) (2+1)


αz ≥ αf αa,
αa ≥ int + int
αf ≥ αx → αr \{αr ≥ αx > int}



14/63

Intuition

1 (λx. x>4) (2+1)

int

int
+

λx.

x

int
>

· ·

int

int
x

int
>

bool

Similar to abstract
interpretation
Monotonic closure, invariant
constraints

14/63

Intuition

1 (λx. x>4) (2+1)

int

int
+

λx.

x

int
>

· ·int

int
x

int
>

bool

Similar to abstract
interpretation
Monotonic closure, invariant
constraints

14/63

Intuition

1 (λx. x>4) (2+1)

int

int
+

λx.

x

int
>

· ·int

int
x

int
>

bool

Similar to abstract
interpretation
Monotonic closure, invariant
constraints

14/63

Intuition

1 (λx. x>4) (2+1)

int

int
+

λx.

x

int
>

· ·int

int
x

int
>

bool

Similar to abstract
interpretation
Monotonic closure, invariant
constraints

14/63

Intuition

1 (λx. x>4) (2+1)

int

int
+

λx.

x

int
>

· ·int

int
x

int
>

bool

Similar to abstract
interpretation
Monotonic closure, invariant
constraints

14/63

Intuition

1 (λx. x>4) (2+1)

int

int
+

λx.

x

int
>

· ·int

int
x

int
>

bool

Similar to abstract
interpretation

Monotonic closure, invariant
constraints

14/63

Intuition

1 (λx. x>4) (2+1)

int

int
+

λx.

x

int
>

· ·int

int
x

int
>

bool

Similar to abstract
interpretation
Monotonic closure, invariant
constraints

14/63

Outline

Duck Type Inference
Conditional Reasoning
Contextual Reasoning
Flexible Data Model
Formal Development
What’s Left?
Conclusion

15/63

Conditional Reasoning

Soundness of code based on case analysis

Common tactic in scripting
Works particularly well with duck typing

16/63

Conditional Reasoning

Soundness of code based on case analysis
Common tactic in scripting

Works particularly well with duck typing

16/63

Conditional Reasoning

Soundness of code based on case analysis
Common tactic in scripting
Works particularly well with duck typing

16/63

Conditional Reasoning

1 def processHooks(tgt, data):

2 if callable(tgt):

3 fns = [tgt]

4 else:

5 fns = tgt

6 for fn in fns:

7 data = fn(data)

8 return data

function list

function

Program analyses with conditional reasoning: “path-sensitive”

17/63

Conditional Reasoning

1 def processHooks(tgt, data):

2 if callable(tgt):

3 fns = [tgt]

4 else:

5 fns = tgt

6 for fn in fns:

7 data = fn(data)

8 return data

function list

function

Program analyses with conditional reasoning: “path-sensitive”

17/63

Conditional Reasoning

1 def processHooks(tgt, data):

2 if callable(tgt):

3 fns = [tgt]

4 else:

5 fns = tgt

6 for fn in fns:

7 data = fn(data)

8 return data

function list

function

Program analyses with conditional reasoning: “path-sensitive”

17/63

Conditional Reasoning

1 def processHooks(tgt, data):

2 if callable(tgt):

3 fns = [tgt]

4 else:

5 fns = tgt

6 for fn in fns:

7 data = fn(data)

8 return data

function list

function

Program analyses with conditional reasoning: “path-sensitive”

17/63

Conditional Reasoning

1 def processHooks(tgt, data):

2 if callable(tgt):

3 fns = [tgt]

4 else:

5 fns = tgt

6 for fn in fns:

7 data = fn(data)

8 return data

function list

function

Program analyses with conditional reasoning: “path-sensitive”

17/63

Conditional Reasoning

1 def processHooks(tgt, data):

2 if callable(tgt):

3 fns = [tgt]

4 else:

5 fns = tgt

6 for fn in fns:

7 data = fn(data)

8 return data

function list
function

Program analyses with conditional reasoning: “path-sensitive”

17/63

Conditional Reasoning

1 def processHooks(tgt, data):

2 if callable(tgt):

3 fns = [tgt]

4 else:

5 fns = tgt

6 for fn in fns:

7 data = fn(data)

8 return data

function list
function

Program analyses with conditional reasoning: “path-sensitive”

17/63

Conditional Reasoning

1 def processHooks(tgt, data):

2 if callable(tgt):

3 fns = [tgt]

4 else:

5 fns = tgt

6 for fn in fns:

7 data = fn(data)

8 return data

function list
function

Program analyses with conditional reasoning: “path-sensitive”

17/63

Conditional Reasoning

1 def processHooks(tgt, data):

2 if callable(tgt):

3 fns = [tgt]

4 else:

5 fns = tgt

6 for fn in fns:

7 data = fn(data)

8 return data

function list
function

Program analyses with conditional reasoning: “path-sensitive”

17/63

Conditional Reasoning

1 def processHooks(tgt, data):

2 if callable(tgt):

3 fns = [tgt]

4 else:

5 fns = tgt

6 for fn in fns:

7 data = fn(data)

8 return data

function list
function

Program analyses with conditional reasoning: “path-sensitive”

17/63

Conditional Reasoning

1 def processHooks(tgt, data):

2 if callable(tgt):

3 fns = [tgt]

4 else:

5 fns = tgt

6 for fn in fns:

7 data = fn(data)

8 return data

function list
function

Program analyses with conditional reasoning: “path-sensitive”

17/63

How do we type it?

18/63

Typing Path-Sensitivity
Soundness reasoning by case analysis on value

Thus, use case analysis types
Use only those constraints associated with correct case

1 let x = 4 in
2 case x of
3 int -> 0
4 char -> ’a’

int x ?

int

char

int

char

int

19/63

Typing Path-Sensitivity
Soundness reasoning by case analysis on value
Thus, use case analysis types

Use only those constraints associated with correct case

1 let x = 4 in
2 case x of
3 int -> 0
4 char -> ’a’

int x ?

int

char

int

char

int

19/63

Typing Path-Sensitivity
Soundness reasoning by case analysis on value
Thus, use case analysis types
Use only those constraints associated with correct case

1 let x = 4 in
2 case x of
3 int -> 0
4 char -> ’a’

int x ?

int

char

int

char

int

19/63

Typing Path-Sensitivity
Soundness reasoning by case analysis on value
Thus, use case analysis types
Use only those constraints associated with correct case

1 let x = 4 in
2 case x of
3 int -> 0
4 char -> ’a’

int x ?

int

char

int

char

int

19/63

Typing Path-Sensitivity
Soundness reasoning by case analysis on value
Thus, use case analysis types
Use only those constraints associated with correct case

1 let x = 4 in
2 case x of
3 int -> 0
4 char -> ’a’

int x ?

int

char

int

char

int

19/63

Typing Path-Sensitivity
Soundness reasoning by case analysis on value
Thus, use case analysis types
Use only those constraints associated with correct case

1 let x = 4 in
2 case x of
3 int -> 0
4 char -> ’a’

int x ?

int

char

int

char

int

19/63

Typing Path-Sensitivity
Soundness reasoning by case analysis on value
Thus, use case analysis types
Use only those constraints associated with correct case

1 let x = 4 in
2 case x of
3 int -> 0
4 char -> ’a’

int x ?

int

char

int

char

int

19/63

Typing Path-Sensitivity
Soundness reasoning by case analysis on value
Thus, use case analysis types
Use only those constraints associated with correct case

1 let x = 4 in
2 case x of
3 int -> 0
4 char -> ’a’

int x ?

int

char

int

char

int

19/63

Outline

Duck Type Inference
Conditional Reasoning

Filtered Types

Contextual Reasoning
Flexible Data Model
Formal Development
What’s Left?
Conclusion

20/63

Filtered Types

1 let x = (if somebool then 4 else ’z’) in
2 case x of
3 int -> x + 1
4 z -> 0

known to be an int!

We want refinement on case analysis

, but

We’d like to preserve the invariance of types

and

We have to keep decidability in mind

21/63

Filtered Types

1 let x = (if somebool then 4 else ’z’) in
2 case x of
3 int -> x + 1
4 z -> 0

known to be an int!

We want refinement on case analysis

, but

We’d like to preserve the invariance of types

and

We have to keep decidability in mind

21/63

Filtered Types

1 let x = (if somebool then 4 else ’z’) in
2 case x of
3 int -> x + 1
4 z -> 0

known to be an int!

We want refinement on case analysis

, but
We’d like to preserve the invariance of types

and

We have to keep decidability in mind

21/63

Filtered Types

1 let x = (if somebool then 4 else ’z’) in
2 case x of
3 int -> x + 1
4 z -> 0

known to be an int!

We want refinement on case analysis, but
We’d like to preserve the invariance of types

and
We have to keep decidability in mind

21/63

Filtered Types

1 let x = (if somebool then 4 else ’z’) in
2 case x of
3 int -> x + 1
4 z -> 0

known to be an int!

We want refinement on case analysis, but
We’d like to preserve the invariance of types and
We have to keep decidability in mind

21/63

Filtered Types

1 let x = (if somebool then 4 else ’z’) in
2 case x of
3 y * int -> y + 1
4 z -> 0

αy ≥ αx ∩ int

General intersections are infeasible [?]
Filtered types: τ ∩ π ∩ π ∩ . . .
Also includes negation (top level only): αz ≥ 1− int

22/63

Filtered Types

1 let x = (if somebool then 4 else ’z’) in
2 case x of
3 y * int -> y + 1
4 z -> 0

αy ≥ αx ∩ int

General intersections are infeasible [?]
Filtered types: τ ∩ π ∩ π ∩ . . .
Also includes negation (top level only): αz ≥ 1− int

22/63

Filtered Types

1 let x = (if somebool then 4 else ’z’) in
2 case x of
3 y * int -> y + 1
4 z -> 0

αy ≥ αx ∩ int

General intersections are infeasible [?]

Filtered types: τ ∩ π ∩ π ∩ . . .
Also includes negation (top level only): αz ≥ 1− int

22/63

Filtered Types

1 let x = (if somebool then 4 else ’z’) in
2 case x of
3 y * int -> y + 1
4 z -> 0

αy ≥ αx ∩ int

General intersections are infeasible [?]
Filtered types: τ ∩ π ∩ π ∩ . . .

Also includes negation (top level only): αz ≥ 1− int

22/63

Filtered Types

1 let x = (if somebool then 4 else ’z’) in
2 case x of
3 y * int -> y + 1
4 z -> 0

αy ≥ αx ∩ int

General intersections are infeasible [?]
Filtered types: τ ∩ π ∩ π ∩ . . .
Also includes negation (top level only): αz ≥ 1− int

22/63

Filtered Types

1 def processHooks(tgt, data):
2 let fns =
3 case tgt of
4 f * fun -> [f]
5 x -> x
6 for fn in fns:
7 fn(data)
8 return data

fun ∪ [fun]

(fun ∪ [fun]) ∩ fun

= fun

(fun ∪ [fun]) ∩ (1− fun)

= [fun]

23/63

Filtered Types

1 def processHooks(tgt, data):
2 let fns =
3 case tgt of
4 f * fun -> [f]
5 x -> x
6 for fn in fns:
7 fn(data)
8 return data

fun ∪ [fun]

(fun ∪ [fun]) ∩ fun

= fun

(fun ∪ [fun]) ∩ (1− fun)

= [fun]

23/63

Filtered Types

1 def processHooks(tgt, data):
2 let fns =
3 case tgt of
4 f * fun -> [f]
5 x -> x
6 for fn in fns:
7 fn(data)
8 return data

fun ∪ [fun]

(fun ∪ [fun]) ∩ fun

= fun

(fun ∪ [fun]) ∩ (1− fun)

= [fun]

23/63

Filtered Types

1 def processHooks(tgt, data):
2 let fns =
3 case tgt of
4 f * fun -> [f]
5 x -> x
6 for fn in fns:
7 fn(data)
8 return data

fun ∪ [fun]

(fun ∪ [fun]) ∩ fun = fun

(fun ∪ [fun]) ∩ (1− fun)

= [fun]

23/63

Filtered Types

1 def processHooks(tgt, data):
2 let fns =
3 case tgt of
4 f * fun -> [f]
5 x -> x
6 for fn in fns:
7 fn(data)
8 return data

fun ∪ [fun]

(fun ∪ [fun]) ∩ fun = fun

(fun ∪ [fun]) ∩ (1− fun)

= [fun]

23/63

Filtered Types

1 def processHooks(tgt, data):
2 let fns =
3 case tgt of
4 f * fun -> [f]
5 x -> x
6 for fn in fns:
7 fn(data)
8 return data

fun ∪ [fun]

(fun ∪ [fun]) ∩ fun = fun

(fun ∪ [fun]) ∩ (1− fun) = [fun]

23/63

Outline

Duck Type Inference
Conditional Reasoning

Filtered Types

Contextual Reasoning
Flexible Data Model
Formal Development
What’s Left?
Conclusion

24/63

Contextual Reasoning

1 def strange(b):
2 if b: return (lambda n: n+1)
3 else: return 4
4 f = strange(True)
5 x = strange(False)
6 print f(x)

f is a function from integers to integers

x is a single integer value
Return types are different based on invocation context
Program analyses with contextual reasoning:
“context-sensitive”

25/63

Contextual Reasoning

1 def strange(b):
2 if b: return (lambda n: n+1)
3 else: return 4
4 f = strange(True)
5 x = strange(False)
6 print f(x)

f is a function from integers to integers
x is a single integer value

Return types are different based on invocation context
Program analyses with contextual reasoning:
“context-sensitive”

25/63

Contextual Reasoning

1 def strange(b):
2 if b: return (lambda n: n+1)
3 else: return 4
4 f = strange(True)
5 x = strange(False)
6 print f(x)

f is a function from integers to integers
x is a single integer value
Return types are different based on invocation context

Program analyses with contextual reasoning:
“context-sensitive”

25/63

Contextual Reasoning

1 def strange(b):
2 if b: return (lambda n: n+1)
3 else: return 4
4 f = strange(True)
5 x = strange(False)
6 print f(x)

f is a function from integers to integers
x is a single integer value
Return types are different based on invocation context
Program analyses with contextual reasoning:
“context-sensitive”

25/63

How do we type it?

26/63

Context Sensitivity

Let-bound polymorphism

(too weak)

Existing program analyses [?]

(too brittle, not suited)

Conditional constraints [?]

(too coarse)
Call-site polymorphism [?, ?]

27/63

Context Sensitivity

Let-bound polymorphism (too weak)
Existing program analyses [?]

(too brittle, not suited)

Conditional constraints [?]

(too coarse)
Call-site polymorphism [?, ?]

27/63

Context Sensitivity

Let-bound polymorphism (too weak)
Existing program analyses [?] (too brittle, not suited)
Conditional constraints [?]

(too coarse)
Call-site polymorphism [?, ?]

27/63

Context Sensitivity

Let-bound polymorphism (too weak)
Existing program analyses [?] (too brittle, not suited)
Conditional constraints [?] (too coarse)

Call-site polymorphism [?, ?]

27/63

Context Sensitivity

Let-bound polymorphism (too weak)
Existing program analyses [?] (too brittle, not suited)
Conditional constraints [?] (too coarse)
Call-site polymorphism [?, ?]

27/63

Call-Site Polymorphism

All functions inferred polymorphic types

Polyinstantiation at call sites
Expressiveness:

1 let f x =
2 let g y = y in
3 g;;
4 let h = f();;
5 let q = (h 1, h ’z’);;

1 def f() = fun y -> y
2

3

4 def h = f()
5 def q = (h 1, h ’z’)

28/63

Call-Site Polymorphism

All functions inferred polymorphic types
Polyinstantiation at call sites

Expressiveness:
1 let f x =
2 let g y = y in
3 g;;
4 let h = f();;
5 let q = (h 1, h ’z’);;

1 def f() = fun y -> y
2

3

4 def h = f()
5 def q = (h 1, h ’z’)

28/63

Call-Site Polymorphism

All functions inferred polymorphic types
Polyinstantiation at call sites
Expressiveness:

1 let f x =
2 let g y = y in
3 g;;
4 let h = f();;
5 let q = (h 1, h ’z’);;

1 def f() = fun y -> y
2

3

4 def h = f()
5 def q = (h 1, h ’z’)

28/63

Bounding Call-Site Polymorphism

1 (λx. x x) (λx. x x)

x · · · ·

x · ·

x · ·

...

29/63

Bounding Call-Site Polymorphism

1 (λx. x x) (λx. x x)

x · · · ·

x · ·

x · ·

...

29/63

Bounding Call-Site Polymorphism

1 (λx. x x) (λx. x x)

x · · · ·

x · ·

x · ·

...

29/63

Bounding Call-Site Polymorphism

1 (λx. x x) (λx. x x)

x · · · ·

x · ·

x · ·

...

29/63

Bounding Call-Site Polymorphism

Variables named by program point and contour
Contour: restricted regular expression

Concatenation of literals and Kleene closures over literals
Each literal token may appear at most once

Contours are joined at recursion

x · ·

a

· ·

b: ε

x:b

a∗

· · a:b

a∗

x:ba · · a:ba

...

30/63

Bounding Call-Site Polymorphism

Variables named by program point and contour
Contour: restricted regular expression

Concatenation of literals and Kleene closures over literals
Each literal token may appear at most once

Contours are joined at recursion

x · · a · · b: ε

x:b

a∗

· · a:b

a∗

x:ba · · a:ba

...

30/63

Bounding Call-Site Polymorphism

Variables named by program point and contour
Contour: restricted regular expression

Concatenation of literals and Kleene closures over literals
Each literal token may appear at most once

Contours are joined at recursion

x · · a · · b: ε

x:b

a∗

· · a:b

a∗

x:ba · · a:ba

...

30/63

Bounding Call-Site Polymorphism

Variables named by program point and contour
Contour: restricted regular expression

Concatenation of literals and Kleene closures over literals
Each literal token may appear at most once

Contours are joined at recursion

x · · a · · b: ε

x:b

a∗

· · a:b

a∗

x:ba · · a:ba

...

30/63

Bounding Call-Site Polymorphism

Variables named by program point and contour
Contour: restricted regular expression

Concatenation of literals and Kleene closures over literals
Each literal token may appear at most once

Contours are joined at recursion

x · · a · · b: ε

x:ba∗ · · a:ba∗

x:ba · · a:ba

...

30/63

Bounding Call-Site Polymorphism

Variables named by program point and contour

Contour: restricted regular expression

Concatenation of literals and Kleene closures over literals
Each literal token may appear at most once

Contours are joined at recursion

x · · a · · b: ε

x:ba∗ · · a:ba∗

x:ba · · a:ba

...

30/63

Bounding Call-Site Polymorphism

Variables named by program point and contour
Contour: restricted regular expression

Concatenation of literals and Kleene closures over literals
Each literal token may appear at most once

Contours are joined at recursion

x · · a · · b: ε

x:ba∗ · · a:ba∗

x:ba · · a:ba

...

30/63

Bounding Call-Site Polymorphism

Variables named by program point and contour
Contour: restricted regular expression

Concatenation of literals and Kleene closures over literals

Each literal token may appear at most once

Contours are joined at recursion

x · · a · · b: ε

x:ba∗ · · a:ba∗

x:ba · · a:ba

...

30/63

Bounding Call-Site Polymorphism

Variables named by program point and contour
Contour: restricted regular expression

Concatenation of literals and Kleene closures over literals
Each literal token may appear at most once

Contours are joined at recursion

x · · a · · b: ε

x:ba∗ · · a:ba∗

x:ba · · a:ba

...

30/63

Bounding Call-Site Polymorphism

Variables named by program point and contour
Contour: restricted regular expression

Concatenation of literals and Kleene closures over literals
Each literal token may appear at most once

Contours are joined at recursion

x · · a · · b: ε

x:ba∗ · · a:ba∗

x:ba · · a:ba

...

30/63

Outline

Duck Type Inference
Conditional Reasoning

Filtered Types

Contextual Reasoning
Flexible Data Model
Formal Development
What’s Left?
Conclusion

31/63

Flexible Data Model

Scripting languages have flexible data models:

1 class MyClass:
2 def msg(self):
3 print "Foo"
4 obj = MyClass()
5 obj.msg() # Prints "Foo"
6 obj.msg = types.MethodType(lambda s: print "Bar", obj)
7 obj.msg() # Prints "Bar"

Mutating/adding methods
Multiple inheritance
Dynamic mixins
etc.

32/63

Flexible Data Model

Scripting languages have flexible data models:

1 class MyClass:
2 def msg(self):
3 print "Foo"
4 obj = MyClass()
5 obj.msg() # Prints "Foo"
6 obj.msg = types.MethodType(lambda s: print "Bar", obj)
7 obj.msg() # Prints "Bar"

Mutating/adding methods
Multiple inheritance
Dynamic mixins
etc.

32/63

How do we type it?

33/63

Encoding

Reduces complexity of type system

Ensures consistency in reasoning
No artificial distinctions (e.g. strategy object ∼= function)
Programmer can work “under the hood” as necessary

34/63

Encoding

Reduces complexity of type system
Ensures consistency in reasoning

No artificial distinctions (e.g. strategy object ∼= function)
Programmer can work “under the hood” as necessary

34/63

Encoding

Reduces complexity of type system
Ensures consistency in reasoning
No artificial distinctions (e.g. strategy object ∼= function)

Programmer can work “under the hood” as necessary

34/63

Encoding

Reduces complexity of type system
Ensures consistency in reasoning
No artificial distinctions (e.g. strategy object ∼= function)
Programmer can work “under the hood” as necessary

34/63

Encoding

LittleBang

TinyBang

encode

Typechecking
Result

typecheck

35/63

Encoding

LittleBang

TinyBang

encode

Typechecking
Result

typecheck

35/63

Encoding

LittleBang

TinyBang

encode

Typechecking
Result

typecheck

35/63

Encoding

LittleBang

TinyBang

encode

Typechecking
Result

typecheck

35/63

TinyBang Language Features

Primitives (e.g. 5)

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions

fun int -> 0 matches any integer

fun x:int -> x is integer identity
(fun x:int -> x + 1) 4 returns 5
(fun x -> x + 1) "badness" crashes
(fun int -> 0) "badness" also crashes
fun ‘A x -> x removes an ‘A label

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions

fun int -> 0 matches any integer
fun x:int -> x is integer identity

(fun x:int -> x + 1) 4 returns 5
(fun x -> x + 1) "badness" crashes
(fun int -> 0) "badness" also crashes
fun ‘A x -> x removes an ‘A label

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions

fun int -> 0 matches any integer
fun x:int -> x is integer identity
(fun x:int -> x + 1) 4 returns 5

(fun x -> x + 1) "badness" crashes
(fun int -> 0) "badness" also crashes
fun ‘A x -> x removes an ‘A label

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions

fun int -> 0 matches any integer
fun x:int -> x is integer identity
(fun x:int -> x + 1) 4 returns 5
(fun x -> x + 1) "badness" crashes

(fun int -> 0) "badness" also crashes
fun ‘A x -> x removes an ‘A label

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions

fun int -> 0 matches any integer
fun x:int -> x is integer identity
(fun x:int -> x + 1) 4 returns 5
(fun x -> x + 1) "badness" crashes
(fun int -> 0) "badness" also crashes

fun ‘A x -> x removes an ‘A label

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]

“Normal” records: {Name="Ann", Age=43}

4 & "word" is an onion with an int and a str
Onions of labels: records/structs

‘Name "Ann" & ‘Age 43
Functions match onions by type

(fun ‘Name n -> n) (‘Name "Ann" & ‘Age 43)
returns "Ann"

Leftmost onion element wins
(fun ‘A x -> x) (‘A 2 & ‘B 3 & ‘A 4) returns 2

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]

“Normal” records: {Name="Ann", Age=43}
4 & "word" is an onion with an int and a str

Onions of labels: records/structs
‘Name "Ann" & ‘Age 43

Functions match onions by type
(fun ‘Name n -> n) (‘Name "Ann" & ‘Age 43)
returns "Ann"

Leftmost onion element wins
(fun ‘A x -> x) (‘A 2 & ‘B 3 & ‘A 4) returns 2

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]

“Normal” records: {Name="Ann", Age=43}
4 & "word" is an onion with an int and a str
Onions of labels: records/structs

‘Name "Ann" & ‘Age 43

Functions match onions by type
(fun ‘Name n -> n) (‘Name "Ann" & ‘Age 43)
returns "Ann"

Leftmost onion element wins
(fun ‘A x -> x) (‘A 2 & ‘B 3 & ‘A 4) returns 2

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]

“Normal” records: {Name="Ann", Age=43}
4 & "word" is an onion with an int and a str
Onions of labels: records/structs

‘Name "Ann" & ‘Age 43
Functions match onions by type

(fun ‘Name n -> n) (‘Name "Ann" & ‘Age 43)
returns "Ann"

Leftmost onion element wins
(fun ‘A x -> x) (‘A 2 & ‘B 3 & ‘A 4) returns 2

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]

“Normal” records: {Name="Ann", Age=43}
4 & "word" is an onion with an int and a str
Onions of labels: records/structs

‘Name "Ann" & ‘Age 43
Functions match onions by type

(fun ‘Name n -> n) (‘Name "Ann" & ‘Age 43)
returns "Ann"

Leftmost onion element wins
(fun ‘A x -> x) (‘A 2 & ‘B 3 & ‘A 4) returns 2

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]
Onion dispatch: leftmost function wins

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]
Onion dispatch: leftmost function wins

(int -> 0) & (char -> ’a’) matches int or char onions

((int -> 0) & (char -> ’a’)) (5) =⇒ 0
((int -> 0) & (char -> ’a’)) (’z’) =⇒ ’a’
((int -> 0) & (char -> ’a’)) (5 & ’z’) =⇒ 0
((int -> 0) & (char -> ’a’)) (‘A 5 & ‘B 4) crashes

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]
Onion dispatch: leftmost function wins

(int -> 0) & (char -> ’a’) matches int or char onions
((int -> 0) & (char -> ’a’)) (5) =⇒ 0

((int -> 0) & (char -> ’a’)) (’z’) =⇒ ’a’
((int -> 0) & (char -> ’a’)) (5 & ’z’) =⇒ 0
((int -> 0) & (char -> ’a’)) (‘A 5 & ‘B 4) crashes

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]
Onion dispatch: leftmost function wins

(int -> 0) & (char -> ’a’) matches int or char onions
((int -> 0) & (char -> ’a’)) (5) =⇒ 0
((int -> 0) & (char -> ’a’)) (’z’) =⇒ ’a’

((int -> 0) & (char -> ’a’)) (5 & ’z’) =⇒ 0
((int -> 0) & (char -> ’a’)) (‘A 5 & ‘B 4) crashes

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]
Onion dispatch: leftmost function wins

(int -> 0) & (char -> ’a’) matches int or char onions
((int -> 0) & (char -> ’a’)) (5) =⇒ 0
((int -> 0) & (char -> ’a’)) (’z’) =⇒ ’a’
((int -> 0) & (char -> ’a’)) (5 & ’z’) =⇒ 0

((int -> 0) & (char -> ’a’)) (‘A 5 & ‘B 4) crashes

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]
Onion dispatch: leftmost function wins

(int -> 0) & (char -> ’a’) matches int or char onions
((int -> 0) & (char -> ’a’)) (5) =⇒ 0
((int -> 0) & (char -> ’a’)) (’z’) =⇒ ’a’
((int -> 0) & (char -> ’a’)) (5 & ’z’) =⇒ 0
((int -> 0) & (char -> ’a’)) (‘A 5 & ‘B 4) crashes

36/63

TinyBang Language Features

Primitives (e.g. 5)
Labels (e.g. ‘A 5)
Partial functions
Onions: type-indexed records [?]
Onion dispatch: leftmost function wins
That’s it!

36/63

Why These Features?

Together, onions and partial functions can encode:

Records
Conditionals (on ‘True () and ‘False ())
Variant-based objects
Operator overloading
Classes, inheritance, subclasses, etc.
Mixins, dynamic functional object extension
First-class cases
Optional arguments
etc.

And we can type them!

37/63

Why These Features?

Together, onions and partial functions can encode:

Records
Conditionals (on ‘True () and ‘False ())
Variant-based objects
Operator overloading
Classes, inheritance, subclasses, etc.
Mixins, dynamic functional object extension
First-class cases
Optional arguments
etc.

And we can type them!

37/63

Why These Features?

Together, onions and partial functions can encode:

Records
Conditionals (on ‘True () and ‘False ())
Variant-based objects
Operator overloading
Classes, inheritance, subclasses, etc.
Mixins, dynamic functional object extension
First-class cases
Optional arguments
etc.

And we can type them!

37/63

Encoding Example

LittleBang
1 def inc(x,y=1):
2 return x + y
3 print inc(3,5)
4 print inc(7)

TinyBang
1 let inc = fun a * ‘x x ->
2 let y = ((fun ‘y v -> v)
3 & (fun _ -> 1)) a
4 in x + y
5 print (inc (‘x 3 & ‘y 5))
6 print (inc (‘x 7))

38/63

Encoding Example

LittleBang
1 def inc(x,y=1):
2 return x + y
3 print inc(3,5)
4 print inc(7)

TinyBang
1 let inc = fun a * ‘x x ->
2 let y = ((fun ‘y v -> v)
3 & (fun _ -> 1)) a
4 in x + y
5 print (inc (‘x 3 & ‘y 5))
6 print (inc (‘x 7))

38/63

Working Under the Hood

1 let obj = if somebool
2 then object {
3 m(s:str) = print(s)
4 }
5 else object {
6 inc(x:int) = x + 1
7 }
8 obj.m("hello") # static type error if no m
9

10 def dynamic(msg): throw MethodError()
11 (obj & dynamic).m("hello") # exception if no m

39/63

Working Under the Hood

1 let obj = if somebool
2 then
3 fun (‘msg ‘m () * ‘s (s * str)) -> print(s)
4

5 else
6 fun (‘msg ‘inc () * ‘x (x * int)) -> x + 1
7

8 obj (‘msg ‘m () & ‘s "hello") # static type error if no m
9

10 let dynamic = fun msg -> throw MethodError()
11 (obj & dynamic) (‘msg ‘m () & ‘s "hello") # exception if no m

39/63

What We Don’t Get

TinyBang is:
Aware of conditionals
Aware of calling context
Flexible on data

TinyBang isn’t:
Perfect on recursion
Modular
Aware of time

1 def c = 4
2 c = "hello"
3 (str -> "") c

No typestate
No mutable monkeypatching (use functional extension!)

40/63

What We Don’t Get

TinyBang is:
Aware of conditionals
Aware of calling context
Flexible on data

TinyBang isn’t:
Perfect on recursion
Modular
Aware of time

1 def c = 4
2 c = "hello"
3 (str -> "") c

No typestate
No mutable monkeypatching (use functional extension!)

40/63

What We Don’t Get

TinyBang is:
Aware of conditionals
Aware of calling context
Flexible on data

TinyBang isn’t:
Perfect on recursion
Modular
Aware of time

1 def c = 4
2 c = "hello"
3 (str -> "") c

No typestate
No mutable monkeypatching (use functional extension!)

40/63

What We Don’t Get

TinyBang is:
Aware of conditionals
Aware of calling context
Flexible on data

TinyBang isn’t:
Perfect on recursion
Modular
Aware of time

1 def c = 4
2 c = "hello"
3 (str -> "") c

No typestate

No mutable monkeypatching (use functional extension!)

40/63

What We Don’t Get

TinyBang is:
Aware of conditionals
Aware of calling context
Flexible on data

TinyBang isn’t:
Perfect on recursion
Modular
Aware of time

1 def c = 4
2 c = "hello"
3 (str -> "") c

No typestate
No mutable monkeypatching (use functional extension!)

40/63

Outline

Duck Type Inference
Conditional Reasoning

Filtered Types

Contextual Reasoning
Flexible Data Model
Formal Development
What’s Left?
Conclusion

41/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang
A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

Derive type constraints from program

e.g. x=5 implies αx ≥ int

Perform deductive logical closure

Reach every conclusion we can from what we’ve learned
Similar to running the program

Check consistency of result

If the program is bad, we will reach a false conclusion

42/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang

A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

Derive type constraints from program

e.g. x=5 implies αx ≥ int

Perform deductive logical closure

Reach every conclusion we can from what we’ve learned
Similar to running the program

Check consistency of result

If the program is bad, we will reach a false conclusion

42/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang
A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

Derive type constraints from program

e.g. x=5 implies αx ≥ int

Perform deductive logical closure

Reach every conclusion we can from what we’ve learned
Similar to running the program

Check consistency of result

If the program is bad, we will reach a false conclusion

42/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang
A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

Derive type constraints from program

e.g. x=5 implies αx ≥ int

Perform deductive logical closure

Reach every conclusion we can from what we’ve learned
Similar to running the program

Check consistency of result

If the program is bad, we will reach a false conclusion

42/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang
A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

LittleBang

TinyBang

encode

Typechecking
Result

typecheck

42/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang
A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

LittleBang

TinyBang

encode

Typechecking
Result

TinyBang
ANF

A-translate typecheck

42/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang
A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

Derive type constraints from program

e.g. x=5 implies αx ≥ int

Perform deductive logical closure

Reach every conclusion we can from what we’ve learned
Similar to running the program

Check consistency of result

If the program is bad, we will reach a false conclusion

42/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang
A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

Derive type constraints from program
e.g. x=5 implies αx ≥ int

Perform deductive logical closure

Reach every conclusion we can from what we’ve learned
Similar to running the program

Check consistency of result

If the program is bad, we will reach a false conclusion

42/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang
A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

Derive type constraints from program
e.g. x=5 implies αx ≥ int

Perform deductive logical closure

Reach every conclusion we can from what we’ve learned
Similar to running the program

Check consistency of result

If the program is bad, we will reach a false conclusion

42/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang
A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

Derive type constraints from program
e.g. x=5 implies αx ≥ int

Perform deductive logical closure
Reach every conclusion we can from what we’ve learned

Similar to running the program
Check consistency of result

If the program is bad, we will reach a false conclusion

42/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang
A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

Derive type constraints from program
e.g. x=5 implies αx ≥ int

Perform deductive logical closure
Reach every conclusion we can from what we’ve learned
Similar to running the program

Check consistency of result

If the program is bad, we will reach a false conclusion

42/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang
A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

Derive type constraints from program
e.g. x=5 implies αx ≥ int

Perform deductive logical closure
Reach every conclusion we can from what we’ve learned
Similar to running the program

Check consistency of result

If the program is bad, we will reach a false conclusion

42/63

Typechecking Process

To typecheck a LittleBang program:

Encode LittleBang operations into TinyBang
A-translate TinyBang into A-normal form

Like assembly language: lots of small steps

Derive type constraints from program
e.g. x=5 implies αx ≥ int

Perform deductive logical closure
Reach every conclusion we can from what we’ve learned
Similar to running the program

Check consistency of result
If the program is bad, we will reach a false conclusion

42/63

Synthesis
TinyBang type grammar is shallow (unusual)

e.g. α1\{‘Aα2 ≤ α1, int ≤ α2}
not ‘A int

Corresponds to A-normalized expression grammar
In general, correspondence between evaluation and type
systems

value ↔ type
clause ↔ constraint
expression ↔ constraint type
operational semantics rule ↔ constraint closure rule
evaluation ↔ constraint closure

Forms adjoint (as in abtract interpretation)
Proof of soundness: simulation rather than progress &
preservation
Difference: all facts gathered here are invariant

43/63

Synthesis
TinyBang type grammar is shallow (unusual)

e.g. α1\{‘Aα2 ≤ α1, int ≤ α2}
not ‘A int

Corresponds to A-normalized expression grammar

In general, correspondence between evaluation and type
systems

value ↔ type
clause ↔ constraint
expression ↔ constraint type
operational semantics rule ↔ constraint closure rule
evaluation ↔ constraint closure

Forms adjoint (as in abtract interpretation)
Proof of soundness: simulation rather than progress &
preservation
Difference: all facts gathered here are invariant

43/63

Synthesis
TinyBang type grammar is shallow (unusual)

e.g. α1\{‘Aα2 ≤ α1, int ≤ α2}
not ‘A int

Corresponds to A-normalized expression grammar
In general, correspondence between evaluation and type
systems

value ↔ type
clause ↔ constraint
expression ↔ constraint type
operational semantics rule ↔ constraint closure rule
evaluation ↔ constraint closure

Forms adjoint (as in abtract interpretation)
Proof of soundness: simulation rather than progress &
preservation
Difference: all facts gathered here are invariant

43/63

Synthesis
TinyBang type grammar is shallow (unusual)

e.g. α1\{‘Aα2 ≤ α1, int ≤ α2}
not ‘A int

Corresponds to A-normalized expression grammar
In general, correspondence between evaluation and type
systems

value ↔ type
clause ↔ constraint
expression ↔ constraint type
operational semantics rule ↔ constraint closure rule
evaluation ↔ constraint closure

Forms adjoint (as in abtract interpretation)

Proof of soundness: simulation rather than progress &
preservation
Difference: all facts gathered here are invariant

43/63

Synthesis
TinyBang type grammar is shallow (unusual)

e.g. α1\{‘Aα2 ≤ α1, int ≤ α2}
not ‘A int

Corresponds to A-normalized expression grammar
In general, correspondence between evaluation and type
systems

value ↔ type
clause ↔ constraint
expression ↔ constraint type
operational semantics rule ↔ constraint closure rule
evaluation ↔ constraint closure

Forms adjoint (as in abtract interpretation)
Proof of soundness: simulation rather than progress &
preservation

Difference: all facts gathered here are invariant

43/63

Synthesis
TinyBang type grammar is shallow (unusual)

e.g. α1\{‘Aα2 ≤ α1, int ≤ α2}
not ‘A int

Corresponds to A-normalized expression grammar
In general, correspondence between evaluation and type
systems

value ↔ type
clause ↔ constraint
expression ↔ constraint type
operational semantics rule ↔ constraint closure rule
evaluation ↔ constraint closure

Forms adjoint (as in abtract interpretation)
Proof of soundness: simulation rather than progress &
preservation
Difference: all facts gathered here are invariant

43/63

Proof of Soundness

Progress & Preservation

e0

τ0

` :

e1
−→

τ1

` :

≥

. . .

. . .=⇒

` :

44/63

Proof of Soundness

Progress & Preservation

e0

τ0

` :

e1
−→

τ1

` :

≥

. . .

. . .=⇒

` :

44/63

Proof of Soundness

Progress & Preservation

e0

τ0

` :

e1
−→

τ1

` :

≥

. . .

. . .=⇒

` :

44/63

Proof of Soundness

Progress & Preservation

e0

τ0

` :

e1
−→

τ1

` :

≥

. . .

. . .=⇒

` :

44/63

Proof of Soundness

Progress & Preservation

e0

τ0

` :

e1
−→

τ1

` :

≥

. . .

. . .=⇒

` :

44/63

Proof of Soundness

Progress & Preservation

e0

τ0

` :

e1
−→

τ1

` :

≥

. . .

. . .

=⇒

` :

44/63

Proof of Soundness

Simulation

e0

τ0

` :

e1
−→

τ1

` :

≥

. . .

. . .

=⇒

` :

44/63

Proof of Soundness

Simulation

e0

τ0

` :

e1
−→

τ1

` :

≥

. . .

. . .

=⇒

` :

44/63

Proof of Soundness

Simulation

e0

τ0

` :

e1
−→

τ1

` :

≥

. . .

. . .=⇒

` :

44/63

Not Shown Here

Union alignment invariants

The interesting encodings (dynamic mixins, subclasses, etc.)
Novel object extension properties [?]

45/63

Not Shown Here

Union alignment invariants
The interesting encodings (dynamic mixins, subclasses, etc.)

Novel object extension properties [?]

45/63

Not Shown Here

Union alignment invariants
The interesting encodings (dynamic mixins, subclasses, etc.)
Novel object extension properties [?]

45/63

Outline

Duck Type Inference
Conditional Reasoning

Filtered Types

Contextual Reasoning
Flexible Data Model
Formal Development
What’s Left?
Conclusion

46/63

What’s Left?

Current Research

Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints

Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus

Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research

Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints

Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus

Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research

Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures

First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints

Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus

Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research

Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions

Potentially solves modularity issues
Chronological constraints

Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus

Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research

Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints

Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus

Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research

Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints

Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus

Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research

Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints
Enable flow-sensitivity (awareness of time)

Possibly improves typechecking performance
Layout calculus

Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research

Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints
Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus

Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research

Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints
Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus

Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research

Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints
Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus
Hari’s dissertation focus

Efficient onion memory layout and dispatch

Future Research

Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints
Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus
Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research

Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints
Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus
Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research

Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints
Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus
Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research
Type error processing

Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints
Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus
Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research
Type error processing
Modularity

User-specified encodings / language features
Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints
Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus
Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research
Type error processing
Modularity
User-specified encodings / language features

Type-aware script metaprogramming

47/63

What’s Left?

Current Research
Function patterns (e.g. int ~> int)

Encode type signatures
First overloading of higher-order functions
Potentially solves modularity issues

Chronological constraints
Enable flow-sensitivity (awareness of time)
Possibly improves typechecking performance

Layout calculus
Hari’s dissertation focus
Efficient onion memory layout and dispatch

Future Research
Type error processing
Modularity
User-specified encodings / language features
Type-aware script metaprogramming

47/63

Outline

Duck Type Inference
Conditional Reasoning

Filtered Types

Contextual Reasoning
Flexible Data Model
Formal Development
What’s Left?
Conclusion

48/63

Conclusions

We can build a typed scripting language from scratch.

Subtype constraints allow for duck typing
Feature encodings keep type system simple

Asymmetry of onions allows encoding of subclasses,
overloading, etc.

Path-sensitivity (via onion dispatch) enables case-based
reasoning
Context-sensitivity (via call-site polymorphism) allows
complex, intuitive soundness arguments
Exploit connection to abstract interpretation while remaining
in type theory

49/63

Conclusions

We can build a typed scripting language from scratch.

Subtype constraints allow for duck typing
Feature encodings keep type system simple

Asymmetry of onions allows encoding of subclasses,
overloading, etc.

Path-sensitivity (via onion dispatch) enables case-based
reasoning
Context-sensitivity (via call-site polymorphism) allows
complex, intuitive soundness arguments
Exploit connection to abstract interpretation while remaining
in type theory

49/63

Conclusions

We can build a typed scripting language from scratch.

Subtype constraints allow for duck typing

Feature encodings keep type system simple

Asymmetry of onions allows encoding of subclasses,
overloading, etc.

Path-sensitivity (via onion dispatch) enables case-based
reasoning
Context-sensitivity (via call-site polymorphism) allows
complex, intuitive soundness arguments
Exploit connection to abstract interpretation while remaining
in type theory

49/63

Conclusions

We can build a typed scripting language from scratch.

Subtype constraints allow for duck typing
Feature encodings keep type system simple

Asymmetry of onions allows encoding of subclasses,
overloading, etc.

Path-sensitivity (via onion dispatch) enables case-based
reasoning
Context-sensitivity (via call-site polymorphism) allows
complex, intuitive soundness arguments
Exploit connection to abstract interpretation while remaining
in type theory

49/63

Conclusions

We can build a typed scripting language from scratch.

Subtype constraints allow for duck typing
Feature encodings keep type system simple

Asymmetry of onions allows encoding of subclasses,
overloading, etc.

Path-sensitivity (via onion dispatch) enables case-based
reasoning
Context-sensitivity (via call-site polymorphism) allows
complex, intuitive soundness arguments
Exploit connection to abstract interpretation while remaining
in type theory

49/63

Conclusions

We can build a typed scripting language from scratch.

Subtype constraints allow for duck typing
Feature encodings keep type system simple

Asymmetry of onions allows encoding of subclasses,
overloading, etc.

Path-sensitivity (via onion dispatch) enables case-based
reasoning

Context-sensitivity (via call-site polymorphism) allows
complex, intuitive soundness arguments
Exploit connection to abstract interpretation while remaining
in type theory

49/63

Conclusions

We can build a typed scripting language from scratch.

Subtype constraints allow for duck typing
Feature encodings keep type system simple

Asymmetry of onions allows encoding of subclasses,
overloading, etc.

Path-sensitivity (via onion dispatch) enables case-based
reasoning
Context-sensitivity (via call-site polymorphism) allows
complex, intuitive soundness arguments

Exploit connection to abstract interpretation while remaining
in type theory

49/63

Conclusions

We can build a typed scripting language from scratch.

Subtype constraints allow for duck typing
Feature encodings keep type system simple

Asymmetry of onions allows encoding of subclasses,
overloading, etc.

Path-sensitivity (via onion dispatch) enables case-based
reasoning
Context-sensitivity (via call-site polymorphism) allows
complex, intuitive soundness arguments
Exploit connection to abstract interpretation while remaining
in type theory

49/63

Thanks!

Scott F. Smith (advisor)
Alexander Rozenstheyn (collaborator)
Pottayil Harisanker Menon (collaborator)
Rebekah Palmer (wife, best friend)
JHU Computer Science Department
All those people who did all that research

50/63

Questions?

51/63

Bibliography

52/63

Typechecking Example

53/63

Typechecking by Example

First, we will typecheck this program:
1 let b = . . .
2 1 + 2 + (if b then 5 else 1)

3

Then, we will typecheck this program:
1 let b = . . .
2 1 + 2 + (if b then ’z’ else 1) 7

54/63

Typechecking by Example

First, we will typecheck this program:
1 let b = . . .
2 1 + 2 + (if b then 5 else 1)

3

Then, we will typecheck this program:
1 let b = . . .
2 1 + 2 + (if b then ’z’ else 1)

7

54/63

Encoding and A-normalization

55/63

Preparing to Typecheck

LittleBang 1 let b = . . .
2 1 + 2 + (if b then 5 else 1)

TinyBang
1 let b = . . . in
2 1 + 2 + (((‘True () -> 5)
3 &(‘False () -> 1)) b)

TinyBang
ANF

1 b = . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = + x1 x2;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

56/63

Preparing to Typecheck

LittleBang 1 let b = . . .
2 1 + 2 + (if b then 5 else 1)

TinyBang
1 let b = . . . in
2 1 + 2 + (((‘True () -> 5)
3 &(‘False () -> 1)) b)

TinyBang
ANF

1 b = . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = + x1 x2;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

56/63

Preparing to Typecheck

LittleBang 1 let b = . . .
2 1 + 2 + (if b then 5 else 1)

TinyBang
1 let b = . . . in
2 1 + 2 + (((‘True () -> 5)
3 &(‘False () -> 1)) b)

TinyBang
ANF

1 b = . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = + x1 x2;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

56/63

An Aside: Execution

1 b = . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = + x1 x2;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

57/63

An Aside: Execution

1 b = . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = 3;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

57/63

An Aside: Execution

1 b = ‘False . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = 3;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

57/63

An Aside: Execution

1 b = ‘False . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = 3;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

57/63

An Aside: Execution

1 b = ‘False . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = 3;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

57/63

An Aside: Execution

1 b = ‘False . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = 3;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

57/63

An Aside: Execution

1 b = ‘False . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = 3;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

57/63

An Aside: Execution

1 b = ‘False . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = 3;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 r2’ = 1; x7 = r2’;
9 x8 = + x3 x7;

57/63

An Aside: Execution

1 b = ‘False . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = 3;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 r2’ = 1; x7 = r2’;
9 x8 = + x3 x7;

57/63

An Aside: Execution

1 b = ‘False . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = 3;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 r2’ = 1; x7 = 1;
9 x8 = + x3 x7;

57/63

An Aside: Execution

1 b = ‘False . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = 3;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 r2’ = 1; x7 = 1;
9 x8 = 4;

57/63

Initial Alignment

1 b = . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = + x1 x2;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = 5 };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

Replace primitive data with its type
Convert to constraints (for e.g. duck typing)

58/63

Initial Alignment

1 b = . . .;
2 x1 = int;
3 x2 = int;
4 x3 = + x1 x2;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = int };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = int };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

Replace primitive data with its type

Convert to constraints (for e.g. duck typing)

58/63

Initial Alignment


αb ≥ ‘True . . . , αb ≥ ‘False . . . ,
αx1 ≥ int ,
αx2 ≥ int ,
αx3 ≥ + αx1 αx2,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int},
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,
αx8 ≥ + αx3 αx7,



Replace primitive data with its type
Convert to constraints (for e.g. duck typing)

58/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2,

αx3 ≥ int,

αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int},

αr1’ ≥ int,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2,

αx3 ≥ int,

αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int},

αr1’ ≥ int,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int},

αr1’ ≥ int,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int},

αr1’ ≥ int,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int},

αr1’ ≥ int,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int},

αr1’ ≥ int,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int},

αr1’ ≥ int,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int}, αr1’ ≥ int,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ int,

αx7 ≥ αr1’,

αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int}, αr1’ ≥ int,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ int,

αx7 ≥ αr1’,

αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int}, αr1’ ≥ int,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ int,

αx7 ≥ αr1’,

αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int}, αr1’ ≥ int,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ int,

αx7 ≥ αr1’,

αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int}, αr1’ ≥ int,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ int,

αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int}, αr1’ ≥ int,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb, αx7 ≥ int, αx7 ≥ αr1’,

αx7 ≥ αr2’,
αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int}, αr1’ ≥ int,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb, αx7 ≥ int, αx7 ≥ αr1’,

αx7 ≥ αr2’,
αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int}, αr1’ ≥ int,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb, αx7 ≥ int, αx7 ≥ αr1’,

αx7 ≥ αr2’,
αx8 ≥ + αx3 αx7

, αx8 ≥ int



3

59/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int}, αr1’ ≥ int,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb, αx7 ≥ int, αx7 ≥ αr1’,

αx7 ≥ αr2’,
αx8 ≥ + αx3 αx7, αx8 ≥ int



3

59/63

Check Consistency



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ int}, αr1’ ≥ int,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb, αx7 ≥ int, αx7 ≥ αr1’,

αx7 ≥ αr2’,
αx8 ≥ + αx3 αx7, αx8 ≥ int


3

59/63

Typechecking by Example

First, we will typecheck this program:
1 let b = . . .
2 1 + 2 + (if b then 5 else 1) 3

Then, we will typecheck this program:
1 let b = . . .
2 1 + 2 + (if b then ’z’ else 1)

7

60/63

Initial Alignment

1 b = . . .;
2 x1 = 1;
3 x2 = 2;
4 x3 = + x1 x2;
5 x4 = { p1 = (); p2 = ‘True p1 } -> { r1 = ’z’ };
6 x5 = { p3 = (); p4 = ‘False p3 } -> { r2 = 1 };
7 x6 = x4 & x5;
8 x7 = x6 b;
9 x8 = + x3 x7;

Same as last time, but with a char

61/63

Initial Alignment



αb ≥ ‘True . . . , αb ≥ ‘False . . . ,
αx1 ≥ int ,
αx2 ≥ int ,
αx3 ≥ + αx1 αx2,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char},
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,
αx8 ≥ + αx3 αx7,



Same as last time, but with a char

61/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2,

αx3 ≥ int,

αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char},

αr1’ ≥ char,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ char, αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2,

αx3 ≥ int,

αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char},

αr1’ ≥ char,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ char, αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char},

αr1’ ≥ char,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ char, αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char},

αr1’ ≥ char,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ char, αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char},

αr1’ ≥ char,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ char, αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char},

αr1’ ≥ char,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ char, αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char},

αr1’ ≥ char,

αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ char, αx7 ≥ int, αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char}, αr1’ ≥ char,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ char, αx7 ≥ int,

αx7 ≥ αr1’,

αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char}, αr1’ ≥ char,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ char, αx7 ≥ int,

αx7 ≥ αr1’,

αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char}, αr1’ ≥ char,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ char, αx7 ≥ int,

αx7 ≥ αr1’,

αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char}, αr1’ ≥ char,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int},

αr2’ ≥ int,

αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ char, αx7 ≥ int,

αx7 ≥ αr1’,

αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char}, αr1’ ≥ char,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb,

αx7 ≥ char, αx7 ≥ int,

αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char}, αr1’ ≥ char,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb, αx7 ≥ char,

αx7 ≥ int,

αx7 ≥ αr1’,
αx7 ≥ αr2’,

αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char}, αr1’ ≥ char,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb, αx7 ≥ char, αx7 ≥ int, αx7 ≥ αr1’,

αx7 ≥ αr2’,
αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char}, αr1’ ≥ char,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb, αx7 ≥ char, αx7 ≥ int, αx7 ≥ αr1’,

αx7 ≥ αr2’,
αx8 ≥ + αx3 αx7

, αx8 ≥ int



7

62/63

Perform Constraint Closure



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char}, αr1’ ≥ char,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb, αx7 ≥ char, αx7 ≥ int, αx7 ≥ αr1’,

αx7 ≥ αr2’,
αx8 ≥ + αx3 αx7, αx8 ≥ int



7

62/63

Check Consistency



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char}, αr1’ ≥ char,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb, αx7 ≥ char, αx7 ≥ int, αx7 ≥ αr1’,

αx7 ≥ αr2’,
αx8 ≥ + αx3 αx7, αx8 ≥ int



7

62/63

Check Consistency



αb ≥ ‘True . . ., αb ≥ ‘False . . .,
αx1 ≥ int,
αx2 ≥ int,
αx3 ≥ + αx1 αx2, αx3 ≥ int,
αx4 ≥ {αp1 ≥ () , αp2 ≥ ‘Trueαp1} → {αr1 ≥ char}, αr1’ ≥ char,
αx5 ≥ {αp3 ≥ () , αp4 ≥ ‘Falseαp3} → {αr2 ≥ int}, αr2’ ≥ int,
αx6 ≥ αx4 &αx5,
αx7 ≥ αx6 αb, αx7 ≥ char, αx7 ≥ int, αx7 ≥ αr1’,

αx7 ≥ αr2’,
αx8 ≥ + αx3 αx7, αx8 ≥ int


7

62/63

Typechecking by Example

First, we will typecheck this program:
1 let b = . . .
2 1 + 2 + (if b then 5 else 1) 3

Then, we will typecheck this program:
1 let b = . . .
2 1 + 2 + (if b then ’z’ else 1) 7

63/63

