
Building a Typed Scripting Language

by

Zachary Palmer

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

May, 2015

c© Zachary Palmer 2015

All rights reserved

Abstract

Since the 1990s, scripting languages (e.g. Python, Ruby, JavaScript, and

many others) have gained widespread popularity. Features such as ad-hoc data ma-

nipulation, dynamic structural typing, and terse syntax permit rapid engineering

and improve developer productivity. Unfortunately, programs written in scripting

languages execute slower and are less scalable than those written in traditional lan-

guages (such as C or Java) due to the challenge of statically analyzing scripting

languages’ semantics. Although various research projects have made progress on this

front, corner cases in the semantics of existing scripting languages continue to defy

static analysis and software engineers must generally still choose between program

performance and programmer performance when selecting a language.

We address that dichotomy in this dissertation by designing a scripting lan-

guage with the intent of statically analyzing it. We select a set of core primitives

in which common language features such as object-orientation and case analysis can

be encoded and give a sound and decidable type inference system for it. Our type

theory is based on subtype constraint systems but is also closely related to abstract

ii

ABSTRACT

interpretation; we use this connection to guide development of the type system and

to employ a novel type soundness proof strategy based on simulation.

At the heart of our approach is a type indexed record we call the onion which

supports asymmetric concatenation and dispatch; we use onions to formally encode

a variety of features, including records, operator overloading, objects, and mixins.

An optimistic call-site polymorphism model defined herein captures the ad-hoc, case-

analysis-based reasoning often used in scripting languages. Although the language in

this dissertation uses a particular set of core primitives, the strategy we use to design

it is general: we demonstrate a simple, formulaic process for adding features such as

integers and state.

iii

Acknowledgements

First and foremost I thank my advisor, Dr. Scott Smith, who is one of the most
patient and nurturing people I have ever met. The opportunity to study under him – a gift
by which I had no means earned – is among the greatest experiences of my life. I could
never have hoped for such a fine educator.

The other contributors to this work, direct and indirect, are many; I am but one
author of this work and the beneficiary of their assistance and generosity. I give my thanks
to the most influential here:

Rebekah Palmer: my closest friend, wife, and resident mathematician, whose company
and understanding have made me whole and happy once again;

Alex Rozenstheyn and Hari Menon: my friends and peers, whose keen intellect and
feedback were invaluable in my education;

Barbara and Staymon Palmer: my grandparents, who raised me to a sound mind and
body and were there for me in my worst;

Grace Palmer: my sister, childhood defender, and lifetime deus ex machina;

Carolyn Jeffers: a dear friend from another time, who cultivated the best of me and
has not been forgotten.

To the above and to all the others who have brought me to this point: thank you.
I am deeply grateful.

iv

Contents

Abstract ii

Acknowledgements iv

List of Figures x

List of Notations xi

List of Definitions xii

List of Theorems xiv

1 Introduction 1

1.1 What is a “Scripting Language?” . 2

1.2 Existing Work . 3

1.3 Our Approach: The *Bang Family . 6

1.4 Outline . 10

2 Overview 12

2.1 TinyBang Syntax . 12

2.2 Conditionals: A Simple Exercise in Compound Functions 13

v

CONTENTS

2.3 Overloading . 15

2.4 Onions as Function Arguments . 15

2.5 Sanitized Strings: Using Labels as Tags . 18

2.6 Dynamic Object-Oriented Semantics . 19

3 Formalization 26

3.1 Notation . 26

3.2 A-Normalized Form . 27

3.3 Well-Formed Expressions . 29

3.4 Operational Semantics . 32

3.4.1 Compatibility . 32

3.4.2 Matching . 42

3.4.3 Small Step Evaluation . 45

3.5 Type System . 47

3.5.1 Initial Alignment . 49

3.5.2 Definitions for Alignment . 50

3.5.3 Compatibility . 53

3.5.4 Application Matching . 59

3.5.5 Constraint Closure . 62

4 Proof of Soundness 67

4.1 Proof Strategy . 67

4.2 Simulation . 69

4.3 Initial Alignment . 73

vi

CONTENTS

4.4 Compatibility . 74

4.5 Matching . 80

4.6 Polyinstantiation . 80

4.7 Preservation . 82

4.8 Stuck Simulation . 86

4.9 Proof of Soundness . 89

5 Proof of Decidability 91

5.1 Polymorphism . 92

5.2 Decidability Theorem . 92

5.3 Conventions . 93

5.4 Finite Variables . 93

5.5 Finite Types . 95

5.6 Decidable Compatibility . 97

5.7 Decidable Matching . 103

5.8 Decidable Constraint Closure . 105

5.9 Closure Convergence . 105

5.10 Proving Decidability . 110

6 Polymorphism in TinyBang 111

6.1 Motivating CR . 111

6.2 The Definition of CR . 112

6.3 Finite Freshening of CR . 116

6.4 Computability of CR . 118

vii

CONTENTS

6.5 The Expressiveness of CR . 119

7 Built-Ins 122

7.1 Environment . 122

7.2 Framework . 123

7.3 Integers and Addition . 124

7.4 State . 126

8 LittleBang 128

8.1 The Encoding Process . 128

8.2 Booleans . 129

8.3 Records . 131

8.4 Lists . 132

8.5 Functions and Application . 133

8.6 Objects . 138

8.7 Classes . 142

9 Implementation 144

9.1 Complete Closure is Sufficient . 145

9.2 Variable Replacement . 147

9.3 Current and Future Design . 148

10 Related Work 150

10.1 Onions . 150

10.2 Dispatch . 151

viii

CONTENTS

10.3 Polymorphism . 153

10.4 Object-Orientation . 153

10.5 Static Analysis Techniques . 154

10.6 Dynamic Analysis . 155

10.7 CDuce . 156

11 Future Work 159

11.1 Pattern Expressiveness . 159

11.2 Separate Compilation . 161

11.3 Performance . 162

11.4 Type Errors . 163

11.5 Flow Sensitivity . 164

12 Conclusions 166

Bibliography 168

Cirriculum Vitae 177

ix

List of Figures

1.1 Chapter Dependencies . 11

2.1 TinyBang Syntax . 13

3.1 TinyBang ANF Grammar . 28
3.2 TinyBang A-Translation . 28
3.3 TinyBang Operational Semantics Grammar 32
3.4 Value Compatibility (Revision 1) . 33
3.5 Value Compatibility (Revision 2) . 34
3.6 Value Compatibility (Revision 3) . 36
3.7 Value Compatibility (Revision 4) . 37
3.8 Value Compatibility . 39
3.9 Example Proof of Value Compatibility . 43
3.10 Value Application Relation . 44
3.11 Small Step Evaluation . 47
3.12 Type Grammar . 49
3.13 Initial Alignment . 50
3.14 Type Compatibility . 54
3.15 Type Application Matching Relation . 61
3.16 Type Constraint Closure . 64

4.1 Bisimulation relation . 70
4.2 Simulation relation . 71

5.1 Decidability Type Grammar Extensions . 92

7.1 Built-In Framework Operational Semantics Additions 123
7.2 Built-In Framework Type System Additions 123
7.3 Built-In Integer Operational Semantics Additions 124
7.4 Built-In Integer Type System Additions . 125
7.5 Built-In State Operational Semantics Additions 126
7.6 Built-In State Type System Additions . 127

8.1 LittleBang Basic Syntax . 129
8.2 Function Definition Encoding . 135

x

List of Notations

3.1 Notation (Algebraic Notation) . 26
3.2 Notation (Pattern Root Sugar) . 29
3.3 Notation (Pattern Construction Sugar) . 29
3.12 Notation (Variable Replacement) . 46
3.21 Notation (Type Root Sugar) . 52
3.22 Notation (Pattern Type Constructor Sugar) 52
3.27 Notation (Nested Types) . 55
3.30 Notation (Type Variable Replacement) . 62

6.3 Notation (Contours) . 114

9.1 Notation (Complete Closure) . 145

xi

List of Definitions

3.4 Definition (Filter Rule Variable Appearances) 29
3.5 Definition (Pattern Well-Formedness) . 30
3.6 Definition (Bound and Free Variables) . 30
3.7 Definition (Well-Formed Expression) . 31
3.8 Definition (Constructor Pattern) . 34
3.9 Definition (Value Compatibility) . 38
3.10 Definition (Value Application Matching) . 44
3.11 Definition (Variable Freshening) . 45
3.13 Definition (Binding Freshening) . 46
3.14 Definition (Return Variable) . 46
3.15 Definition (Small Step Operational Semantics) 46
3.16 Definition (Multiple Small Steps) . 47
3.17 Definition (Stuck) . 47
3.18 Definition (Initial Alignment Variables) . 50
3.19 Definition (Initial Alignment) . 50
3.20 Definition (Bound and Free Type Variables) 51
3.23 Definition (Constructor Pattern Type) . 52
3.24 Definition (Filter Constraint Variable Appearances) 52
3.25 Definition (Pattern Type Well-Formedness) 52
3.26 Definition (Type Compatibility) . 53
3.28 Definition (Sensible Types) . 60
3.29 Definition (Type Application Matching) . 60
3.31 Definition (Binding Type Freshening) . 63
3.32 Definition (Monomorphic Model) . 63
3.33 Definition (Constraint Closure) . 64
3.34 Definition (Multiple Constraint Closure) . 64
3.35 Definition (Inconsistency) . 65
3.36 Definition (Typechecking) . 65

4.1 Definition (Bisimulation) . 69
4.2 Definition (Simulation) . 71
4.10 Definition (Pattern Depth) . 73
4.15 Definition (Binding Simulation) . 78
4.21 Definition (Fresh Variable Ordering) . 83

xii

LIST OF DEFINITIONS

4.25 Definition (Maximal Environment) . 85

5.1 Definition (Finitely Freshening) . 92
5.2 Definition (Type Variable Bounding Set) . 94
5.6 Definition (Type Bounding Set) . 95
5.10 Definition (Pattern Type Depth) . 97
5.11 Definition (All-Points Function) . 97
5.16 Definition (Compatibility Bounding Sets) 98
5.19 Definition (Compatibility Proof Height Bound) 101
5.22 Definition (Matching Bounding Sets) . 103
5.24 Definition (Matching Proof Height Bound) 104
5.29 Definition (Closure Bounding Sets) . 106

6.1 Definition (Contour) . 113
6.2 Definition (Well-Formed Contour) . 113
6.4 Definition (Type Variable Descriptor) . 114
6.5 Definition (Contour Partial Ordering) . 114
6.7 Definition (Initial Alignment Bijection) . 115
6.8 Definition (Polyinstantiation for CR) . 115
6.9 Definition (Merging for CR) . 116
6.10 Definition (Freshness Bounding for CR) . 117

7.1 Definition (Bound and Free Variables (Revised)) 122
7.2 Definition (Inconsistency) . 124
7.3 Definition (Operational Semantics of Addition) 124
7.4 Definition (Typing of Addition) . 125
7.5 Definition (Operational Semantics of Assignment) 126
7.6 Definition (Typing of Assignment) . 127

9.2 Definition (Monotonic Merging) . 145

xiii

List of Theorems

1 Theorem (Soundness) . 67

2 Theorem (Decidability) . 92

3 Theorem (CR is Finitely Freshening) . 118

xiv

Chapter 1

Introduction

Scripting languages such as Python, Ruby, and JavaScript have seen widespread
adoption since the 1990s in large part because they improve developer productivity. Script-
ing languages provide a high level of abstraction and very terse syntax which allow the rapid
expression of complex algorithms. Unfortunately, this comes at a cost: while there exist few
broad, formal studies of the performance difference between scripting languages and their
more traditional counterparts such as C and Java, informal benchmarks (e.g. [63]) suggest
that scripts typically execute at least an order of magnitude slower and most researchers
would agree that the gap is significant.

This performance difference is due in part to the fact that scripting languages
are notoriously hard to statically analyze as a result of their abstract and flexible nature;
it has been shown [58], for instance, that real world JavaScript programs are surprisingly
dynamic, routinely modifying object definitions at runtime and relying heavily on complex
contextual invariants. Several projects [69, 31, 66, 56] attempt to retrofit type systems and
other static analyses onto existing scripting languages and a considerable body of research
has been developed around the topic. This challenge of static analysis also presents scripting
languages with scalability problems: with fewer detailed analyses available, debugging is
more challenging and refactoring and feature implementation are more error prone.

This problem in static analysis is not pervasive or inherent in the nature of scripting
languages; several of the projects cited above note that only a few features of scripting
languages, such as the oft-incriminated eval function, are responsible. As a result, a partial
typechecking of a script can be accomplished with gradual typing [64]. Such measures are
only necessary, however, because the language contains semantics which were added to the

1

CHAPTER 1. INTRODUCTION

language without static analysis in mind and, as it happens, are not strictly necessary to give
a scripting language its abstract, flexible, and productive properties. In this dissertation,
we show that it is possible to construct a language which has the static analyzability of
traditional languages and the flexibility of scripting languages.

1.1 What is a “Scripting Language?”

This dissertation focuses on a process by which a typed scripting language may be
developed. “Scripting language,” much like “functional language” or “object-oriented lan-
guage,” is something of an amorphous phrase: while it is easy for most computer scientists
to decide if a given language is a scripting language, the decision process itself is difficult
to articulate. Nevertheless, the term is used at the time of this writing to denote at least
the following informal properties:

• Minimal redundancy. The syntax of a scripting language is terse. Type signatures
are rarely required (and often aren’t permitted at all), variable declarations aren’t
typically necessary, and a wide variety of operators are available to express common
non-trivial operations (such as sublist deletion). This terse nature extends to the
semantics as well: interface declarations, for instance, are obviated by structural
subtyping (often known as “duck typing”) and common programming patterns are
captured with functional abstractions or metaprogramming.

• Flexible definitions. Scripting languages treat definitions in a fluid fashion. Python,
for instance, permits the dynamic addition of methods and fields to classes and objects.
Code modules are typically first class and often allow their members to be redefined or
decorated. Flow control is subject to this flexibility as well: core language semantics
can be redefined by a programmer’s code (such as exception handling in Ruby or failed
method dispatch in numerous languages).

• Dynamic typing. Due in part to the above, scripting languages are challenging to
statically type. Instead, scripting languages perform dynamic typing checks during
evaluation (to preserve the sanity of the runtime environment). Simple static analy-
sis tools (“delinters”) are used to detect simple probable bugs and style errors. An
emphasis on documentation and unit testing compensates for the requirement that
programmers establish and maintain program invariants manually.

Although the above properties are far from a formal definition of scripting lan-
guages, they do allow us to pronounce many languages as either scripting languages or
not. Python, Ruby, and JavaScript, for instance, are scripting languages: all three strongly

2

CHAPTER 1. INTRODUCTION

demonstrate the properties listed above. Java and C++ are clearly not scripting languages:
both require explicit interface declarations and type signatures and do not allow ad-hoc
manipulation of data structures. Given the above, we would also say that Haskell is not a
scripting language; although it demonstrates some of the functional abstraction properties
described above and has type inference, it also lacks ad-hoc data manipulation.

In this document, we specify a “typed scripting language”: a language which has
the first two properties above but which is statically typed. Because we desire minimal
redundancy, we require the system to provide total type inference: a programmer should
never be required to write a type signature. Section 1.2 will briefly review existing work;
Section 1.3 will discuss our strategy for defining such a language.

While the above properties are those on which we focus in this dissertation, the
term “scripting language” is often used in another sense: to describe languages suitable
for writing “glue code” which is largely responsible for controlling other applications or
for wiring other applications together. VisualBasic and bash are examples of languages
which fit into this category; other shell languages are also fine examples. While minimal
redundancy and flexible definitions make languages like Python and Ruby more suited
to application control and wiring that traditional languages like C and C++, they are still
designed primarily as application programming languages. Although we recognize the “glue
code” definition of the term “scripting language,” this document does not use the term in
that sense.

1.2 Existing Work

A considerable body of research has been devoted to statically typing scripting
languages. That research has enjoyed a measure of success and has been instrumental in
guiding some of the designs and decisions found here. We briefly discuss that research to
provide context and to illustrate why it is insufficient for our purposes.

1.2.1 Retrofitting a Full Static Type System

Several early projects attempted to overlay a typechecker onto an existing dynamically-
typed language [35, 11, 1, 29], but none of these approaches were widely adopted. This is
in large part because the very design decisions which led to an elegant and flexible dynamic
language also impede static typing. One obvious example is the scope of mutability. It is
well-known that limiting the scope of mutation is critical to support flexible subtyping, but
scripting languages allow mutation nearly everywhere.

Beyond the problem of language design is the fact that dynamically-typed lan-

3

CHAPTER 1. INTRODUCTION

guages in the hands of programmers can produce code that is far more convoluted than
the language designers intended. In [58], the authors analyze a large set of real JavaScript
programs and conclude that, contrary to common beliefs regarding the static analyzability
of scripting languages, the dynamism in the language is fundamental and widely used: call
sites are likely to be polymorphic, object properties are modified or deleted regularly, func-
tion types are variadic, and so on. Consider the following example from the Dojo JavaScript
framework:

1 onto : function(arr, obj, f){

2 if(!f){

3 arr.push(obj);

4 } else if(f) {

5 var func = (typeof f == "string") ? obj[f] : f;

6 arr.push(function(){ func.call(obj); });

7 }

8 }

The meaning of this function is well-explained by the authors of System D [17], who
derive a simplified example from it to showcase the difficulty of statically typing scripting
languages. From that paper:

The function onto is used to register callback functions to be called after the
DOM and required library modules have finished loading. The author of onto
went to great pains to make it extremely flexible in the kinds of arguments it
takes. If the obj parameter is provided but f is not, then obj is the function to
be called after loading. Otherwise, both f and obj are provided, and either: (a)
f is a string, obj is a dictionary, and the (function) value corresponding to key
f in obj is called with obj as a parameter after loading; or (b) f is a function
to be called with obj as a parameter after loading.

Statically typing this form of case-analysis-driven logic proves to be difficult. The
authors of [17] present a core calculus which is capable of typechecking code of similar
dynamic complexity, but the resulting work yields an inference algorithm which is only
local and which cannot infer polymorphic types.

At the time of this writing, probably the most successful attempt to statically
type an existing scripting language is the DRuby project [31]. The DRuby system is a
sophisticated application of subtype constraint theory which includes union and intersection
types, local flow-sensitive analysis, and other techniques designed to capture the behavior
of existing Ruby source code. Despite being the most complete result thus far, DRuby is
neither sound nor complete: some unsound programs are admitted by the type checker and

4

CHAPTER 1. INTRODUCTION

some valid programs are rejected. DRuby does not typecheck the Ruby API because some
functions such as flatten (the type of the function which recursively collapses a list such
that e.g. [1,[[2,3],4]] becomes [1,2,3,4]) do not have finite types in DRuby’s type
system. DRuby also requires type annotations on polymorphic functions. Although DRuby
was capable of typechecking several open source Ruby libraries with little to no modification,
the problems described here illustrate the fundamental challenges in retrofitting a type
system onto a mature scripting language.

1.2.2 Gradual Typing

Another common strategy is to statically type only part of the scripting language,
using gradual typing [64] to bridge the gap between typed code and untyped code. Typed
Racket [66], for instance, distinguishes between Typed Racket modules and (untyped)
Racket modules. The syntax of Typed Racket is largely compatible with Racket, but type
signatures are required on top-level members. The compiler then inserts the appropriate
dynamic checks at the boundary between typed and untyped modules, giving the guarantees
and benefits of static typing to the modules which include static type information. While
Typed Racket does relax the boundary between statically typed and dynamically typed
code, its approach is not compatible with our objectives: it requires the programmer to
write type signatures, which (other than for purposes of checking or documentation) script
programmers perceive as redundant.

Some projects use gradual typing without requiring type signatures; TypeScript
[19] is an example of such a language. TypeScript is a superset of JavaScript which permits
(but does not require) type annotations, defines a structural subtyping relation on objects,
and infers types wherever possible. These properties of TypeScript are desirable and the
language has proven itself in practice to some degree, but TypeScript’s type system is not
sound. This unsoundness is intentional as, in some cases, it allows existing JavaScript
programs and libraries to be annotated with TypeScript signatures without rewriting a
considerable amount of code. By introducing this unsoundness, however, the designers of
TypeScript were able to ignore subtle issues of parametricity which are non-trivial to solve.
A deeper analysis of the TypeScript type system is difficult as, at the time of this writing,
it is not formally specified.

Regardless of the particular strategy used, gradual typing presents a problem when
our objectives are considered: fundamentally, gradual typing systems are designed to allow
dynamically typed code to link with statically typed code in such a way that the invariants
of the latter are preserved. While this is a useful strategy for dealing with existing languages,
it does not provide a complete static analysis and so prohibits certain optimizations and

5

CHAPTER 1. INTRODUCTION

runtime guarantees from being utilized. In a sense, gradual typing permits us to avoid
static typing for the problematic portion of the language; while this allows us to statically
type more of our program than we could with a purely dynamic system, it is not a complete
solution.

1.3 Our Approach: The *Bang Family

The approaches discussed above all share a common trait: they are attempting to
add static typing to an existing scripting language. These languages are designed for dy-
namic behavior with no consideration for static analysis in mind. There is considerable mo-
tivation to do so: as there is already a significant volume of code written in these languages,
any improvement on the situation has immediate and widespread benefits. Unfortunately,
it also serves as a metaphorical ball and chain, since the semantics of the scripting language
may be impossible to statically capture in a desirable way.

With that in mind, we instead approach this problem by defining a scripting
language from scratch. We include in this language only those semantics we can effectively
typecheck, but we make sure to include those necessary to express common scripting idioms.
For instance, our design does not support object mutation, but it permits object functional
extension which achieves many of the same goals. This set of semantics was not selected
a priori; it is the result of numerous iterations of the language development process we
illustrate in this document and refinements based on practical observation of what was and
was not possible in each variation.

In order to keep the language definition manageable, we do not simply define a
single programming language and type system with all of the language features (classes,
mixins, higher-order functions, etc.) that we desire. We instead develop a core script-
ing language called TinyBang over a small calculus in which the semantics we desire can
be encoded. We then define LittleBang, a language including common scripting features
and conforming to our requirements of minimal redundancy and flexibility, in terms of a
desugaring procedure which yields TinyBang code.1 Although encoding existing scripting
language features into TinyBang is a significant motivator in our work, TinyBang’s core
semantics are interesting in their own right due to their expressiveness.

To give a sense of how this process works, we now give an outline of the semantics of
TinyBang. We use informal, ML-like syntax here; we discuss the actual syntax of TinyBang
in Section 2. We ask readers to bear in mind that the following semantics are statically

1These languages are part of the BigBang research project. The eventual goal of that project (which is
beyond the scope of this dissertation) is to define a full-fledged production-ready scripting language which
includes user-defined syntax extensions, efficient compilation tools, metaprogramming facilities, and a pony.

6

CHAPTER 1. INTRODUCTION

typable, which we demonstrate in Section 3.5.

1.3.1 Onions and Asymmetric Concatenation

Existing scripting languages, especially object-oriented scripting languages, rely
heavily on the use of dictionary structures.2 It is natural, then, to create a typed scripting
language by beginning with a typed dictionary structure. In TinyBang, we satisfy this
requirement with a primitive data structure we call an onion.

A TinyBang onion is a type-indexed record [61]. The elements of type-indexed
records are labeled by their types rather than explicit names. Informally, one can consider
the type-indexed record {5, ’z’, "hello"} which contains three elements: an integer,
a character, and a string. Projection from this record is by type; for instance, {5, ’z’,

"hello"}.int would evaluate to 5. Traditional records are easily encoded using a label
constructor (which functions much like a Haskell newtype): {foo = 5, 7} is a record
containing an integer (7) and a foo-labeled integer (foo = 5). Because records are type-
indexed, we can choose not to distinguish between records and non-records: we perceive 5

as an onion (type-indexed record) containing a single integer.
TinyBang, like other scripting languages, does not require variables to be fixed at

a particular type. A single variable may contain an integer at one point and a string at
another; the type system will infer an appropriate union type. A variant type can then be
expressed as a variable to which multiple different types can be assigned. A normal variable
(one which is assigned from only one type) is then essentially a 1-ary variant. As a result,
a 1-ary variant and a 1-ary record in TinyBang have the same representation. In this way,
onions serve as TinyBang’s common data type (similar to the role of lists in LISP or objects
in Ruby or Smalltalk); that is, everything is an onion.

Onions in TinyBang support asymmetric concatenation via the onioning opera-
tor &. Informally, evaluating {foo = 54, bar = 3} & {bar = 12, 9} yields {foo = 54,

bar = 3, 9}. Because a bar-labeled integer element appears in both records, the onioning
operator prefers the one on the left. This asymmetric concatenation property of onions al-
lows them to function as dictionaries with a set of statically-known keys, satisfying our need
for a typed dictionary structure. This serves as the foundation of a number of asymmetric
features in the language, including overloading, subclassing, and mixins.

2These dictionary structures go by several names: dictionaries in Python, hashes in Perl, associative
arrays in PHP, and so on. Even in Ruby, where “everything is an object” [60], objects are represented
internally as dictionaries. To be clear, “dictionary” here means a finite mapping from identifiers to values.

7

CHAPTER 1. INTRODUCTION

1.3.2 Pattern-Matching Partial Functions

TinyBang, like most modern scripting languages, supports first-class functions. In
TinyBang, however, all functions are written fun p -> e where e is an expression and p is a
single pattern (similar to an ML pattern). This grammar subsumes that of typical lambda
expressions; the increment function, for instance, can be expressed as fun x -> x + 1. We
can also (informally) write fun {foo = x} -> x as the function which projects the foo

field from a record. If a record without a foo field were provided to that latter function, a
compile-time type error would occur.

The above is relatively standard fare for a language with a static type system,
subtyping, and first-class functions. Functions in TinyBang are interesting because they
also function as first-class case clauses and a generalization of the cases in MLPolyR [8].
They operate in this fashion because an onion of functions exhibits asymmetric dispatch
behavior. For instance, if projfoo is the above foo-projection function and projbar is a
similar bar-projection function, then we can write projfoo & projbar to concatenate those
functions. The resulting compound function projects either foo or bar from its argument.
If the argument has neither, a type error results; if the argument has both, foo is projected
(because onioning asymmetrically prefers the left for dispatch as well).

The TinyBang type system ascribes unusually precise types to these first-class
functions (and concatenations thereof). In standard type systems, all case branches are
constrained to have the same result type; this loses the dependency between the variant
input and the output. In TinyBang, compound function types are not reduced; they are
described as the type-level concatenation of their simple function types. As a result, ap-
plication of a compound function can return a different type depending on the variant
constructor of its argument. For instance, f = (fun int -> 0) & (fun char -> ’z’) is
a function which transforms any integer into 0 and any character into ’z’. The type of f

3 is int (and not, as is typically inferred, int∪char). In order to support this mechanism,
our type system uses a notion of a filtered type which provides most of the desired behav-
ior of positive intersection types without succumbing to the well-understood performance
problems [4] that they imply.

1.3.3 Call-Site Polymorphism

The TinyBang type system uses a call-site polymorphism model (as opposed to the
let-polymorphism models common in the ML family of languages). In let-polymorphism,
functions are abstracted to polymorphic types when they are bound to variables in a let

expression; they are then instantiated when those variables are used. Since polymorphic
types are only assigned to variables in the type environment and not to expressions them-

8

CHAPTER 1. INTRODUCTION

selves, polymorphism is bounded by lexical scope. This has the advantage of simplifying
compilation – polymorphic functions can only be used at types or type variables dictated by
the lexical scope of the function – but the disadvantage of limiting expressiveness, especially
with respect to contextual invariants.

In call-site polymorphism, function expressions themselves are inferred polymor-
phic types. Further, while let polymorphism instantiates functions when the function
variable is named, call-site polymorphism delays this process until the function is called;
thus, a function retains its polymorphism e.g. when returned by another function. The
primary motivator for this decision is the manner in which we apply the compound func-
tions (and their precise types) above. By using call-site polymorphism, we are able to
capture the sort of case-based reasoning used in e.g. the example in Section 1.2.1. We
formalize the TinyBang type system to be parametric in its polymorphism model but also
present a polymorphism model which we use in practice. We design that polymorphism
model using techniques similar to existing static analysis work [62, 1, 74, 43], which allows
it to take advantage of compound function types to preserve type alignment during case
analyses. Throughout most of this document, we invite the reader to assume that the type
system is sufficiently polymorphic for the examples we present. The formalization of the
polymorphism model appears in Chapter 6.

1.3.4 Contributions

This document is driven by the objective of building a typed scripting language
from scratch. To that end, it makes the following contributions:

• The development of the filtered type (Section 1.3.2), a form of heterogeneous inter-
section type which captures precise contextual information during pattern matching
without exponential blow-up.

• A novel call-site polymorphism model and an unusually precise notion of variable
freshening required to adapt it to a (decidable) constraint theory.

• A strategy for proving type soundness which is inspired by abstract interpretation but
novel in type system literature.

• A typed, variant-based object encoding which permits object extension at later stages
than previous works [9] while retaining subtyping properties such as depth subtyping
that other models do not [59].

• The synthesis of these ideas and underused type theory research to create a general
process for the development of a from-scratch typed scripting language, of which

9

CHAPTER 1. INTRODUCTION

TinyBang is an example.

1.4 Outline

The remainder of this dissertation is organized as follows. First, Chapter 2 pro-
vides an informal overview of TinyBang; we demonstrate the semantics of the language and
show how it captures several common scripting language features. Next, we give a formal
definition of a reduced form of TinyBang’s operational semantics and type system in Chap-
ter 3. Chapters 4 and 5 give the soundness and decidability proofs for the TinyBang type
system. Chapter 6 presents the polymorphism model we use with TinyBang in practice and
demonstrates that it satisfies the requirements of our proofs.

Chapter 7 demonstrates how the formalism from Chapter 3 can be extended with
common features such as reference cells and arithmetic. In Chapter 8, we then use the
resulting system – the formalization, polymorphism model, and built-ins – to formally
define the encodings we outline in Chapter 2. Chapter 9 gives some discussion of how
the implementation of the TinyBang typechecker (and therefore the checking of LittleBang
programs encoded to it) can be made efficient. Finally, Chapters 10, 11, and 12 discuss
related work, future work, and conclusions for this material.

Readers need not consume this document in a linear fashion. Figure 1.1 shows a
graph of recommended prerequisites for each chapter.

10

CHAPTER 1. INTRODUCTION

Chapter 1
Introduction

Chapter 2
Overview

Chapter 3
Formalization

Chapter 4
Soundness

Chapter 5
Decidability

Chapter 6
Polymorphism

Chapter 7
Built-Ins

Chapter 8
LittleBang

Chapter 9
Implementation

Chapter 10
Related Work

Chapter 11
Future Work

Chapter 12
Conclusions

Figure 1.1: Chapter Dependencies

11

Chapter 2

Overview

This chapter provides an overview of the semantics of TinyBang. We illustrate
these semantics by encoding several features, most of which are common in scripting lan-
guages. A more complete discussion of these encodings can be found in Chapter 8, but that
presentation requires familiarity with the formal operational semantics and type system. To
provide a quickly-accessible perspective on this work, this chapter uses informal notation
for types and draws from the intuitions of ML-like languages.

2.1 TinyBang Syntax

There are three concrete languages presented in this dissertation. The first is
LittleBang, the language containing syntax for the features we desire and which we formalize
in Chapter 8. The second is nested TinyBang, which we present here as a target for encoding
the features of scripting languages. The third concrete language appears in the formalization
of the system (Chapter 3) because it is an easier target for demonstrating formal properties;
we call it ANF (or A-normal form) TinyBang. We use the name TinyBang to refer to one
of the latter two languages when it is clear which we mean from context. Throughout this
chapter, for instance, we will use the unqualified term “TinyBang” to refer to the nested
version. The syntax of the (nested) TinyBang language appears in Figure 2.1. We use Z to
denote literal integers and S to denote literal strings.

In the examples below, we generally avoid using operator precedence. For legibility,
though, some understood precedence rules are helpful. We consider labels (l e) to have the
highest precedence of all operators; these labels function much like Haskell newtypes or

12

CHAPTER 2. OVERVIEW

e ::= x | () | Z | S | l e | e & e | ref e | ! e | x := e in e | expressions
letx = e in e | fun p -> e | e e | e� e

p ::= x | () | int | str | l p | p * p patterns
� ::= (binary operators: equality, addition, etc.) operators
l ::= ‘(alphanumeric) labels
x variables

Figure 2.1: TinyBang Syntax

OCaml polymorphic variants in that they simply wrap an underlying value. For instance,
the expression ‘A 5 has type ‘A int. The onioning operator has lesser precedence than
the label constructor; thus, ‘A 5 & ‘B 6 is grouped (‘A 5) & (‘B 6). Finally, functions
of the form fun p -> e have the least precedence; that is, fun x -> x & 1 is the function
which right-onions a 1 onto a value (and not an onion between the identity function and the
integer 1). Precedence for the remaining language components is similar to ML. Pattern
precedence follows expression precedence: label patterns (l p) have higher priority than
conjunction patterns (p1 * p2).

TinyBang program types take the form of a set of subtype constraints [4]. For the
purposes of this overview, we will be informal about type syntax. Our formal type grammar
can be viewed as an A-normalized form of a typical type grammar (which is a large motivator
for the ANF TinyBang discussed in Chapter 3): each type variable is immediately bounded
by a shallow type, such as int <: α or l α1 <: α2. Union types emerge naturally from this
system by giving a variable multiple lower bounds (e.g. int ∪ str can be represented by
the set {int <: α, str <: α}). As we do with the expression syntax, we will write types
in nested form in this section for presentation clarity. The formal type system appears in
Section 3.5.

2.2 Conditionals: A Simple Exercise in Compound Functions

We begin our discussion of TinyBang with a simple observation: the syntax in
Figure 2.1 does not include a conditional expression (i.e. if e then e else e), nor does
it include boolean values. In TinyBang, boolean values are encoded using the expressions
‘True () and ‘False (); here, () represents the empty onion, the 0-ary conjunction of
other values. This encoding is first-order and trivial to type; the encoding of boolean
operations is only slightly more involved.

As indicated in both Section 1.3.2 and Figure 2.1, all functions in TinyBang in-
clude a pattern; in a sense, this means that they are potentially partial. The function

13

CHAPTER 2. OVERVIEW

fun int -> 0, for instance, maps all integers to zero but cannot be applied to non-integer
values; the expression (fun int -> 0) "bad", for instance, fails to evaluate (and is re-
jected by the type system). Patterns can match the contents of labels as well; for instance,
(fun ‘A x -> x + 1) (‘A 3) evaluates to 4.

The introduction also indicated that functions can be combined using the onion
operator & to produce compound functions. Dispatch on compound functions applies the
leftmost function with a matching pattern. For example, suppose f is a variable containing
the value (fun int -> 0) & (fun str -> ""). Then f 4 evaluates to zero, f "hello"

evaluates to the empty string, and f () produces a type error (since () matches neither
pattern).

The above shows we can branch on the type of an argument. Because each label
implies a distinct type, this means we can branch based on whether the type of our argument
is ‘True () or ‘False (). Comparison operators in TinyBang yield one of these two
values. To express a condition (e.g. if x == y then x + 1 else x - 1), we can write
the following:

1 ((fun ‘True _ -> x + 1)
2 & (fun ‘False _ -> x - 1)) (x == y)

(Note here that the pattern _ is used as an alias for () for readability. Because
every type is a subtype of the empty onion, the pattern matching the empty onion matches
everything else; that is, the empty onion is the top of the TinyBang type lattice.)

This expression will pass the evaluation of x == y to the compound function on the
left. As this value is either a ‘True () or a ‘False () (depending on whether the values
are equal or not), this is typesafe: all cases of the argument are exhaustively matched.
Based on which value is produced, a different function body is invoked. In practice, of
course, a compiler would not generate a function dispatch for every conditional; the runtime
representation of x == y can clearly be reduced to a machine word as long as it only reaches
the application site and is not used in some other disjunct. By using these semantics in
TinyBang, however, we keep the core of the language (and thus the formal definitions in
later chapters) quite small.

As mentioned in Section 1.3, we achieve our goal of a typed scripting language by
developing TinyBang as a minimal core language and then building LittleBang, a language
with scripting language features, through a series of formal encodings. The above is an
example of such an encoding; although LittleBang includes booleans, they are encoded
into TinyBang as labeled data and compound functions. As this chapter proceeds, we will
use encodings from previous sections; in this case, for instance, we may use the syntax
if e1 then e2 else e3 as shorthand for the above encoding to improve readability. As

14

CHAPTER 2. OVERVIEW

this overview is merely an introduction to the semantics, formal encodings are not given for
every feature until Chapter 8.

2.3 Overloading

The pattern-matching semantics of functions also provide a simple mechanism
whereby function (and thus method and operator) overloading can be defined. We might
originally define negation on the integers as

1 let neg = fun x * int -> 0 - x in . . .

To clarify, x * int is a conjunction pattern in the above for the function which
subtracts its argument from zero; that is, we can also write fun (x * int) -> (0 - x).
A conjunction pattern matches only if both of its conjuncts match; the int pattern matches
only integers while the x pattern matches everything (and binds whatever it matches to the
variable x).

Given the above, later code could extend the definition of negation to include
boolean values. Because operator overloading assigns new meaning to an existing symbol,
we redefine neg below to include all of the behavior of the old neg as well as new cases for
‘True and ‘False:

1 let neg = (fun ‘True _ -> ‘False ())
2 & (fun ‘False _ -> ‘True ()) & neg in . . .

Negation is now overloaded: neg 4 evaluates to -4, and neg ‘True () evaluates
to ‘False () due to how application matches against the patterns of functions. Note that
this assignment is not an update to the neg variable but an assignment to a new one; this
allows overloadings to be given a controlled scope in which they apply. In our object model
presented below, overloaded methods are encoded using this same approach.

2.4 Onions as Function Arguments

TinyBang functions are reminiscent of ML family functions in that they take a
single argument (and not an argument list). Most modern scripting languages (including
Python, Perl, Ruby, and JavaScript) use a C-like function syntax: functions are declared
and invoked with lists of parameters and arguments which are delimited by parentheses. Of
course, the latter convention can be encoded in TinyBang in the usual way: by passing a
single argument which contains all of the parameters. We use onions in this capacity, since
they are the (only) data conjoiner in our core language.

15

CHAPTER 2. OVERVIEW

To match on onions, we make use of the conjunction pattern operator *. For
instance, to encode

1 let f(x,y) = x + y in f(5,3)

we can write

1 let f = fun ‘1 x * ‘2 y -> x + y in f (‘1 5 & ‘2 3)

As described above, the conjunction pattern ‘1 x * ‘2 y matches only if both of
its conjuncts – ‘1 x and ‘2 y – match the argument (which is ‘1 5 & ‘2 3 here). They
do, while binding x to 5 and binding y to 3. The body of the function is then executed,
resulting in the value 8.

This encoding also creates appropriate type errors. The invocation f(7), which is
missing an argument, decodes to f (‘1 7). Because the ‘2 y pattern cannot match this
argument, the conjunction pattern cannot match it. Because f here is a simple function,
there are no other patterns to match and so a type error occurs.1

2.4.1 Keyword Arguments

As we have demonstrated, TinyBang’s compound functions enable a form of case
analysis on their input. When that input is an onion of arguments, case analysis allows
a form of argument preprocessing which is common in scripting languages. Python and
Ruby 2, for instance, allow callers to provide arguments to functions by name rather than
position. These named or keyword arguments are useful for calling functions which accept
numerous parameters in order to make the call site more readable. In TinyBang, we can
capture this behavior by matching the named arguments when they exist and constructing
an argument record with those arguments in the appropriate positions. For instance, we
may encode let f(x,y) = x + y in f(5,y=3) as

1 let f’ = fun ‘1 x * ‘2 y -> x + y in
2 let f = (fun (‘1 x * ‘2 y) * a -> f’ a)
3 & (fun (‘1 x * ‘y y) * a -> f’ (a & ‘2 y))
4 & (fun (‘x x * ‘y y) * a -> f’ (a & ‘1 x & ‘2 y)) in
5 f (‘1 5 & ‘y 3)

The invocation on line 5 begins dispatch by attempting to match the argument,
(‘1 5 & ‘y 3), against the first pattern in f (‘1 x * ‘2 y, which appears on line 2). This
conjunction does not match because the pattern ‘2 y cannot match an argument without
a ‘2 component. Because f is a compound function, this is not a type error; application

1Using this simple encoding, of course, extra arguments (e.g f(5,3,2)) would simply be ignored. We
discuss how this may be addressed in Section 8.5.3.

16

CHAPTER 2. OVERVIEW

proceeds to the pattern on line 3 and this pattern does match the argument, so its body
is invoked. The function body on line 3 appends to the right of the argument a the value
‘2 3. The resulting value ‘1 5 & ‘y 3 & ‘2 3 is passed to the “real” function f’, which
then extracts the ‘1 and ‘2 components.

2.4.2 Default Arguments

Thus far, we have used TinyBang’s onion operator to conjoin distinct types of data;
we have not discussed the implications of overlapping data types. For instance, consider the
expression 5 & 6; what meaning does the resulting value have in addition? In TinyBang,
onions are asymmetric, preferring the leftmost element; that is, (5 & 6) + 3 evaluates
to 8. In fact, the expression 5 & 6 is operationally equivalent to the expression 5; both
operands have the same type and, as onions are typed-indexed records, only one value may
appear at a particular type index. A similar property is true for labels – ‘A 5 & ‘A 6 is
operationally equivalent to ‘A 5 – but only when their types are deeply indistinguishable;
the expressions ‘A 5 and ‘A 5 & ‘A "six", for instance, are not operationally equivalent
because the pattern ‘A str matches only the latter.

Some early theories of record concatenation include asymmetry [71] but were later
found to be unsound [72]. Asymmetry causes mathematical subtleties that complicate a
type theory and, for this reason, research into record concatenation has focused primarily on
symmetric operations [36, 57, 53, 51]. Symmetric concatenation is initially quite appealing
as a basis for record concatenation as troublesome cases of field overlap cannot occur by
definition. In the presence of polymorphism, however, sound theories of symmetric concate-
nation must enforce the presence or absence of labels e.g. via row types and their inference.
We choose asymmetric concatenation in TinyBang because it enables us to encode a variety
of fundamentally asymmetric language features.

As an example, we consider default arguments. The keyword arguments discussed
above are often used to simplify invocations of highly configurable functions with numerous
sensible defaults (e.g. the Popen constructor from Python’s subprocess module, which in-
cludes more than a dozen default keyword arguments for controlling file descriptors, buffer
sizes, and other subprocess properties). In this case, the function definition includes de-
fault values for the arguments which are not provided by the caller. We demonstrate how
asymmetry can be used to capture this language feature through a simple example.

Consider the Python function def inc(x,y=1) = x+y. This function adds y to x

if y is supplied; it adds 1 to x otherwise. The following TinyBang code accomplishes this
task (which eschews the keyword argument functionality above for readability only):

1 let f’ = fun ‘1 x * ‘2 y -> x + y in

17

CHAPTER 2. OVERVIEW

2 let f = fun (‘1 x) * a -> f’ (a & ‘2 1) in
3 . . .

If we call this function using an onion as a record of arguments as suggested at the
top of Section 2.4, then the Python invocation f(3) would result in 4. In TinyBang, this
call would be written f (‘1 3), which has the effect of passing ‘1 3 & ‘2 1 to f’. If we
instead evaluate f (‘1 3 & ‘2 5) (the TinyBang equivalent of the Python f(3,5)), then
‘1 3 & ‘2 5 & ‘2 1 is passed to f’. As discussed above, the pattern in f’ will match
the leftmost ‘2 in the onion; thus, the right-onioning of ‘2 1 will have no effect unless the
original argument included no ‘2 component.2

2.5 Sanitized Strings: Using Labels as Tags

TinyBang’s pattern matching semantics do not require that the pattern match
is exhaustive; the argument may include additional elements which are not matched and
variables are bound against the whole structure of the argument (not just the pattern
which was matched). As an example, (fun int -> 0) (3 & "three") is permissible; the
additional string in the argument does not prevent it from matching the int pattern since
the argument has an int component. Extra data of this form is only lost when we operate
on the value: (fun x -> x + 1) (3 & "three") yields 4 (and not 4 & "three") because
primitive integer addition constructs a new integer using the integer components of its
operands.

We can use this property of onions to represent sanitation tracking, a practical
safety feature of web frameworks like Rails and Django. Those frameworks feature webpage
template languages which permit the insertion of strings into web pages. To prevent code
injection attacks, inserted strings are automatically escaped unless they have been marked
as “safe”. This is the dual of the naïve (and error-prone) behavior: instead of explicitly
escaping those strings which may cause problems, we escape every string which has not
been explicitly blessed by the web application. Strings may be marked safe at the time
they are inserted into the page or beforehand by a utility which has generated a known-safe
string, but further operations on safe string do not yield safe strings and must be handled
with care.

In TinyBang, marking a string as safe (or marking any data with such an anno-
tation) is as simple as onioning a distinct label onto the value. For instance, we can con-
sider the string "<script src=’foo.js’/>" to be unsafe and we can consider the string
"<script src=’foo.js’/>" & ‘safe () to be safe.3 We can then write the following

2This encoding also does not deal with extra arguments. Again, we discuss this in Section 8.5.3.
3At the time of this writing, many browsers bizarrely do not handle self-closing script tags correctly

18

CHAPTER 2. OVERVIEW

function to ensure that a string is safe:

1 let ensureSafe = (fun s * str * ‘safe _ -> s)
2 & (fun s * str -> htmlEscape s) in . . .

Here, the ensureSafe function matches ‘safe-tagged strings in the first branch
and other strings4 in the second branch. The variable s matches the entire argument in
both cases; thus, in the first case, the argument is returned intact, including its ‘safe tag.

2.6 Dynamic Object-Oriented Semantics

Object-orientation plays a significant role in modern scripting languages and it has
received significant attention in the design of TinyBang. As with the above features, objects
are not built into the semantics of TinyBang. Instead, we show in this section how an object
model can be encoded using onions and compound functions. This object model supports
statically-typed object extension properties (such as functional extension after use) which
are not present in previous calculi and does so without the use of dedicated metatheory.

2.6.1 Variant-Based Objects

Widely used object-oriented languages such as C++ and Java view objects as
record structures: each object is effectively a dispatch table and a collection of named
fields, both of which are statically typed dictionaries. This record-object tradition extends
to scripting languages such as JavaScript and Python. In JavaScript, for instance, methods
are added to objects simply by assigning a function to the appropriate label. Method
invocation is accomplished by looking up the appropriate function in the dispatch table or
method dictionary and passing it the object as well as the other method arguments.

Dual to the record-based model of objects is the variant-based model. In this
model, dispatch is not accomplished by examining the object to find the appropriate handler.
Instead, the object is treated as a function and passed the message directly; it is then the
responsibility of the object to determine how to process the message. This notion of variant-
based objects is not new; it is used in an untyped form in classic actor models [2]. These
models traditionally only appear in dynamic languages because they are difficult to type,
but TinyBang’s onions are well-suited to the task. We therefore draw from these variant-
based designs when encoding objects in TinyBang.

anyway, so the “unsafe” string would be inadvertently inert. We use the self-closing tag here for presentation
purposes.

4Recall that dispatch always takes the leftmost match. The second pattern matches all strings, but the
first pattern captures all ‘safe-tagged strings and only the remaining strings are compared with the second
pattern.

19

CHAPTER 2. OVERVIEW

2.6.1.1 Simple Functions as Methods

We begin by considering the oversimplified case of an object with a single method
and no fields or self-awareness. In the variant encoding, such an object is represented by
a function which matches on a single case. In TinyBang, this is the form of all simple
functions. For instance, consider the following object and its invocation:

1 let obj = (fun ‘twice x -> x + x) in obj (‘twice 4)

This “object” is just a simple function accepting a ‘twice-labeled argument. Mes-
saging this object is the same as invoking it as a function. In order to define an object with
multiple methods, one need only onion the message handlers together:

1 let obj = (fun ‘twice x -> x + x) &
2 (fun ‘isZero x -> x == 0) in
3 obj (‘twice 4)

We note that, because of this means of dispatch, TinyBang features first-class
messages: the message sent to an object is a first-class value and can be stored or passed
separate from the object that eventually receives it.

The manner in which we define objects as an conjoined set of dispatch functions is
related to the λ&-calculus [13] and with typed multimethod-based language designs [46, 45].
These works perform dispatch nominally (that is, by declared class names); by contrast,
TinyBang’s dispatch is structural.

2.6.1.2 Heterogeneous Case Types

The above shows how to encode an object with multiple methods as an onion of
simple functions. But we must be careful not to type onions in the way that match/case
expressions are traditionally typed. The analogous OCaml match/case expression

1 let obj m = (match m with

2 | ‘twice x -> x + x

3 | ‘isZero x -> x == 0) in . . .

will not typecheck; OCaml match/case expressions must return the same type in all case
branches.5 Instead, the types of onions preserve the types of their components; we would
give the above a type which is, informally,

(‘twice int → int) & (‘isZero int → ‘True () ∪ ‘False ())

If the compound function is applied in the context where the type of message
is known, the appropriate result type is inferred; for instance, invoking this method with

5OCaml 4 GADTs mitigate this difficulty but require an explicit type declaration, type annotations, and
only work under a closed world assumption.

20

CHAPTER 2. OVERVIEW

‘twice 4 always produces type int and not type int ∪ ‘True () ∪ ‘False (). This
captures a form of associated type [16] similar to Haskell type families or C++ traits classes.
As a result, match expressions encoded in TinyBang may be heterogeneous; that is, each
case branch may have a different type in a meaningful way. When we present the formal
type system below, we show how these heterogeneous case types extend the expressiveness
of conditional constraint types [4, 54] in a dimension critical for typing objects.

This need for heterogeneous typing arises largely from our desire to accurately
type a variant-based object model; a record-based encoding of objects would not have this
problem. We choose a variant-based encoding because it greatly simplifies the encodings
such as self-passing and overloading, which we describe below.

2.6.2 Self-Awareness and Resealable Objects

The above objects have not been able to invoke their own methods, so our encoding
is incomplete. Dynamic languages often address this problem simply by adding the object
as a parameter to each of its methods. This is a suitable approach in dynamic languages,
as the runtime is the only system of concern. In a statically-typed language, however, this
results in subtle typing problems. To see why, consider the following Python pseudo-code:

1 class A(object):

2 def foo(self, x): x + 1

3 class B(A):

4 def foo(self, x): self.bar(x) + 1

5 def bar(self, y): y + 1

If we view the above as collections of message-handling functions, we must be able
to assign types to those functions. What is the type of the self parameter in the foo

methods above? The intuitive conclusion is to give self the type of the class in which
it appears: A for the first and B for the second two. But the type of the first method is
then (A, int) → int and the type of the second method is (B, int) → int. This presents
a problem: because the B implementation of foo overrides the A implementation, we need
to use it in the latter’s place. This would require that (B, int) → int be a subtype of
(A, int) → int, but that cannot be: function subtypes are contravariant on the input of
the function. The only reason this is okay in practice is that we have knowledge (which
is not expressed by these types) that the B.foo method is only used in conjunction with
B objects. Existing object calculi deal with this incoherence by giving more sophisticated
types to objects; we avoid this approach as we desire to keep the TinyBang core as small
as possible.

21

CHAPTER 2. OVERVIEW

The above incoherence arises because the type of self is captured in a contravari-
ant position. We can therefore solve this problem by capturing the appropriate type of self

in closure when it is known (rather than leaving it exposed to variance). We describe this
capturing operation as sealing the object, taking that vocabulary from previous work [9] on
extensible object calculi. In that work, an object exists in one of two states: as a prototype,
which can be extended but not messaged, or as a “proper” object, which can be messaged
but not extended. A prototype may be “sealed” to transform it into a proper object, at
which point it may never again be extended. We improve on that situation shortly, allowing
sealed objects to be extended and resealed, but first present our sealing as follows. Unlike
[9], our model requires no special metatheory: it is defined directly as a function seal using
onioning semantics to capture types appropriately.

1 let fixpoint =
2 fun f -> (fun g -> fun x -> g g x)
3 (fun h -> fun y -> f (h h) y) in
4 let seal = fixpoint (fun seal -> fun obj ->
5 (fun msg -> obj (msg & ‘self (seal obj))) & obj) in
6 let obj = (fun ‘twice x -> x + x) &
7 (fun ‘quad x * ‘self self ->
8 self (‘twice x) + self (‘twice x))
9 let sObj = seal obj in

10 let twenty = sObj ‘quad 5 in // returns 20

A more in-depth discussion of the typing of this function appears in Section 8.6.2.
We can summarize its behavior by saying that it adds a message handler which captures
every message sent to obj. (We still add & obj to this message handler to preserve the non-
function parts of the object.) The message handler adds a ‘self component (containing
seal obj) to the right of the message and then passes it to the original object. We require
fixpoint to ensure that this self-reference is also sealed. Thus, every message sent to
sObj will, in effect, be sent to obj with ‘self sObj attached to the right. Because the
type of obj is captured here in closure in a positive position, it is not subject to the same
contravariance problems we witnessed in the example above.

2.6.2.1 Extending and Resealing Objects

In the self binding function above, the value of self is onioned onto the right of
the message; this gives any explicit value of ‘self in a message passed to a sealed object
priority over the ‘self provided by the self binding function (as onioning is asymmetric
with left precedence). Consider the following continuation of the previous code:

1 let sixteen = sObj ‘quad 4 in // returns 16

22

CHAPTER 2. OVERVIEW

2 let obj2 = (fun ‘twice x -> x) & sObj in
3 let sObj2 = seal obj2 in
4 let eight = sObj2 ‘quad 4 in . . . // returns 8

We can extend sObj after messaging it, here overriding the ‘twice message;
sObj2 represents the (re-)sealed version of this new object. sObj2 properly knows its
“new” self due to the resealing, evidenced here by how ‘quad invokes the new ‘twice.
To see why this works, let us trace the execution. Expanding the sealing of sObj2,
sObj2 (‘quad 4) has the same effect as obj2 (‘quad 4 & ‘self sObj2), which has
the same effect as sObj (‘quad 4 & ‘self sObj2). Recall sObj is also a sealed ob-
ject which adds a ‘self component to the right; thus this has the same effect as
obj (‘quad 4 & ‘self sObj2 & ‘self sObj). Because the leftmost ‘self has priority,
the ‘self is properly sObj2 here. We see from the original definition of obj that it sends a
‘twice message to the contents of self (here, sObj2), which then follows the same pattern
as above until obj (‘twice 4 & ‘self sObj2 & ‘self sObj) is invoked (two times: once
for each side of +).

The above resealing types correctly because our type system includes parametric
polymorphism and so sObj and the resealed sObj2 do not have to share the same self

types. Because this is a functional extension, there is no pollution between the two distinct
self types. Key to the success of this encoding is the asymmetric nature of &: it allows us
to override the default ‘self parameter. This self resealing is possible in the record model
of objects, but is much more convoluted; this is a reason that we present a variant model
here.

Although seal provides an in-theory means of extending and resealing objects,
its precision is bounded by the accuracy of the type system and polymorphism model we
use. It is not possible, for instance, to extend and reseal an object beyond the point where
significant information about its type has been lost. A discussion of these limitations appears
in Section 8.6.2 after the type system and polymorphism model have been presented.

For examples in the remainder of the paper, we will assume that seal has been
defined as above.

2.6.3 A Hybrid Object Model

Although the design of message handling in TinyBang is heavily inspired by
variant-based object models, onions provide a natural record-like mechanism for includ-
ing fields: we simply concatenate them to the functions that represent the methods. This
results in a hybrid variant-for-methods, record-for-fields object model. Consider the follow-
ing object which stores and increments a counter:

23

CHAPTER 2. OVERVIEW

1 let obj = seal (‘x (ref 0) &
2 (fun ‘inc _ * ‘self self ->
3 (‘x x -> x := !x + 1 in !x) self))
4 in obj ‘inc ()

Observe how obj is a heterogeneous “mash” of a record field (the ‘x) and a function
(the handler for ‘inc). This is sound because onions are type-indexed. When dispatching
on an onion which includes non-function values, those values are ignored; they are treated
as if they have a pattern which matches no values. So here, the invocation obj ‘inc ()

correctly increments in spite of the presence of the ‘x label in obj. We note that the above
counter object code uses no syntactic sugar or previously-defined encodings; despite this, it
is quite concise considering that it defines a self-referential, mutable counter object.

Because fields are encoded here as the contents of labels, we have no way to
access them except by pattern matching. That said, we can define a simple projec-
tion sugar: we write e.x to mean (fun ‘x x′ -> x′) e for some fresh x′. Using this
sugar, the update in the counter object above could be expressed more succinctly as
self.x := self.x + 1 in self.x.

2.6.4 First-Class Mixins

Given the above, we can also use onions to define mixins [10] for the objects above.
The following example shows how a simple two-dimensional point object can be combined
with a mixin providing extra methods:

1 let point = seal (‘x (ref 0) & ‘y (ref 0)
2 & (fun ‘l1 _ * ‘self self -> self.x + self.y)
3 & (fun ‘isZero _ * ‘self self ->
4 self.x == 0 and self.y == 0)) in
5 let mixin = fun ‘near _ * ‘self self -> self (‘l1 ()) < 4 in
6 let mixPt = seal (point & mixin) in mixPt ‘near ()

Here mixin is a function which invokes the value passed as self. Because an
object’s methods are just functions onioned together, onioning mixin into point is sufficient
to produce a properly functioning mixPt.

The above example typechecks in TinyBang; parametric polymorphism is used
to allow point, mixin, and mixPt to have different self-types. The mixin variable has
the approximate type “(‘near () * ‘self α) → bool where α is an object capable of
receiving the ‘l1 message and producing an int”. mixin can be onioned with any object
that satisfies these properties. If the object does not have these properties, a type error will
result when the ‘near message is passed; for instance, (seal mixin) (‘near ()) is not

24

CHAPTER 2. OVERVIEW

typeable because mixin, the value of self, does not have a function which can handle the
‘l1 message.

TinyBang mixins are first-class values; the actual mixing need not occur until
runtime. For instance, the following code selects a weighting metric to mix into a point
based on some runtime condition cond.

1 let cond = (runtime boolean) in
2 let point = (as above) in
3 let w1 = (fun ‘weight _ & ‘self self -> self.x + self.y) in
4 let w2 = (fun ‘weight _ & ‘self self -> self.x - self.y) in
5 let mixPt = seal (point & (if cond then w1 else w2)) in
6 mixPt ‘weight ()

2.6.5 Inheritance, Classes, and Subclasses

Typical object-oriented constructs can be defined similarly to the above. Object
inheritance is similar to mixins, but a variable super is also bound to the original object
and captured in the closure of the inheriting objects methods, allowing it to be reached for
static dispatch. The flexibility of the seal function permits us to ensure that the inheriting
object is used for future dispatches even in calls to overridden methods. Classes are simply
objects that generate other objects, and subclasses are extensions of those object generators.

25

Chapter 3

Formalization

We now give formal semantics to a subset of TinyBang. For clarity, features which
are largely orthogonal to the conjunction semantics – primitives, state, etc. – are omitted.

We begin by translating the TinyBang program to A-normal form; this gives a more
direct alignment between expressions and types and considerably simplifies the soundness
and decidability proofs. Section 3.3 describes some well-formedness properties on the re-
sulting grammar which are used in the rest of the formalization. In Section 3.4, we define
the operational semantics of this A-normalized TinyBang language. Section 3.5 defines the
type system and soundness and decidability properties. We show how the omitted features
can be reintroduced to this formal system in Chapter 7.

3.1 Notation

The formal presentation throughout the rest of this document makes frequent use
of lists, sets, and simple operations on those structures. For consistency as well as legibility,
we define here a number of notational conventions we will use.

Notation 3.1 (Algebraic Notation). Using g to represent an arbitrary grammar construct,
this document observes the following notational conventions:

• We let [g1, . . . , gn] denote an n-ary list of g. We often use the equivalent shorthand
n−⇀g . We elide the n when it is unnecessary, as in −⇀g .

• We use the operator || for list concatenation, as in
−⇀

g′ ||
−⇀

g′′.

26

CHAPTER 3. FORMALIZATION

• We write e.g. [g|g ∈ Q] for list comprehensions. In such a comprehension, the ordering
of elements is nondeterministic.

• For sets, we use the notation {g1, . . . , gn} (similar to lists but with brace delimiters).
The shorthand n⨽−−⨼g abbreviates this (for some arbitrary ordering of the set). Again,
we elide the n when unnecessary, as in ⨽−−⨼g .

• We sometimes use � to indicate index positions for clarity. For example,
n−−−⇀

g�/g
′ is

shorthand for [g1/g
′, . . . , gn/g

′].

3.2 A-Normalized Form

We use a constraint-based type theory to define the type system of TinyBang
because such theories are especially applicable to structural subtyping. In this theory,
constraints can be viewed as simple statements of fact regarding points in the program
(e.g. “at this point, the type ‘A () may appear”). Using this approach to typecheck a
nested grammar such as the one appearing in Chapter 2 is inconvenient and complicates
the formalization.

In order to avoid these complications, we convert TinyBang into A-normal form.
In this form, a TinyBang program is a sequence of clauses and each clause represents a
single unit of work (such as constructing a value or calling a function). This allows the form
of the TinyBang program to correspond exactly with the form of the constraints used in
the type system. We use this correspondence in Chapter 4 to prove the soundness of the
type system by simulation rather than subject reduction.

The grammar of our A-normalized language appears in Figure 3.1. As mentioned
in Chapter 2, we refer to the language presented in that chapter as nested TinyBang; the
language presented here is ANF TinyBang. Throughout this chapter, we use the unqual-
ified term TinyBang to refer to ANF TinyBang (as the nested form is less relevant to the
formalization).

Expressions in ANF TinyBang have been reduced from their usual deep form into
an ordered list of simple clauses. Because clauses are not deep – they consist of a simple
constructor over variables or values – each clause represents a single step of evaluation.
Patterns have likewise been reduced to a simple collection of instructions, although the filter
rules which comprise patterns are unordered. Patterns are expressed as a pattern variable
and a set of decomposition rules; pattern matching starts at this variable to determine how
to decompose the function’s argument.

27

CHAPTER 3. FORMALIZATION

e ::= −⇀s expressions
s ::= x = v | x =x | x =x x clauses
v ::= () | l x | x &x | p -> e values

p ::= x\F patterns

F ::=
⨽−−⨼
f filter rule sets

f ::= x =ϕ filter rules
ϕ ::= () | l x | x *x filters

Figure 3.1: TinyBang ANF Grammar

Expressions
H()Ix = [x = ()]
Hl eIx = HeIy ||[x = l y]

He1 & e2Ix = He1Iy || He2Iz ||[x = y & z]
Hp -> eIx = [x = y\ HpIy -> HeIz]
He1 e2Ix = He1Iy || He2Iz ||[x = y z]

Hletx1 = e1 in e2Ix2 = He1Ix1 || He2Ix2

Hx2Ix1 = [x1 =x2]

Patterns
H()Ix = {x = ()}
Hl pIx = HpIy ∪ {x = l y}

Hp1 * p2Ix = Hp1Iy ∪ Hp2Iz ∪ {x = y * z}
Hx2Ix1 = {x1 = y *x2, y = () , x2 = ()}

Figure 3.2: TinyBang A-Translation

3.2.1 A-Translation

We define the A-translation function HeIx in Figure 3.2. This function accepts
a nested TinyBang expression and produces the A-normalized form −⇀s in which the final
declared variable is x. We overload this notation to produce a set of filter rules for a given
pattern. We use y and z to range over fresh variables unique to that invocation of the
translation function.

For instance, consider the nested TinyBang expression ‘A ‘B (). We have
from Figure 3.2 that H‘A ‘B ()Ix = H‘B ()Iy1 ||[x = ‘A y1]. This in turn re-
duces to H()Iy2 ||[y1 = ‘B y2] ||[x = ‘A y1], so the final ANF TinyBang expression is
[y2 = (), y1 = ‘B y2, x = ‘A y1]. Because the label form of the A-translation was used twice,
we use distinct variables y1 and y2 in those cases. The A-translated expression lists its
clauses in the same order that a depth-first left-to-right evaluation of a nested expression

28

CHAPTER 3. FORMALIZATION

would evaluate.

3.3 Well-Formed Expressions

Given the A-normalized TinyBang grammar, the operational semantics and type
system below require a notion of well-formedness over expressions; we define this notion
here. Briefly, we require that expressions be closed, that variable names be uniquely defined,
and that patterns be well-founded. Any closed nested TinyBang expression can be α-
renamed such that its A-translation satisfies these properties; we formalize them here to
ensure a thorough treatment in our definitions and proofs. For this reason, some readers
may wish to skim this section, continue on to the operational semantics in Section 3.4, and
then return here when the definitions in this section become relevant.

3.3.1 Pattern Notation

The syntax of patterns in the ANF language is very flexible due to the fact that
a variable name identifies each point in a given pattern. That said, the proliferation of
these variables clutters notation. To reduce the effect of variable clutter, we introduce the
following notational sugar to be used in the following discussion and throughout the rest of
the document. We note that this notational sugar does not apply to Definition 3.6 above.

Notation 3.2 (Pattern Root Sugar). For legibility, we sometimes write ϕ\F to mean x\F
such that x =ϕ ∈ F .

Notation 3.3 (Pattern Construction Sugar). For legibility, we sometimes write l P to
mean {l x\F | x\F ∈ P}. Similar notation applies for other pattern constructors, taking
a Cartesian product in cases where a pattern constructor has more than one type variable
argument.

3.3.2 Pattern Well-Formedness

In defining well-formedness on expressions, it is useful to have a concept of well-
formedness on patterns. Due to the flexibility of TinyBang’s pattern grammar, it is possible
to express non-sensical patterns such as those containing multiple bindings for the same
variable (e.g. x\{x = () , x = ‘A x′, x′ = ()}) or patterns which are cyclic (e.g. x\{x =x}.
These patterns are not meaningful in matching or destructing data; pattern well-formedness
rules them out. We begin by giving terminology to the variables appearing within pattern
clauses.

Definition 3.4 (Filter Rule Variable Appearances). A variable x appears on the left of a

29

CHAPTER 3. FORMALIZATION

filter rule f iff f = x =ϕ. A variable x appears on the right of a filter rule f iff f = x′ =ϕ

and ϕ is one of l x, x *x′′, or x′′ *x.

Using the above definition, we can provide a concept of a well-formed pattern:

Definition 3.5 (Pattern Well-Formedness). A pattern x\F is ill-formed iff:

• There exist two filter rules f1 6= f2 such that {f1, f2} ⊆ F , x′ appears on the left of
f1, and x′ appears on the left of f2; or

• There exists some
n⨽−−⨼
f ⊆ F such that x′ appears on the left of f1 iff x′ appears on the

right of fn and, for each i ∈ {2..n}, x′ appears on the left of fi iff x′ appears on the
right of fi−1; or

• There exists some f ∈ F such that x′ appears on the right of f and, for all f ′ ∈ F , x′

does not appear on the left of f ′; or

• For all f ∈ F , x does not appear on the left of f .

A pattern which is not ill-formed is well-formed.

The first rule above indicates that two filter rules have the same variable on the
left-hand side. The second rule above declares ill-formed any pattern which contains a cycle
in its constraints. The last two rules exclude patterns which are incomplete (e.g. x\∅).

By using subtype constraints to represent patterns, it is quite possible to admit
cyclic (i.e. recursive) patterns in TinyBang. Recursive patterns are not novel; for in-
stance, [27] provides an ML-like language with recursive pattern matching on nominal data
types. We require acyclicity to simplify the discussion of TinyBang (especially the sound-
ness proof), but we briefly discuss how recursive patterns may be added to the language in
Section 11.1.

Unless otherwise mentioned, we assume for the rest of this document that the
patterns we discuss are well-formed.

3.3.3 Free and Bound Variables

We also require that a well-formed expression is closed. In order to define what
it means for an ANF expression to be closed, we must be precise about when variables are
bound. We accomplish this by providing a definition of two functions, BV and FV, which
represent the bound and free variables (respectively) of a given expression. We overload
these functions to cover the bound and free variables of patterns and clauses and the free
variables of values.

Definition 3.6 (Bound and Free Variables). BV and FV are defined as follows:

30

CHAPTER 3. FORMALIZATION

Expressions

BV([]) = ∅ FV([]) = ∅

BV(n−⇀s) = BV(n−1−⇀s) ∪ BV(sn) FV(n−⇀s) = FV(n−1−⇀s) ∪ (FV(sn)− BV(n−1−⇀s))

Clauses

BV(x1 =x2) = {x1} FV(x1 =x2) = {x2}

BV(x1 =x2 x3) = {x1} FV(x1 =x2 x3) = {x2, x3}

BV(x1 = v) = {x1} FV(x1 = v) = FV(v)

Values

FV(()) = ∅

FV(l x) = {x}

FV(x1 &x2) = {x1, x2}

FV(p -> e) = FV(e)− BV(p)

Patterns

BV(x\F ∪ {x =ϕ}) = {x} ∪ BV(ϕ\F) FV(x\F ∪ {x =ϕ}) = FV(ϕ\F)− BV(ϕ\F)

BV(() \F) = ∅ FV(() \F) = ∅

BV(l x\F) = BV(x\F) FV(l x\F) = FV(x\F)

BV(x1 *x2\F) = BV(x1\F) ∪ BV(x2\F) FV(x1 *x2\F) = FV(x1\F) ∪ FV(x2\F)

An expression e is closed iff FV(e) = ∅.

Note that the above functions are not well-defined when patterns contain multiple
filter rules for the same variable, as in x\{x = () , x = l x′, x′ = ()}. As a result, expressions
which include such patterns are not closed by this definition.

3.3.4 Well-Formedness

Using the above, we can give a definition for well-formed ANF expressions:

Definition 3.7 (Well-Formed Expression). An expression e is well-formed iff all of the
following are true:

• Each variable is bound in at most one pattern or clause; that is, no two patterns or
clauses appearing anywhere within e have a non-empty intersection of bound variable
sets.

• e is closed.

• Each pattern p appearing in e is well-formed.

Fortunately, any sensible nested TinyBang expression will be well-formed when
it is appropriately α-renamed and A-translated. Throughout the rest of this document,

31

CHAPTER 3. FORMALIZATION

E ::= −−−−⇀x = v environments
P, P+, P−, P+◦ ::= ⨽−−⨼p pattern sets

↑↓◦ ::= ↑◦ | ↓◦ binding states
� ::= | # match result

Figure 3.3: TinyBang Operational Semantics Grammar

we assume we are working with well-formed ANF expressions unless otherwise expressly
indicated.

3.4 Operational Semantics

Next, we define a small-step operational semantics for ANF TinyBang. The pri-
mary complexity of these semantics is the process of pattern matching, so much of this
section focuses on the auxiliary definitions which are eventually used by the operational
semantics. In addition to the grammar of ANF TinyBang presented in Figure 3.1, we also
require some non-terminals used exclusively in the operational semantics’ algebra; we give
this extra notation in Figure 3.3.

It is helpful to recall that our soundness proof strategy is to establish a simulation
between the operational semantics and the type system (Section 3.2). In some of the
supporting definitions below, we choose relational forms that will be particularly amenable
to alignment with the corresponding type system relations we will define in Section 3.5.

3.4.1 Compatibility

The first auxiliary relation we define is compatibility, which is at the heart of the
pattern matching process. We must be able to determine whether an argument matches
some patterns and fails to match others. In particular, match failures are important due
to the manner in which dispatch is handled on compound functions: an argument is only
dispatched to the second function in a compound function if it matches the second pattern
and fails to match the first.

Although the process of pattern matching is fairly intuitive, formally defining it
requires care. In addition to determining whether or not a value matches a pattern, we must
be able to obtain the bindings which occur as a result of the match. Onions require special
handling as they are pattern matched in a non-trivial way; a similar statement is true about
conjunction patterns. Finally, in order to simplify the soundness proof in Chapter 4, we
need our proofs to express that a given value simultaneously matches a set of patterns. All
of these steps introduce (largely orthogonal) complexity to the relation.

32

CHAPTER 3. FORMALIZATION

Empty Onion Pattern

x\E 1∼ () \F

Conjunction Pattern
x\E 1∼ x′1\F x\E 1∼ x′2\F

x\E 1∼ x′1 *x′2\F

Onion
x0 =x1 &x2 ∈ E x1\E 1∼ p ∨ x2\E 1∼ p

x0\E 1∼ p

Label
x0 = l x1 ∈ E x1\E 1∼ x′\F

x0\E 1∼ l x′\F

Figure 3.4: Value Compatibility (Revision 1)

This section presents our compatibility relation by starting from the definition of a
relatively simple (but lacking) relation and incrementally adding the properties we require.
We show the relation after each modification and discuss the changes. The finished relation
appears in Section 3.4.1.5.

3.4.1.1 An Initial, Intuitive Definition

At its core, our compatibility relation must answer a simple question: does this
value match that pattern? We define our first revision of the compatibility relation to model
this question, writing the relation as x\E 1∼ p. We use the terminal symbol 1∼ to indicate
that this is the first revision of our compatibility relation. The definition of this relation is
fairly intuitive: the relation holds if a proof exists in the proof system shown in Figure 3.4.
Recall Notation 3.2 in reading this figure: () \F is a synonym for x\F ∪ {x = ()} for some
x.

The rationale behind each of these rules is quite simple. A conjunction pattern
matches a value if each of its conjuncts does. An pattern matches an onion if it matches
either side. Label patterns match only those values which have the same label.

While appealingly simple, this relation lacks several properties which we will re-
quire to use it effectively. The following sections will augment and modify this relation
incrementally.

3.4.1.2 Explicit Failure

One weakness of our first revision of compatibility is that it does not explicitly
acknowledge failure. As a result, it would be difficult to use that relation to formally define
the behavior of compound functions. To address this issue, we modify compatibility to
admit constructive proofs of compatibility failure as well.

The definition of explicit failure requires careful handling of some patterns and

33

CHAPTER 3. FORMALIZATION

Empty Onion Pattern

x\E 2∼ () \F

Conjunction Pattern
x\E 2∼�1 x

′
1\F x\E 2∼�2 x

′
2\F

x\E 2∼min(�1,�2) x
′
1 *x′2\F

Empty Onion
CtrPat(p) x = () ∈ E

x\E 2∼# p

Function
CtrPat(p) x = (p′ -> e′) ∈ E

x\E 2∼# p

Onion
CtrPat(p) x0 =x1 &x2 ∈ E x1\E 2∼�1 p x2\E 2∼�2 p

x0\E 2∼max(�1,�2) p

Label
x0 = l x1 ∈ E x1\E 2∼� x′\F

x0\E 2∼� l x′\F

Label Failure
x0 = v ∈ E v of the form l′ x1 only if l 6= l′

x0\E 2∼# l x′\F

Figure 3.5: Value Compatibility (Revision 2)

values. The empty onion pattern must match the empty onion value, but that value must
match nothing else. To aid in these definitions, it is helpful to distinguish between construc-
tor patterns (which are immediate eliminators of value constructors) and non-constructor
patterns (such as conjunction patterns, which do not eliminate value constructors directly).
Formally, we define that function as follows:

Definition 3.8 (Constructor Pattern). We define constructor patterns to be those patterns
which immediately match a particular data constructor. A constructor pattern is a pattern
for which the following predicate, CtrPat, returns true.

CtrPat(p) =

true p = l x\F

false otherwise
CtrPat(P) =

∧
{CtrPat(p) | p ∈ P}

A pattern which is not a constructor pattern is a non-constructor pattern.

In a language with primitive types (e.g. Z), the corresponding simple patterns
(e.g. int) would also be constructor patterns.

With this in mind, we add a place to the relation which is when compatibility
holds and # when it doesn’t. We also define a simple ordering – # < – to simplify our
presentation. The second revision of our compatibility relation is written x\E 2∼� p and is
taken as the fixed point of the rules appearing in Figure 3.5.

Note the new Empty Onion and Function rules, which indicate explicit failure for

34

CHAPTER 3. FORMALIZATION

the two value forms with no corresponding pattern. The only pattern which matches these
values is the empty onion pattern, which is not a constructor pattern (and thus is handled
by the Empty Onion Pattern rule instead). A similar failure case exists for label values,
which only match patterns with precisely the same label.

The use of the constructor pattern predicate is also important in the Onion
rule, where it is used to ensure that conjunctions are separated before onions. Consider
a case in which the nested pattern ‘A () * ‘B () is matched against the nested value
‘A () & ‘B (). If the Onion rule could be used here, we could prove a match failure; to
do so, we would need only to show e.g. that ‘A () is incompatible with ‘A () * ‘B ()

(which is true, since it has no ‘B component). By preventing the Onion rule from acting
on conjunction patterns, we force the use of the Conjunction Pattern rule, splitting the
question of compatibility into two cases: whether ‘A () matches the value and whether
‘B () does.

3.4.1.3 Value Selection

The second compatibility revision frequently includes predicates of the form x = v ∈
E. This duplication becomes problematic when attempting to add a notion of binding to
compatibility, as there are specific cases in which the rule selecting the value cannot make
all of the decisions about binding it. The replication of these predicates also becomes
problematic for alignment with the type system, since the process of type selection is more
complicated than simply selecting a definition from the environment. In preparation for
adding binding to compatibility, we refactor the value selection process into a separate,
common rule. This means that, in a given rule, the selection of a value may or may not
have happened.

We formally model this refactoring as two relations, mutually defined, of the forms
x\E 3∼� p and v\E 3∼� p. We define these relations to hold if a proof exists in the system
appearing in Figure 3.6.

In addition to preparing the relation for the addition of bindings, this adjustment
also helps to simplify some of the other rules.

3.4.1.4 Bindings

The various revisions of the compatibility relation defined thus far do not provide
variable bindings. When we apply a function to an argument, we must not only know if
the pattern matches but, if so, how the argument binds to the variables appearing within
the pattern. We represent those bindings as an additional environment as each binding is
of the form x = v.

35

CHAPTER 3. FORMALIZATION

Value Selection
x = v ∈ E v\E 3∼� p

x\E 3∼� p

Empty Onion Pattern

v\E 3∼ () \F

Conjunction Pattern
v\E 3∼�1 x

′
1\F v\E 3∼�2 x

′
2\F

v\E 3∼min(�1,�2) x
′
1 *x′2\F

Empty Onion
CtrPat(p)

() \E 3∼# p

Function
CtrPat(p)

(p′ -> e′)\E 3∼# p

Onion
CtrPat(p) x1\E 3∼�1 p x2\E 3∼�2 p

x1 &x2\E 3∼max(�1,�2) p

Label
x\E 3∼� x′\F
l x\E 3∼� l x′\F

Label Failure
v of the form l′ x only if l 6= l′

v\E 3∼# l x′\F

Figure 3.6: Value Compatibility (Revision 3)

This binding task is somewhat more complex than it first appears. A naïve ap-
proach to matching would be to add to the bindings at each proof step, but this can lead to
multiple bindings for the same variable. Consider the pattern p \ [p = ‘A q, q = ()].
When matching the nested value ‘A () & ‘B () to this pattern, we expect the entire value
to be bound to the variable p; after all, p is the top of the pattern. Since the pattern
p \ [p = ‘A q, q = ()] appears in uses of both the Label rule and the Onion rule, sim-
ply adding to the bindings in both of those rules will result in multiple bindings for p. The
desired behavior is for the largest of those values to be bound; that is, we want to bind the
pattern variable as near to the root of the proof tree as possible.

We solve this problem by adding another place to the relation. The binding state
symbol ↑↓◦ ranges over ↓◦ (which indicates that all binding is complete) and ↑◦ (which indicates
that the current pattern has not been bound). We can then force specific binding states in
certain rules. We define a new revision to our compatibility relation, written x\E 4∼� p ↑↓◦ E′

and v\E 4∼� p ↑↓◦ E′, to hold when a proof exists in the system appearing in Figure 3.7.
The addition of bindings to the compatibility relation is a pervasive change and

interacts with the existing rules in several interesting ways. First and foremost, we observe
how the binding state position (↑↓◦) ensures that each pattern variable is bound exactly
once. The only rule which transitions a proof tree from the binding-needed state (↑◦) to the
binding-complete state (↓◦) is the Binding rule. The only way to transition back is to build
upon the pattern, which causes a different pattern variable to be used. Because the Onion
rule can only use premises which are in the binding-needed state, the Onion rule can only
act on patterns which have not yet been bound.

Each of the failure rules (e.g. Empty Onion or Label Failure) produce an empty
binding list; since bindings are meaningless when compatibility fails, this choice is arbitrary.

36

CHAPTER 3. FORMALIZATION

Value Selection
x = v ∈ E v\E 4∼� p ↑↓◦ E′

x\E 4∼� p ↑↓◦ E′

Binding
v\E 4∼� x\F ↑◦ E′

v\E 4∼� x\F ↓◦ E′ ||[x = v]

Empty Onion Pattern

v\E 4∼ () \F ↑◦ []

Conjunction Pattern
v\E 4∼�1 x

′
1\F ↓◦ E′1 v\E 4∼�2 x

′
2\F ↓◦ E′2

v\E 4∼min(�1,�2) x
′
1 *x′2\F ↑◦ E′1 ||E′2

Empty Onion
CtrPat(p)

() \E 4∼# p ↑◦ []

Function
CtrPat(p)

(p′ -> e′)\E 4∼# p ↑◦ []

Onion

CtrPat(p) x1\E 4∼�1 p ↑◦ E′1 x2\E 4∼�2 p ↑◦ E′2 E′3 =
{
E′1 if �1 =
E′2 otherwise

x1 &x2\E 4∼max(�1,�2) p ↑◦ E′3

Label
x\E 4∼� x′\F ↓◦ E′

l x\E 4∼� l x′\F ↑◦ E′

Label Failure
v of the form l′ x only if l 6= l′

v\E 4∼# l x′\F ↑◦ []

Figure 3.7: Value Compatibility (Revision 4)

But the terminal success rule (Empty Onion Pattern) also produces no bindings and the
inductive success rules simply pass the bindings along. This is sensible because these rules
also yield proofs in the binding-needed state, which ensures that the Binding rule will
generate the appropriate bindings. In fact, the only place the bindings are augmented is in
the Binding rule, which simply attaches the value currently being considered to the current
pattern variable.

One interesting result of bindings is that the Onion rule requires conditional anal-
ysis of its results. A pattern matches an onion value if it matches either side. In order to
preserve the left precedence semantics of onions, however, we must prefer the left bindings
in the event that the pattern matches both sides. This way, matching e.g. the nested pattern
int with the nested value 4 & 5 will deterministically bind the 4.

3.4.1.5 Simultaneous Matching

The previous revision of the value compatibility relation is sufficient to use in
defining the operational semantics of the ANF TinyBang language. Unfortunately, this
relation is somewhat difficult to handle in the type system due to a subtle issue of union
alignment, which we discuss in Section 3.5.3.5. In order to ensure a direct correspondence
with the type system, our compatibility proofs must be able to express multiple simultaneous
facts about the value’s pattern matching properties; that is, in a single proof, we must be

37

CHAPTER 3. FORMALIZATION

able to indicate that value v matches pattern p but does not match pattern p′. Although
this can be expressed in the value system with multiple proofs of the single-pattern variety,
each type variable may have multiple lower bounds. This causes a form of non-determinism
which is most easily resolved by ensuring that each variable is selected at most once, thus
ensuring a consistent view of the type.

To accommodate this type system property, we revise the compatibility relation
one final time to be able to express multiple simultaneous matching operations. Instead
of a single pattern p, the relation includes three sets of patterns: P+◦ and P+ (which are
patterns that match the value) and P− (which are patterns that do not). As an additional
degree of expressiveness (also motivated by the type system), the distinction between P+◦

and P+ is that the patterns in P+◦ will produce bindings whereas the patterns in P+ will
not. This use of sets of matching and non-matching patterns obviates the need for a �
position, so we write this value compatibility relation as x\E ∼ P+◦ /P+

P−
↑↓◦ E′. We formally

define compatibility follows:

Definition 3.9 (Value Compatibility). We mutually define the relations v\E ∼ P+◦ /P+

P−
↑↓◦ E′

and x\E ∼ P+◦ /P+

P−
↑↓◦ E′ to hold when a proof exists in the proof system appearing in

Figure 3.8.

The final value compatibility relation looks considerably more complicated than
the previous revisions, but this apparent complexity is almost entirely the result of the set
operations introduced by the simultaneous matching property. Value Selection, for instance,
is identical in form. Binding now binds the root variables of all patterns in P+◦ (rather than
binding the root variable of a single pattern as in previous revisions). The Empty Onion
rule generalizes over its previous forms: it states that an empty onion value can be shown
to fail to match any set of constructor patterns. The Label Failure rule is obsolete; it is
expressed as the set P−2 of failing patterns in the Label rule. The only compelling changes
appear in the Empty Onion Pattern, Conjunction Pattern, and Onion rules.

Unlike previous revisions, the Empty Onion Pattern rule is not a terminal rule.
Essentially, it states that any proof of compatibility can be extended with any positive
match on an empty onion pattern. In previous revisions, this rule was axiomatic due to
the fact that only one pattern could be considered at a time (and using that rule forced
said pattern to be an empty onion pattern). In this final revision, multiple patterns are
considered simultaneously and the Empty Onion Pattern is merely providing additional
positive matches.

A similar realization arises from the Conjunction Pattern rule. How do we know
if a value matches a conjunction pattern? Simply put, the value in question must match
both of the conjuncts. If we know, for instance, that a value v matches all of the patterns

38

CHAPTER 3. FORMALIZATION

Leaf

x\E ∼ ∅/∅∅ ↑↓◦ []

Value Selection
x = v ∈ E v\E ∼ P+◦ /P+

P− ↑↓◦ E′

x\E ∼ P+◦ /P+

P− ↑↓◦ E′

Binding
v\E ∼ P+◦ /P+

P− ↑◦ E′ E′′ = [x = v | x\F ∈ P+◦]

v\E ∼ P+◦ /P+

P− ↓◦ E′ ||E′′

Empty Onion Pattern
v\E ∼ P+◦

1 /P
+
1

P− ↑◦ E′ P+◦
2 ∪ P+

2 = {() \F}

v\E ∼ P+◦
1 ∪P

+◦
2 /P

+
1 ∪P

+
2

P− ↑◦ E′

Conjunction Pattern
v\E ∼ P+◦

1 /P
+
1

P−1
↑◦ E′ P+◦

2 ⊆ {x′1 *x′2\F | x′1\F ∈ P+◦
1 ∧ x′2\F ∈ P+◦

1 }
P+

2 ⊆ {x
′
1 *x′2\F | x′1\F ∈ P+

1 ∧ x
′
2\F ∈ P+

1 }
P−2 ⊆ {x

′
1 *x′2\F | x′1\F ∈ P−1 ∨ x

′
2\F ∈ P−1 }

v\E ∼ P+◦
1 ∪P

+◦
2 /P

+
1 ∪P

+
2

P−1 ∪P
−
2

↑◦ E′

Conjunction Weakening
v\E ∼ P+◦

1 ∪P
+◦
2 /P

+
1 ∪P

+
2

P−1 ∪P
−
2

↓◦ E′

P+◦
2 ⊆ {xi\F | i ∈ {1, 2} ∧ x1 *x2\F ∈ P+◦

1 } P+
2 ⊆ {xi\F | i ∈ {1, 2} ∧ x1 *x2\F ∈ P+

1 }
P−2 ⊆ {xi\F | i ∈ {1, 2} ∧ x1 *x2\F ∈ P−1 }

v\E ∼ P+◦
1 /P

+
1

P−1
↓◦ E′

Empty Onion
CtrPat(P−)

() \E ∼ ∅/∅P− ↑◦ []

Function
CtrPat(P−)

(p -> e)\E ∼ ∅/∅P− ↑◦ []

Onion
x1\E ∼

P+◦
1 /P

+
1

P−∪P+◦
2 ∪P

+
2
↑◦ E′1

x2\E ∼
P+◦

2 /P
+
2

P− ↑◦ E′2 CtrPat(P+◦
1 ∪ P+◦

2 ∪ P+
1 ∪ P

+
2 ∪ P

−)

x1 &x2\E ∼
P+◦

1 ∪P
+◦
2 /P

+
1 ∪P

+
2

P− ↑◦ E′1 ||E′2

Label
x\E ∼ P+◦ /P+

P−1
↓◦ E′ CtrPat(P−2) {l x′\F ∈ P−2 } = ∅

l x\E ∼ l P+◦ /l P+

(l P−1)∪P−2
↑◦ E′

Figure 3.8: Value Compatibility

39

CHAPTER 3. FORMALIZATION

appearing in a set P+
1 , then we can prove that v also matches any pattern which is a

conjunct between two patterns appearing in P+
1 (in addition to anything else we already

know). This explains the set comprehensions in the premises for both the binding and
non-binding pattern matches.

A dual intuition can be used to understand the negative pattern premise: a con-
junction pattern fails to match a value if either of its conjuncts do. Thus, in the case
of P−1 , the set comprehension includes any conjunction pattern for which either conjunct
has been shown not to match. At initial glance, it may appear that this set is infinite –
one of the variables appears unconstrained. Recall, however, that x1 *x2\F is notation for
x0\F ∧ x0 =x1 *x2 ∈ F . Since F is finite, there are finitely many x0 =x1 *x2 appearing
within it.

As a result of the Conjunction Pattern rule, child patterns may appear in a set of
patterns when a conjunction would suffice; that is, if a conjunction pattern appears in P+,
then know that its conjuncts do as well. As it is often necessary to make a weaker statement
(asserting only the match of the conjunction pattern itself), the Conjunction Weakening rule
permits us to discard any knowledge of success or failure in pattern matching conjuncts (so
long as we maintain knowledge of the conjunction itself). It should be noted that this is only
possible in the binding-complete (↓◦) state; it’s never possible to discard a pattern before
its variables have been bound. This is the primary reason for a separate rule; if we were
to discard these patterns in the Conjunction Pattern rule, the conjuncts’ variables may not
be bound properly.

The particulars of bindings are somewhat subtle in this relation. In the previous
revision of the Onion rule, for example, needed case analysis to determine which side of the
onion was matched by the pattern so that the correct bindings could be provided. Here,
the Onion rule accomplishes this same task using pattern sets. We insist that the set of
patterns P+◦

2 ∪ P+
2 that we claim match the right side of the onion must not match the

left side of the onion; this way, the bindings E′2 cannot define any variables which are also
defined by E′1. More importantly, preferring the bindings obtained from matching the left
side of the onion preserves the left precedence semantics described in Chapter 2.

We also observe that the Conjunction Pattern and Empty Onion Pattern rules
only accept and produce proofs in the bind-needed state. This is in contrast to the previous
revision, in which these rules produced binding-complete (↓◦) proofs. In the previous revi-
sion, each pattern was bound by an independent use of the Binding rule; in this relation,
the Binding rule binds numerous patterns simultaneously. By ensuring that Conjunction
Pattern and Empty Onion Pattern do not accept ↓◦ proofs, we prevent duplicate binding of
patterns. The only rule which accepts ↑◦ and produces ↓◦ is the Binding rule; the only rule
which accepts ↓◦ and produces ↑◦ is the Label rule. In the Label rule, every root pattern

40

CHAPTER 3. FORMALIZATION

variable is replaced by a new variable; this ensures that no two uses of the binding rule bind
the same pattern variable in a well-formed set of patterns.

3.4.1.6 Example

In order to demonstrate the behavior of the compatibility relation, we present in
this section an example based on the following nested TinyBang code:

1 let f = (‘Z () -> ())
2 & (‘A () * ‘B x -> x)
3 in f (‘A () & ‘B ‘C ())

In particular, we focus on the compatibility proof necessary to demonstrate that
the argument matches the second pattern in the compound function f. In this example,
we use variables of the form pn as the fresh pattern variables chosen by A-translation and
variables of the form yn as the fresh value variables. Thus, the A-translation of the first
pattern is

p1 = x′1\F1 = p1\
{

p1 = ‘Z p2,
p2 = ()

}

The A-translation of the second pattern is

p2 = x′2\F2 = p3\



p3 = p4 * p6,
p4 = ‘A p5,
p5 = (),
p6 = ‘B x,
x = ()


Finally, the A-translation of the argument is

E =



y1 = (),
y2 = ‘A y1,
y3 = (),
y4 = ‘C y3,
y5 = ‘B y4,
y6 = y2 & y5


for the variable y6.

According to the informal semantics from Chapter 2, the second branch of the
compound function should be applied as long as (1) the argument matches the second
pattern and (2) the argument does not match the first pattern. Upon matching, the contents

41

CHAPTER 3. FORMALIZATION

of the ‘B label – the value ‘C (), represented by the variable y4 in the ANF – should be
bound to x. Let E′ 3 [x = ‘C y3]; then this is to say that we expect to prove y6\E ∼ {p2}/∅

{p1}
↓◦

E′ (where the only other members of E′ bind variables of the form yn).
We give a natural deduction proof of this expectation in Figure 3.9. For readability,

we take several notational shortcuts in this diagram:

• We elide variable definitions and logical assertions in some places. For instance, we
do not show the Label rule premise {l x′\F ∈ P−2 } = ∅ or the definition of the set
comprehensions (e.g. P+◦

2) in the Conjunction Pattern rule.

• We write . . . in the list of bindings for all bindings for pattern variables of the form
pn (since they are unreachable by the nested form of the program).

• We write CtrPat(. . .) when the set of patterns asserted as constructor patterns is
evident from the rule being used.

• We use . . . in the negative pattern set for conjunction patterns to stand in for the set
of all conjunction patterns with p1 as one of its conjunctions (to avoid writing the set
comprehension).

3.4.2 Matching

The previous section defined a compatibility relation which can be used to demon-
strate that a value matches and/or does not match given sets of patterns. In this section, we
provide the next supporting relation for the operational semantics, the application matching
(or just matching) relation. This relation is used to match the appropriate part of a com-
pound function with a given argument based on which pattern the argument matches. This
relation is much simpler than compatibility, so we give it in a single figure below (rather
than the incremental approach used in the previous subsection).

In TinyBang, recall that there is no case/match syntax for pattern matching;
individual pattern clauses pattern -> body are expressed as simple functions p -> e and a
series of pattern clauses are expressed by onioning together simple functions. We thus define
our application matching relation to determine which of an onion x0 of simple functions
can be applied to a given argument x1 (or if none of them can). Like compatibility, this
relation includes a notion of constructive failure. It is more similar to the earlier revisions of
compatibility, however, in that it only considers one compound function and one argument
at a time.

We write the matching relation as x0 x1 ;P1 P2
E � e @ E′. As stated above, x0 and

x1 are the function and the argument, respectively, which are defined in the environment E.

42

CHAPTER 3. FORMALIZATION

V
al

ue
Se

le
ct

io
n

y6
=

y2
&

y5
∈
E

C
on

ju
nc

ti
on

W
ea

ke
ni

ng

B
in

di
ng

C
on

ju
nc

ti
on

O
ni

on

V
al

ue
Se

le
ct

io
n

La
be

l

V
al

ue
Se

le
ct

io
n

y1
=

()
∈
E

B
in

di
ng

E
m

pt
y

O
ni

on
Pa

tt
er

n

E
m

pt
y

O
ni

on
C

tr
Pa

t(
∅)

()
\E
∼
∅/
∅ ∅
↑◦

[]
()
\E
∼
{p

5\
F

2
}/
∅

∅
↑◦

[]
()
\E
∼
{p

5\
F

2
}/
∅

∅
↓◦

[.
..

]
y1
\E
∼
{p

5\
F

2
}/
∅

∅
↓◦

[.
..

]
C

tr
Pa

t(
..
.)

‘A
y1
\E
∼

{p
4\
F

2
}/
∅

{p
1\
F

1
,p

6\
F

2
}
↑◦

[.
..

]

y2
\E
∼

{p
4\
F

2
}/
∅

{p
1\
F

1
,p

6\
F

2
}
↑◦

[.
..

]

V
al

ue
Se

le
ct

io
n

La
be

l

V
al

ue
Se

le
ct

io
n

y4
=

‘C
y3
∈
E

B
in

di
ng

E
m

pt
y

O
ni

on
Pa

tt
er

n

La
be

l

Le
af

y3
\E
∼
∅/
∅ ∅
↑◦

[]
C

tr
Pa

t(
∅)

‘C
y3
\E
∼
∅/
∅ ∅
↑◦

[]
‘C

y3
\E
∼
{x
\F

2
}/
∅

∅
↑◦

[]
‘C

y3
\E
∼
{x
\F

2
}/
∅

∅
↓◦

[x
=

‘C
y3

]
y4
\E
∼
{x
\F

2
}/
∅

∅
↓◦

[x
=

‘C
y3

]
C

tr
Pa

t(
..
.)

‘B
y4
\E
∼
{p

6\
F

2
}/
∅

{p
1\
F

1
}
↑◦

[x
=

‘C
y3

]

y5
\E
∼
{p

6\
F

2
}/
∅

{p
1\
F

1
}
↑◦

[x
=

‘C
y3

]
· ·

C
tr

Pa
t(
..
.)

y2
&

y5
\E
∼
{p

4\
F

2
,p

6\
F

2
}/
∅

{p
1\
F

1
}

↑◦
[x

=
‘C

y3
,.
..

]

y2
&

y5
\E
∼
{p

3\
F

2
,p

4\
F

2
,p

6\
F

2
}/
∅

{p
1\
F

1
,.
..
}

↑◦
[x

=
‘C

y3
,.
..

]

y2
&

y5
\E
∼
{p

3\
F

2
,p

4\
F

2
,p

6\
F

2
}/
∅

{p
1\
F

1
,.
..
}

↓◦
[x

=
‘C

y3
,.
..

]

y2
&

y5
\E
∼
{p

3\
F

2
}/
∅

{p
1\
F

1
}
↓◦

[x
=

‘C
y3
,.
..

]

y6
\E
∼
{p

3\
F

2
}/
∅

{p
1\
F

1
}
↓◦

[x
=

‘C
y3
,.
..

]

Fi
gu

re
3.
9:

Ex
am

pl
e
Pr

oo
fo

fV
al
ue

C
om

pa
tib

ili
ty

43

CHAPTER 3. FORMALIZATION

Function Match
x0 = p -> e ∈ E x1\E ∼ {p}/∅P ↓◦ E′

x0 x1 ;P {p}
E e @ E′

Function Mismatch
x0 = p -> e ∈ E x1\E ∼ ∅/∅

P∪{p} ↓◦ []

x0 x1 ;P {p}
E # [] @ []

Non-Function
x0 = v ∈ E v not of the form p -> e or x′1 &x′2

x0 x1 ;P ∅
E # [] @ []

Onion Left
x0 =x2 &x3 ∈ E x2 x1 ;P1 P2

E e @ E′

x0 x1 ;P1 P2
E e @ E′

Onion Right
x0 =x2 &x3 ∈ E x2 x1 ;P1 P2

E # e2 @ E′2 x3 x1 ;P1∪P2 P3
E � e3 @ E′3

x0 x1 ;P1 P2∪P3
E � e3 @ E′3

Figure 3.10: Value Application Relation

The � position is used to indicate success () or failure (#). In the event of success, e is the
body of the successfully-matching simple function and E′ contains the appropriate bindings
which resulted from matching the argument to its pattern. (Otherwise, these positions
are of no semantic value.) The pattern set positions P1 and P2 are discussed below but,
like the positive pattern set P+ in the compatibility relation, they are present to aid in
the alignment with the type system and can be safely ignored when considering only the
operational semantics. We discuss the purpose of the pattern sets below.

We define the application compatibility relation formally as follows:

Definition 3.10 (Value Application Matching). We define x0 x1 ;P1 P2
E � e @ E′ to hold

when a proof exists in the system appearing in Figure 3.10.

Consider a case in which a single simple function is applied to an argument. If the
pattern of the function matches the argument, then the Function Match rule of application
matching will apply (with the set of previously-visited patterns P1 being the empty set): the
compatibility premise has P+◦ = {p} (where p is the function’s pattern) and P+ = P− = ∅.
In this case, the e and E′ positions are the body of the function and the bindings produced
by pattern matching (respectively). If instead the function’s pattern does not match the
argument, then the Function Mismatch rule applies (since the function’s pattern is in the
negative pattern set P−). For any case in which the argument is a simple function, this is
exhaustive: the function’s pattern either matches the argument or it does not.

If the function position is a compound function, then we have three cases: (1) the

44

CHAPTER 3. FORMALIZATION

left side of the compound function matches the argument, (2) the left side does not match
but the right side does, or (3) neither side matches. The first case is trivially handled by
the Onion Left rule. The second two cases are addressed by the Onion Right rule: as long
as the left side does not match, the result is determined by the right side. This how the
left-priority dispatch of compound functions is ensured.

As stated above, the pattern set positions of this relation are not strictly necessary
to express the operational semantics; they are present to ease the alignment with the type
system. Thinking of the application matching process in a procedural, chronological sense,
the purpose of the left pattern set P1 is to indicate which patterns have failed to match
the argument thus far. This is the reason that we selected P1 = ∅ in our simple function
example above: if no patterns have yet been considered, no patterns have failed to match.
The right pattern set P2 specifies a set of patterns which have been considered by previous
compatibility proofs; hence, the only rules which add a new pattern to that set are the
Function Match and Function Mismatch rules. (The remaining rules with non-empty P2

build their failed pattern sets from other application matching proofs.) This place in the
application matching relation is redundant – the Onion Right rule ensures that the right
side of a compound function is only considered if its left side failed – but it is only redundant
because the operational semantics are deterministic. In the type system, union elimination
on types is modeled non-deterministically, requiring this left-prioritized exploration to be
explicitly represented. By explicitly representing it in the evaluation relation as well, we
simplify the soundness proof.

3.4.3 Small Step Evaluation

Given the above definitions of compatibility and matching, we can define the small-
step semantics of ANF TinyBang as a relation e −→1 e′. Our definition uses an environment-
based semantics; it proceeds on the first unevaluated clause of e. We use an environment-
based semantics (rather than a substitution-based semantics) due to its suitability to ANF
and because it aligns well with the type system presented in the next section.

The expressions in ANF TinyBang uniquely define each variable. To maintain
this invariant throughout evaluation, we must ensure that newly introduced variables have
not yet been encountered; in particular, as function bodies are expanded, we must freshen
them. We do so using a function α(x, x′) = x′′ which takes a call site x and a function body
variable x′ and returns a new variable x′′ meant to replace x′ in the body of the function.
We give here a formal notion of this freshness.

Definition 3.11 (Variable Freshening). We define α(x, x′) as a function with the following
properties:

45

CHAPTER 3. FORMALIZATION

1. This function is injective.
2. The codomain of this function is disjoint from the set of variables appearing in the

initial expression e.
3. There exists a strict partial ordering on variables such that x < x′ if x′ is in the

codomain of α(x,−) (i.e. there are no cycles in any variable’s freshening lineage).

Because no call site is visited more than once (as call sites within loops are sub-
jected to variable substitution), this ensures that every new variable is fresh.1 As we often
consider variable substitution for a fixed call site, we introduce the following notational
convenience:

Notation 3.12 (Variable Replacement). We use ς to range over variable replacement func-
tions (e.g. ς(x) = x′). We also introduce some notational sugar for clarity:
• We overload the application of a replacement function to operate homomorphically

over expressions (e.g. ς(x = y) = ς(x) = ς(y).
• We write ς

∣∣
e
to indicate the function which replaces all variables bound by e in the

same manner as ς and which replaces all other variables with themselves. Taken with
the above, we have ς

∣∣
x=y(x=y) = ς(x)=y (since x is bound by the expression x=y but y

is not).

In addition to the above, we must be able to freshen only the pattern side of
variables in the bindings produced by compatibility. To do so, we provide the following
definition:

Definition 3.13 (Binding Freshening). We let BFresh(ς,
n−−−−−⇀

x� =x′
�
) =

n−−−−−−−−⇀

ς(x�) =x′
�
.

We also require the ability to identify the last bound variable in an expression.
The last variable in a function’s body, for instance, contains the result of that function’s
evaluation. We define a simple function for this purpose:

Definition 3.14 (Return Variable). We let RV(n−⇀s) be the variable bound by sn.

Using this notation, we define the small step relation as follows:

Definition 3.15 (Small Step Operational Semantics). Let e −→1 e′ be the relation satis-
fying the rules given by Figure 3.11. We write e X−→1 e′ if it is not true that e −→1 e′.

As stated above, small-step evaluation proceeds by operating on the first uneval-
uated clause. This is expressed by the use of concatenation with E; for instance, the only
expressions of the form E ||[x1 =x2] || e are those expressions for which the first unevaluated
clause is x1 =x2 (because the grammar of E only admits evaluated clauses). The Variable
Lookup rule above operates on such clauses, replacing them with evaluated clauses and

1Section 4.7.1 contains a formalization of these properties which is used by the type system’s proof of
soundness.

46

CHAPTER 3. FORMALIZATION

Variable Lookup
x1 = v ∈ E

E ||[x2 =x1] || e −→1 E ||[x2 = v] || e

Application
x0 x1 ;∅ P

E e
′ @ E′

ς = α(x2,−) ς ′ = ς
∣∣
E′ || e′ e′′ = ς ′(e′) E′′ = BFresh(ς ′, E′)

E ||[x2 =x0 x1] || e −→1 E ||E′′ || e′′ ||[x2 = RV(e′′)] || e

Figure 3.11: Small Step Evaluation

otherwise leaving the expression unchanged.
The Application Rule proceeds first by finding a match for the provided argument

x1 in the function x0. If the application matching relation yields a successful match, e′ is
the body of the simple function whose pattern matched the argument and E′ contains the
bindings to its pattern’s variables. Both E′ and e′ are then freshened and inserted into the
expression in place of the origin application clause. Finally, the additional clause x2 = RV(e′′)
copies the result of the function (stored in its last defined variable) to the variable which
was originally assigned from the application.

We can then formally define the process of evaluation as a sequence of steps with
the following relation:

Definition 3.16 (Multiple Small Steps). Let e0 −→∗ en iff e0 −→1 e1 −→1 . . . −→1 en.

When evaluation is complete, the last expression in the sequence will be of the
form E. We observe that E X−→1 e for any e. In any other case, however, some unevaluated
clause cannot be evaluated and the expression is “stuck.” We define this term formally as
follows:

Definition 3.17 (Stuck). If e X−→1 e′ and e is not of the form E, then e is stuck.

In the next section, we present the TinyBang type system, which conservatively
attempts to determine whether an expression can become stuck.

3.5 Type System

This section formalizes a type system for ANF TinyBang based on previous work
on subtype constraint systems [3, 4, 53, 54, 74]. A subtype constraint system is suitable
for typing ANF TinyBang for several reasons. First, previous subtype constraint systems
[4, 53] capture control flow information through the use of conditional constraints; this helps

47

CHAPTER 3. FORMALIZATION

in providing the heterogeneous case type behavior described in Section 2.2, although the
complexity of the types used in TinyBang prevent these previous approaches from being
directly applied. Second, subtype constraint systems have been shown [53] to be suitable
for complex pattern matching and record concatenation operations (although those systems
use row typing [71] while this type system uses onion types and a weakened form of lower
bound intersection). Combining subtype constraints with a suitable polymorphism model
[74] has also shown such systems capable of inferring precise types for objects.

The fact that subtype constraints are so suitable for our evaluation system is
not simply good fortune. As stated in Section 1.3, we developed the evaluation and type
systems concurrently with the objective of keeping them as similar as possible. For instance,
the choice of our ANF expression grammar (which represents all in-progress evaluation as
a list of shallow clauses rather than with a recursive expression grammar) was made for
more direct alignment with our type system (which represents types as a set of shallow
constraints rather than a recursive type grammar). In addition to aligning the expression
and type grammars, we design the evaluation and type system relations to be quite similar as
well. We do not take the standard approach of presenting a declarative set of type checking
rules and a separate type inference algorithm. Type checking in TinyBang instead proceeds
by inferring subtype constraints for a given expression and then deductively closing over
those constraints to determine if they are consistent. This constraint closure corresponds to
evaluation in the same way that the type grammar corresponds to the expression grammar.

TinyBang’s type checking is quite similar to approaches used in the field of abstract
interpretation [21]. The connection between abstract interpretation and subtype constraint
systems is well-understood ([50] among others). For instance, we begin typechecking by
inferring constraints for the expression to be typechecked. This inference function forms
the left adjoint of a Galois connection from the expression grammar to the type grammar and
the constraint closure process can be viewed as the execution of the abstract interpretation.
Unlike abstract interpretations, however, our closure process is monotonic and produces only
invariant facts; we discuss this in greater detail when we use this connection to structure
the soundness proof in Chapter 4.

Our formal presentation of the type system appears below. We begin by defining
the type grammar and the initial alignment function. We then define relations corresponding
to those which appeared in the evaluation system; as a result of decisions we made when
defining the evaluation relations, the alignment between them and the corresponding type
relations is quite intuitive. We then give a formal definition of typechecking in terms of
these definitions.

48

CHAPTER 3. FORMALIZATION

C ::= ⨽−−⨼c constraint sets

c ::= τ
∣∣Π+

Π− <: α | α <: α | α α <: α constraints
τ ::= () | l α | α &α | π → t types
t ::= α\C constrained types

Π,Π+,Π−,Π+◦ ::= ⨽−−⨼π pattern sets
π ::= α\Ψ patterns

Ψ ::=
⨽−−⨼
ψ filter constraint sets

ψ ::= φ <: α filter constraints
φ ::= () | l α | α *α filters
α type variables

Figure 3.12: Type Grammar

3.5.1 Initial Alignment

Figure 3.12 provides a grammar of the TinyBang type system. The close align-
ment between the expression and type grammars can be seen here: τ corresponds to v, π
corresponds to p, and so forth. In fact, these grammars are more similar than they are
different. Of note, however, is that C does not directly correspond to e; instead, we repre-
sent the type of e with the pair α\C (a constrained type). This is necessary to model the
behavior of the RV function: expressions are ordered and so the last clause of an expression
(or the variable thereof) is easy to determine, but constraint sets are unordered and so the
corresponding type variable must be explicitly represented.

Another difference between the expression grammar and the type grammar arises
in value clauses. A value clause in the expression grammar is of the form x = v, but the
corresponding type system constraint is written τ

∣∣Π+

Π− <: α. In this case, the type system
carries additional information in the form of a restriction which is described as two pattern
sets: those which match and those which do not. The meaning of τ

∣∣Π+

Π− is the set of values
which are members of τ that match all patterns in Π+ and do not match patterns in Π−.
This is, in essence, a type intersection. Although lower-bounding intersection types are
known to introduce challenges in subtype constraint systems [3], the associated problems
do not arise because the restriction here is limited to the pattern grammar (which is not
as expressive as the type grammar). The process of initial alignment does not introduce
restrictions – all lower-bounding constraints have empty pattern sets – so a reader can safely
ignore the restriction sets for now.

Given an expression, we need to be able to produce a set of constraints representing
it which we can then subject to logical closure. We formalize this initial alignment step as
a function JeKE taking an expression and yielding a constrained type α\C. To support this

49

CHAPTER 3. FORMALIZATION

J
n−⇀s KE = αn\

n⨽−−⨼c where ∀i ∈ {1..n}. JsiKE = αi\ci

Jx1 =x2KE = Jx1KV\Jx2KV <: Jx1KV

Jx1 =x2 x3KE = Jx1KV\Jx2KV Jx3KV <: Jx1KV

Jx = vKE = JxKV\ (JvKE)
∣∣∅
∅ <: JxKV

J()KE = ()
Jl xKE = l JxKV

Jx1 &x2KE = Jx1KV & Jx2KV

Jp -> eKE = JpKP → JeKE

Jx\F KP = JxKV\{JfKP | f ∈ F}
Jx =ϕKP = JϕKP <: JxKV

J()KP = ()
Jl xKP = l JxKV

Jx1 *x2KP = Jx1KV * Jx2KV

Figure 3.13: Initial Alignment

alignment, we first define the alignment on the variables themselves:

Definition 3.18 (Initial Alignment Variables). Let JxKV = α be an injective function. Type
variables in the codomain of J−KV are termed initial type variables.

Given this function, we then define JeKE below. This definition also overloads J−KE

to operate on individual clauses and defines a function J−KP which operates on patterns.

Definition 3.19 (Initial Alignment). Let the functions J−KE and J−KP be defined as in
Figure 3.13.

The alignment itself is quite simple, but it is worth nothing that functions p -> e

produce types α\Ψ → α′\C: the entire body of the function is preserved in the form of a
constrained type.

3.5.2 Definitions for Alignment

Above, we have defined a type grammar which parallels that of the evaluation
system. Below, we will do the same for each relation appearing in the evaluation system,
ensuring that the type checking process closely follows the behavior of evaluation. In order
to do so, however, we require several definitions to parallel basic statements made about the
evaluation system and the well-formedness of expressions. We give those simple definitions
below.

50

CHAPTER 3. FORMALIZATION

3.5.2.1 Bound and Free Variables

In Section 3.3.3, we give a definition of two functions: BV, which determines the
variables bound in a given expression, clause, and so on; and FV, which determines the
variables free in such an argument. Although it is uncommon to use that terminology in
this way with type variables – bound and free type variables are usually determined by
explicit quantifiers present on types – we define those parallels here as they pertain to the
constraint sets themselves. Just as a clause binds the variable on its left, for instance,
a constraint binds the variable appearing on its right. We formally define these functions
below. Note that this definition carefully follows the same alignment as the initial alignment
function above.
Definition 3.20 (Bound and Free Type Variables). BV and FV are defined on types and

constraints as follows:

Constraint Sets

BV(∅) = ∅ FV(∅) = ∅

BV(C) = {BV(c) | c ∈ C} FV(C) = {FV(c) | c ∈ C} − BV(C)

Constraints

BV(α1 <: α2) = {α2} FV(α1 <: α2) = {α1}

BV(α1 α2 <: α3) = {α3} FV(α1 α2 <: α3) = {α1, α2}

BV(τ
∣∣Π+

Π− <: α1) = {α1} FV(τ
∣∣Π+

Π− <: α1) = FV(τ)

Types

FV(()) = ∅

FV(l α) = {α}

FV(α1 &α2) = {α1, α2}

FV(π ->α\C) = FV(C)− BV(π)

Pattern Types

BV(α\Ψ ∪ {φ <: α}) = {α} ∪ BV(φ\Ψ) FV(α\Ψ ∪ {φ <: α}) = FV(φ\Ψ)− BV(φ\Ψ)

BV(() \Ψ) = ∅ FV(() \Ψ) = ∅

BV(l α\Ψ) = BV(α\Ψ) FV(l α\Ψ) = FV(α\Ψ)

BV(α1 *α2\Ψ) = BV(α1\Ψ) ∪ BV(α2\Ψ) FV(α1 *α2\Ψ) = FV(α1\Ψ) ∪ FV(α2\Ψ)

As in the evaluation system, the above function is not well-defined when a pattern
type contains multiple filter rules for the same type variable. This is intentional; it mirrors
the evaluation system and prevents such patterns from being present in (the types of) closed
expressions.

51

CHAPTER 3. FORMALIZATION

3.5.2.2 Type System Patterns

Next, we provide definitions relating to patterns which correspond to some basic
definitions used by the evaluation system. Notation 3.2, for instance, describes the meaning
of a value appearing in a pattern where a variable is expected. We provide a similar
definition for pattern types here; as constrained types have syntax similar to patterns and
pattern types, we extend this notation to constrained types as well.

Notation 3.21 (Type Root Sugar). For legibility, we sometimes write τ\C to mean α\C
such that τ <: α ∈ C. Likewise, we write φ\Ψ to mean α\Ψ where φ <: α ∈ Ψ.

We also give the same meaning to the use of a pattern set within a label constructor:

Notation 3.22 (Pattern Type Constructor Sugar). For legibility, we sometimes write l Π
to mean {l α\Ψ | α\Ψ ∈ Π}. Similar notation applies for other pattern constructors, taking
a Cartesian product in cases where a pattern constructor has more than one type variable
argument.

Further, Section 3.4.1.2 gives a notion of a constructor pattern. The type system’s
patterns correspond directly; this gives rise to the idea of a constructor pattern type. This
definition is unsurprising and is given as follows:

Definition 3.23 (Constructor Pattern Type). We define constructor pattern types to be
those pattern types which immediately match a particular data constructor type. We
overload the predicate function CtrPat as follows:

CtrPat(π) =

true π = l α\Ψ

false otherwise
CtrPat(Π) =

∧
{CtrPat(π) | π ∈ Π}

As in the evaluation system, this definition of constructor pattern types would
include integers, strings, or any other concrete primitive types if they were added to the
language.

Finally, Section 3.3.2 defines a notion of pattern well-formedness. We extend that
notion to include pattern types with the following definitions:

Definition 3.24 (Filter Constraint Variable Appearances). A type variable α is the upper
bound of a filter constraint ψ iff ψ = φ <: α. A type variable α appears in the lower bound
of a filter constraint ψ iff ψ = φ <: α′ and φ is one of l α, α *α′′, or α′′ *α.

Definition 3.25 (Pattern Type Well-Formedness). A pattern type α\Ψ is ill-formed iff:

• There exist two filter constraints ψ1 6= ψ2 such that {ψ1, ψ2} ⊆ Ψ, α′ is the upper
bound of ψ1, and α′ is the upper bound of ψ2; or

52

CHAPTER 3. FORMALIZATION

• There exists some
n⨽−−⨼
ψ ⊆ Ψ such that α′ is the upper bound of ψ1 iff α′ appears in the

lower bound of ψn and, for each i ∈ {2..n}, α′ is the upper bound of ψi iff α′ appears
in the lower bound of ψi−1; or

• There exists some ψ ∈ Ψ such that α′ appears in the lower bound of ψ and, for all
ψ′ ∈ Ψ, α′ is not the upper bound of ψ′; or

• For all ψ ∈ Ψ, α is not the upper bound of ψ.

A pattern type which is not ill-formed is well-formed.

It is trivial to show that the initial alignment of a well-formed pattern is a well-
formed pattern type.

With these definitions, we are ready to proceed to the formalization of type system
relations which parallel those in the evaluation system.

3.5.3 Compatibility

In Section 3.4.1, we provided a definition of the evaluation compatibility relation.
That relation answers a significant question: with what bindings does a given value match
a pattern specification (a set of positive binding patterns, a set of positive non-binding
patterns, and a set of negative (non-binding) patterns)? The answer to this question is core
to the semantics of the TinyBang language. A parallel question arises during type checking:
with what bindings does a given type match a pattern type specification? We present the
type system equivalent of compatibility here.

Recall that the design of the evaluation compatibility relation was selected with
the intent of simplifying the alignment between that relation and its type system equivalent;
we reap the rewards of this effort now. We define type compatibility as follows:

Definition 3.26 (Type Compatibility). Taking ↑↓◦ to range over the set {↑◦, ↓◦}, we mutually
define the relations τ\C ∼ Π+◦ /Π+

Π−
↑↓◦ C ′ and α\C ∼ Π+◦ /Π+

Π−
↑↓◦ C ′ to hold when a proof exists

in the system appearing in Figure 3.14.

The type compatibility relation is very nearly a syntactic substitution of the value
compatibility relation from Section 3.4.1. In fact, the only two rules which are not syntactic
substitutions are the Binding and Type Selection rules. The Binding rule introduces filtered
lower bounds to the constraint set; the Type Selection rule makes use of them. We discuss
those rules below and provide examples. Before this discussion, however, we introduce some
notation which is used exclusively in examples for the sake of legibility.

53

CHAPTER 3. FORMALIZATION

Leaf

α\C ∼ ∅/∅∅ ↑↓◦ ∅

Type Selection
τ
∣∣Π+

1
Π−1

<: α ∈ C τ\C ∼ Π+◦ /Π+
1 ∪Π+

2
Π−1 ∪Π−2

↑↓◦ C ′

α\C ∼ Π+◦ /Π+
2

Π−2
↑↓◦ C ′

Binding
τ\C ∼ Π+◦ /Π+

Π− ↑◦ C ′ C ′′ = {τ
∣∣Π+◦∪Π+

Π− <: α | α\Ψ ∈ Π+◦}

τ\C ∼ Π+◦ /Π+

Π− ↓◦ C ′ ∪ C ′′

Empty Onion Pattern
τ\C ∼ Π+◦

1 /Π
+
1

Π− ↓◦ C ′ Π+◦
2 ∪Π+

2 = {() \Ψ}

τ\C ∼ Π+◦
1 ∪Π+◦

2 /Π
+
1 ∪Π+

2
Π− ↑◦ C ′

Conjunction Pattern
τ\C ∼ Π+◦

1 /Π
+
1

Π−1
↓◦ C ′ Π+◦

2 ⊆ {α′1 *α′2\Ψ | α′1\Ψ ∈ Π+◦
1 ∧ α′2\Ψ ∈ Π+◦

1 }
Π+

2 ⊆ {α
′
1 *α′2\Ψ | α′1\Ψ ∈ Π+

1 ∧ α
′
2\Ψ ∈ Π+

1 }
Π−2 ⊆ {α′1 *α′2\Ψ | α′1\Ψ ∈ Π−1 ∨ α′2\Ψ ∈ Π−1 }

τ\C ∼ Π+◦
1 ∪Π+◦

2 /Π
+
1 ∪Π+

2
Π−1 ∪Π−2

↑◦ C ′

Conjunction Weakening
τ\C ∼ Π+◦

1 ∪Π+◦
2 /Π

+
1 ∪Π+

2
Π−1 ∪Π−2

↓◦ C ′ Π+◦
2 ⊆ {αi\Ψ | i ∈ {1, 2} ∧ α1 *α2\Ψ ∈ Π+◦

1 }
Π+

2 ⊆ {αi\Ψ | i ∈ {1, 2} ∧ α1 *α2\Ψ ∈ Π+
1 }

Π−2 ⊆ {αi\Ψ | i ∈ {1, 2} ∧ α1 *α2\Ψ ∈ Π−1 }

τ\C ∼ Π+◦
1 /Π

+
1

Π−1
↓◦ C ′

Empty Onion
CtrPat(Π−)

() \C ∼ ∅/∅Π− ↑◦ ∅

Function
CtrPat(Π−)

(π → t)\C ∼ ∅/∅Π− ↑◦ ∅

Onion
α1\C ∼

Π+◦
1 /Π

+
1

Π−∪Π+◦
2 ∪Π+

2
↑◦ C ′1

α2\C ∼
Π+◦

2 /Π
+
2

Π− ↑◦ C ′2 CtrPat(Π+◦
1 ∪Π+◦

2 ∪Π+
1 ∪Π+

2 ∪Π−)

α1 &α2\C ∼
Π+◦

1 ∪Π+◦
2 /Π

+
1 ∪Π+

2
Π− ↑◦ C ′1 ∪ C ′2

Label
α\C ∼ Π+◦ /Π+

Π−1
↓◦ C ′ CtrPat(Π−2) {l α′\Ψ ∈ Π−2 } = ∅

l α\C ∼ lΠ+◦ /lΠ+

(lΠ−1)∪Π−2
↑◦ C ′

Figure 3.14: Type Compatibility

54

CHAPTER 3. FORMALIZATION

3.5.3.1 Example Notation

As stated above, the shallow nature of type constraints aligns very well with the
ANF grammar of the evaluation system. It provides several advantages in a formal system:
simplification of decidability and soundness proofs, an ease of naming (since every point in
any tree in either system is uniquely named by a variable), and so forth. Unfortunately,
the introduction of so many unique variable names is detrimental to readability. It is much
more intuitive to discuss the type ‘A ‘B () rather than the type α0\{‘A α1 <: α0, ‘B α2 <:
α1, () <: α2} so long as the particular variable names α0, α1, and α2 have no special
relevance to the topic at hand. As types become more complex, this only becomes more
significant.

Although we formalize the type system in terms of the more verbose and alge-
braically convenient constraint sets, the nested type form is useful in discussions. As we
wish to ensure that the discussion remains formal and precise, we now introduce notation
for using these nested types in a formal manner to refer to their set constraint equivalents.

Notation 3.27 (Nested Types). Throughout the remainder of this document, the following
notation applies:

• If a type appears as the lower bound of a constraint without pattern sets, those sets
are assumed to be empty. For instance, we take () <: α to mean ()

∣∣∅
∅ <: α.

• If a type appears where a type variable was expected within a constraint in a set, we
take this to mean that there exists an additional variable in the set which is bounded
from below only by that type and that this additional variable was intended in place of
the type. For instance, we take α0\{‘A () <: α0} to mean α0\{‘A α1 <: α0, () <: α1}
for some α1 /∈ {α0}.

• If a type τ appears where a constrained type α\C is expected, we take α0 to be some
otherwise-unused variable and assume that τ appears as its only lower bound in C.
For instance, we take () to mean α0\{() <: α0} when a constrained type is expected.

• We interpret patterns in a fashion analogous to the previous two points. For in-
stance, we take ‘A ‘B () to mean α0\{‘A α1 <: α0, ‘B α2 <: α1, () <: α2} for some
otherwise-unused α0, α1, and α2 when a pattern is expected.

• If the term α1 ∪α2 appears where a type variable was expected, we take this to mean
that there exists an additional variable in the set which is bounded from below only by
those two type variables and that this additional variable was intended in place of the

55

CHAPTER 3. FORMALIZATION

union expression.2 This may (and often will) be combined with other interpretations
of certain terms in place of type variables. For instance, we take ‘A () ∪ ‘B () to
mean α0\{‘A () <: α0, ‘B () <: α0} (which is in turn interpreted as above).

Using the above example notation, we now discuss the two rules of significance in
the type compatibility relation.

3.5.3.2 The Binding Rule

In both systems, the Binding rule is the only rule which adds to the bindings for a
given compatibility relation; all other rules either create an empty binding set or faithfully
relay the bindings from their premises. In the evaluation system, all pattern variables
are bound to the value currently under consideration (the first place in the compatibility
relation). These bindings are represented as value clauses and later used to represent values
arriving at the variables defined by the pattern.

In the type system, however, the constraint corresponding to the value clause
includes the type restriction; thus, type system bindings are represented by constraints of
the form τ

∣∣Π+

Π− <: α. The pattern sets Π+ and Π− restrict the type τ by limiting it to the
cases in which it matches the patterns Π+ and does not match the patterns Π−. This is
unnecessary in the evaluation system because the value under consideration only represents
a single value: it either matches a pattern or it does not. A type, however, may match a
pattern in some cases but not others because types may represent multiple values.

As an example, consider the constrained type3 ‘A (‘B () ∪ ‘C ()). Also consider
the following function:

1 p3 \ { p3 = ‘A p4
2 , p4 = ‘B p5
3 , p5 = ()
4 } ->
5 { x6 = p4
6 }

This function has type (‘A α4)\{‘B () <: α4} → α6\{α4 <: α6}; in other words,
it accepts anything of the form ‘A ‘B . . . and its return type is exactly the type of the
‘B label and its contents. Suppose that the above type – ‘A (‘B () ∪ ‘C ()) – is passed
to this function. Within the body of the function, we know we are only dealing with the
cases of this type which can match the ‘A ‘B () pattern; thus, we know that α4 is bound

2Recall that, in a subtype constraint system, union types can be described with multiple lower bounds
on a type variable.

3Here, we are using the notation from Section 3.5.3.1.

56

CHAPTER 3. FORMALIZATION

to a ‘B label only. The compatibility relation represents this with a binding set such as
{‘B ()

∣∣{‘B ()}
∅ <: α4, ‘C ()

∣∣{‘B ()}
∅ <: α4}, which directly expresses the previous intuitions:

the filtered type ‘C ()
∣∣{‘B ()}
∅ has no inhabitants because ‘C () does not match the pattern

‘B (). The resulting bindings are, for all intents and purposes, equivalent to the type ‘B (),
but this sort of reduction is not always possible in the general case.4 Rather than eagerly
reducing the type now, we opt to defer the work to the point at which the filtered type
becomes relevant: the Type Selection rule.

3.5.3.3 The Type Selection Rule

As the Binding rule of type compatibility introduces new lower-bounding filtered
type constraints, the Type Selection rule consumes them. Like the Value Selection rule in
the evaluation semantics, the purpose of the Type Selection rule is to construct a variable-
based compatibility proof using a type-based compatibility proof. But for the reasons
describe above, the Type Selection rule receives a type as well as a restriction in the form
of two pattern sets; any statement we make regarding the compatibility of the variable
must apply to the type under these restrictions. Conveniently, we can simply incorporate
those restrictions as part of the compatibility proof burden! The form of the compatibility
relation was chosen specifically to make this possible, thus easing the process of handling
filtered types. We drive our explanation by example.

Consider the case of passing the x6 return value from the above example to a
compound function of type (‘C () → . . .) & (‘B () → . . .). (We elide the body types here
because they are unimportant.) Because the argument type is equivalent to ‘B (), we
would expect it to fail to match the first pattern and to succeed in matching the second.
This is, in fact, the behavior we observe.

When checking compatibility with the first pattern, ‘C (), we have two cases: one
for each of the lower bounds of α4. In the case of ‘B ()

∣∣{‘B ()}
∅ <: α4, the Type Selection

rule dictates that we must proceed on the type ‘B () with the additional burden that it
matches the pattern ‘B () (which is added to the P+ position). With or without this
additional proof burden, the type ‘B () can be shown incompatible with the pattern ‘C ()

and not compatible with it. In the other case – ‘C ()
∣∣{‘B ()}
∅ <: α4 – we proceed likewise

but with the type ‘C (). In this case, the additional proof burden becomes crucial. It is, of
course, possible to show that the type ‘C () is compatible with the pattern ‘C (), but the

4Previous drafts of this type system [49] used a slicing technique to construct union-eliminated bindings
at this point (rather than restrict the type using patterns); a new type was actively constructed which
represented only the portion of the original type that matched the patterns. While appealing, this technique
was subject to subtle decidability issues, the solutions to which were not elegant. This type restriction-based
model is a refinement of that legacy.

57

CHAPTER 3. FORMALIZATION

Type Selection rule also adds the burden of the restriction – ‘B () – to the proof. Since it
cannot be shown that the type ‘C () matches the pattern ‘B (), it cannot be shown that
α4 matches the pattern ‘C () for the first function. In this way, empty types are lazily
filtered out during pattern matching.

When checking compatibility with the second pattern, ‘B (), the process is much
the same. In this case, the first lower bound successfully matches (since its restriction is
essentially redundant here) and pattern matching succeeds. The second case proceeds the
same way and will, in fact, continue to do so in any pattern matching case, since the type
‘C () will never match the pattern ‘B () regardless of which other patterns are involved.

3.5.3.4 Positive Non-Binding Patterns

In designing the value compatibility relation in Section 3.4.1, we included a position
which is never used: the P+ position, which we call the “positive non-binding patterns.”
Although the operational semantics can do without this position, we include it in order
to simplify the alignment between the evaluation system and the type system. The type
system uses that position to store the proof obligations incurred by restrictions which have
been encountered in the argument.

The distinction between the positions Π+◦ and Π+ is that the former creates variable
bindings while the latter does not. In practice, we are attempting to apply a function to an
argument and we wish to receive bindings for that function’s pattern. It would not make
sense to include bindings for the other functions that the argument has passed through
before arriving here; thus, those patterns are stored in the latter set.

3.5.3.5 Pattern Sets and Union Alignment

In addition to allowing the restrictions to be incorporated into the compatibility
proof as positive non-binding patterns, our use of pattern sets in the compatibility relation
serves another purpose: it solves the subtle problem of union alignment [22]. Consider
checking the compatibility of the argument ‘A () ∪ ‘B () with the pattern ‘A () * ‘B ().
This pattern match should fail: there are values in the type (e.g. ‘A ()) which do not
match the pattern. Intuitively, an argument matches a conjunction pattern if it matches
both conjuncts, so we should be able to reduce this problem to two smaller problems:
whether ‘A () ∪ ‘B () matches the pattern ‘A () and whether it matches the pattern
‘B (). The difficulty is these union types neither entirely match nor entirely fail to match
those patterns: some values in the type ‘A () ∪ ‘B () will match the pattern ‘A () and
some values will not.

This problem results from the existence of union types, which are represented in

58

CHAPTER 3. FORMALIZATION

a set of type constraints by multiple lower bounds on a single type variable. Recall from
Notation 3.27 that the type ‘A ()∪‘B () is more properly written α\{‘A () <: α, ‘B () <:
α}. In the evaluation system, the corresponding environment – [x = ‘A . . . , x = ‘B . . .] – is
ill-formed: only one value is assigned to each variable at runtime. During static analysis,
however, we often only know that the value appearing at a given point in the program is
drawn for a particular set; representing this nondeterminism requires union types.

Intuitively, however, we can proceed by case analysis: consider each disjunct as
a separate case. This leads to a rule like the Type Selection rule, where a lower bound is
selected nondeterministically from the set: proofs of the relation can now be constructed
using either disjunct in the type. But these nondeterministic union eliminations must
be done consistently. In the above example, consider the two smaller tasks: matching
‘A ()∪‘B () with ‘A () and matching ‘A ()∪‘B () with ‘B (). We can show a positive
match in the first task by selecting the left disjunct and we can show a positive match in the
second task by selecting the right disjunct, but this doesn’t mean that a value of the type
will match the pattern. To avoid false positives, we must ensure that the same decision is
made about each union at each point in the type throughout a given proof.

Previous type compatibility relations in this theory [49] have more closely resem-
bled one of the draft versions presented in the operational semantics section: specifically,
Figure 3.7. In that relation, a single value type is checked against a single pattern. In order
to avoid the above union alignment problem, it was necessary to ensure that unions had
been previously eliminated from the type; otherwise, the handling of conjunction patterns
would induce two positions in the proof tree where the same part of the type was being
union eliminated and the aforementioned union elimination problem could not be prevented
without adding ungainly alignment constraints to the relation.

In this type theory, we instead ensure that each part of the type is union-eliminated
by at most one point in the proof tree. In the Conjunction Pattern rule, for instance, there
is only one premise relying on a compatibility proof. The only case in which multiple
compatibility premises are permitted is the Onion rule, where each premise holds for a
disjoint part of the type we are examining. In this way, the union elimination problem
is solved implicitly by limiting the form of compatibility proofs rather than by explicit
alignment or argument type preprocessing.

3.5.4 Application Matching

The type system’s application matching relation directly parallels the evaluation
system’s relation in Section 3.4.2. As in the evaluation system, this relation propagates
the bindings from compatibility, adds the body of the matched function, and enforces left

59

CHAPTER 3. FORMALIZATION

precedence on dispatch. In a fashion similar to the type compatibility relation (though to
a lesser extent), the presence of union types and restrictions complicates matters; here, we
discuss these issues, give a formal definition of the relation, and then highlight the differences
between the evaluation and type systems.

Because filtered types are present, we must accommodate them in the application
matching relation. In the evaluation system, for instance, it is enough that a value is
assigned to the function variable x0 and that it has certain properties. In the type system,
however, it is possible to have constraints of the form (π → t)

∣∣{‘A ()}
∅ <: α0. In analogy

with the above examples of filtered types in compatibility, this type has no inhabitants –
there are no function values which match the pattern ‘A () – and so this type is spurious.
In this case, acting on that type would not be unsound as it would simply cause the type
system to overapproximate the type of the application. To limit false positives, however, it
is desirable to make use of this information.

To utilize restrictions within application matching, we give a predicate which con-
servatively determines whether a type is empty. We say a type is sensible if it meets this
predicate; all types which are not sensible are empty (though the converse is not true). We
define our sensibility predicate as follows:

Definition 3.28 (Sensible Types). We define Sensible(τ,Π+,Π−, C) to be true iff τ\C ∼
∅/Π+

Π−
↓◦ ∅.

We observe that, for instance, Sensible(π → t, {‘A ()}, ∅, C) is never true for the
reasons outlined above. In some cases, this sensibility predicate still overapproximates; for
instance, the type α0\{‘A α1

∣∣∅
∅ <: α0, ()

∣∣{‘B ()}
∅ <: α1} appears sensible (despite the fact

that ()
∣∣{‘B ()}
∅ is not) because our exploration into the type is initially motivated by the

filtering pattern sets on the root type variable α0 (which are empty). Solving this problem
perfectly is expensive if not impossible [38, 67]; this somewhat shallow sensibility predicate
acts as a good tradeoff between precision and performance.

Using this predicate, we formally define application matching as follows:

Definition 3.29 (Type Application Matching). We define the relation α0 α1 ;Π Π′
C � α′\C ′ @

C ′′ to hold when a proof exists in the system appearing in Figure 3.15.

As in the compatibility relation, the application matching relation of the evalua-
tion system is designed primarily to align well with this relation; in order to meet this goal,
it contains two redundant pattern set positions: one for patterns which have been shown
elsewhere in the proof to fail to match the argument and another for patterns which have
been shown in this proof subtree to fail to match the argument. While these positions are
redundant in the evaluation system, they are necessary in the type system: the nondeter-
ministic selection of constraints in the type application matching relation makes it subject

60

CHAPTER 3. FORMALIZATION

Function Match
τ
∣∣Π+

Π− <: α0 ∈ C τ = π → α′\C ′ Sensible(τ,Π+,Π−, C) α1\C ∼ {π}/∅Π ↓◦ C ′′

α0 α1 ;Π {π}
C α′\C ′ @ C ′′

Function Mismatch
τ
∣∣Π+

Π− <: α0 ∈ C τ = π → α′\C ′ Sensible(τ,Π+,Π−, C) α1\C ∼ ∅/∅
Π∪{π} ↓◦ ∅

α0 α1 ;Π {π}
C # α′\∅ @ ∅

Non-Function
τ
∣∣Π+

Π− <: α0 ∈ C τ not of the form π → t or α′1 &α′2 Sensible(τ,Π+,Π−, C)
α0 α1 ;Π1 ∅

C # α
′\∅ @ ∅

Onion Left
τ
∣∣Π+

Π− <: α0 ∈ C
τ = α2 &α3 Sensible(τ,Π+,Π−, C) α2 α1 ;Π1 Π2

C α′\C ′ @ C ′′

α0 α1 ;Π1 Π2
C α′\C ′ @ C ′′

Onion Right
τ
∣∣Π+

Π− <: α0 ∈ C τ = α2 &α3 Sensible(τ,Π+,Π−, C)
α2 α1 ;Π1 Π2

C # α′2\C ′2 @ C ′′2 α3 α1 ;Π1∪Π2 Π3
C � α′3\C ′3 @ C ′′3

α0 α1 ;Π1 Π2∪Π3
C � α′3\C ′3 @ C ′′3

Figure 3.15: Type Application Matching Relation

to the same form of union alignment concerns as the type compatibility relation.
For instance, consider the case in which a function of type (‘Some () →

. . .) & (‘None () → . . .) is applied to an argument of type (‘Some ()) ∪ (‘None ()). We
would expect this to be successful: there should exist two proofs of compatibility (one for
each side of the disjunct) which successfully match the appropriate function bodies; fur-
ther, it should be impossible to construct a proof of failure (� = #) since the disjuncts are
exhaustively matched.

For the same reasons as in the compatibility relation, it is insufficient simply to
prove compatibility for each side of the disjunct: we must make the union elimination
decision in a consistent way. In the compatibility rules, we forced the union elimination
decision into a single point in the proof tree. We do not apply that strategy here, however,
because such an approach would require matching on a list of functions simultaneously,
which becomes tremendously burdensome. Instead, we create each proof of compatibility
with the appropriate context, including all of the patterns which came before it. Taking

61

CHAPTER 3. FORMALIZATION

α0 to be the function type and α1 to be the argument type, we can prove (again using
Notation 3.27) that α1\C ∼ {‘Some ()}/∅

∅ ↓◦ Then, to consider all cases of the argument
which are not part of that outcome, we proceed by adding ‘Some () to the claimed pattern
set. It can then be shown that α1\C ∼ {‘None ()}/∅

{‘Some ()} ↓◦ Using these as the premises
to the Function Match rule, one can then build two proofs of type application matching,
each corresponding to one of the ways in which the compound function may match its
union-typed argument.

Suppose we wanted to show that applying a function of type (‘Some () →
. . .) & (‘None ()→ . . .) to an argument of type (‘Some ()) ∪ (‘None ()) might fail. (This
should not be possible – as stated above, the patterns of this compound function exhaus-
tively cover the argument – but it is helpful to illustrate why.) We must begin by showing
via the Function Mismatch rule that the argument does not match the pattern ‘Some ()

(which can be proven, as it is how the second successful match described above is con-
structed.) But because the Function Mismatch rule “claims” that pattern, the next use
of Function Mismatch is obligated to show α1\C ∼ ∅/∅

{‘Some (),‘None ()} ↓◦ . . . – that is, that the
argument can fail to match the ‘Some () and ‘None () patterns simultaneously. Although
the argument can fail to match either of these patterns, it does not fail to match both of
them simultaneously. As a result, we cannot prove a match failure; this is desirable, since
the application is an exhaustive match.

With this application matching relation defined, we can now go own to formalize
the process of constraint closure.

3.5.5 Constraint Closure

In this section, we define the constraint closure relation. Each step of constraint
closure propagates constraint information and abstractly models a single step of the oper-
ational semantics. This constraint closure is defined in terms of an abstract polymorphism
framework; we first discuss that framework and then present the constraint closure relation.

3.5.5.1 Polymorphism

The TinyBang type system is parametric in its polymorphism model, which con-
sists of two functions. The first, Φ, is analogous to the α(−,−) freshening function of the
operational semantics: Φ(α, α′) gives the type variable which should be used at call site α
to represent the variable α′. For clarity in discussing this function, we give formal notation
similar to that of the operational semantics:

Notation 3.30 (Type Variable Replacement). We use σ to range over type variable re-
placement functions (e.g. σ(α) = α′). We also introduce some notational sugar for clarity:

62

CHAPTER 3. FORMALIZATION

• We overload the application of a replacement function to operate homomorphically
over constraint sets and other type system constructs (e.g. σ(α1 <: α2) = σ(α1) <:
σ(α2).
• We write σ

∣∣
C

to indicate the function which replaces all type variables bound5 by
C in the same manner as σ and which replaces all other variables with themselves.
Taken with the above, we have σ

∣∣
{α1<:α2}({α1 <: α2}) = {α1 <: σ(α2)} (since α2 is

bound by the constraint set but α1 is not).

Corresponding with the evaluation system, we also need a function which freshens
only the variable part of bindings:

Definition 3.31 (Binding Type Freshening). We let TFresh(σ,
n⨽−−−−−−−⨼

α� <: α′
�
) =

n⨽−−−−−−−−−−−⨼

α� <: σ(α′
�
).

Note that these definitions correspond quite directly to those provided in Sec-
tion 3.4.3. Unlike in evaluation, however, we do not require Φ(α,−) to be an injective
function. For decidability, Φ must not freshen every variable uniquely; it may sometimes
map a variable to itself or onto other variables which have already appeared during clo-
sure. We formally define the polymorphism model properties required for decidability in
Chapter 5. The abstraction of this polyinstantiation function is connected to a posteriori
soundness in abstract interpretation [42], which we discuss in Chapter 4.

The second function required by a TinyBang polymorphism model is the merging
function Υ. This function is used to merge type variables by producing for a given set of
type variables ⨽−−⨼α a set of type variable replacement functions ⨽−−⨼σ . In concept, any replace-
ment expressed by Υ represents a type variable unification. This merging function is used
exclusively to weaken the type system in order to improve performance in practice. When
ignoring concerns of performance, readers may safely imagine this function to return an
empty set. For notational convenience, we write Υ(C) to mean Υ(⨽−−⨼α) where ⨽−−⨼α is the set
of all type variables appearing anywhere within C.

The simplest model is ΦMono/ΥMono, the canonical monomorphic model:

Definition 3.32 (Monomorphic Model). We define the TinyBang monomorphic model as
follows:
• ΦMono(α, α′) = α′

• ΥMono(C) = ∅

We present the monomorphic system here because, while it is relatively uninter-
esting, it provides a good intuition when considering the rules below. The implementation
of the TinyBang typechecker uses a polymorphism model called CR which we discuss in

5Recall from Section 3.5.2 that we refer to variables as bound and free not by explicit quantifiers but in
terms of the constraint set itself; although the terminology is somewhat unusual, the analogy is helpful in
discussing the alignment between the systems.

63

CHAPTER 3. FORMALIZATION

Transitivity
{τ
∣∣Π+

Π− <: α1, α1 <: α2} ⊆ C

C =⇒1 C ∪ {τ
∣∣Π+

Π− <: α2}

Application
α0 α1 <: α2 ∈ C α0 α1 ;∅ Π

C α
′
1\C ′1 @ C ′′1

σ = Φ(α2,−) σ′ = σ
∣∣
C′1∪C

′′
1

α′2\C ′2 = σ′(α′1\C ′1) C ′′2 = TFresh(σ′, C ′′1)

C =⇒1 C ∪ C ′2 ∪ C ′′2 ∪ {α′2 <: α2}

Merging
σ ∈ Υ(C)

C =⇒1 C ∪ σ(C)

Figure 3.16: Type Constraint Closure

Chapter 6.

3.5.5.2 Constraint Closure Relation

We can now formalize constraint closure in terms of a polymorphism model;
this formalism closely follows that of the small-step operational semantics relation in Sec-
tion 3.4.3. We write C =⇒1 C ′ to indicate a single step of constraint closure, formally
defining it as follows:

Definition 3.33 (Constraint Closure). We define C =⇒1 C ′ to hold when a proof exists in
the proof system appearing in Figure 3.16.

We note that this definition of the constraint closure relation is implicitly para-
metric in a polymorphism model Φ/Υ. We assume when it is used that it is evident from
context whether the polymorphism model is fixed or not.

It is also convenient to parallel the operational semantics by giving notation for
multiple constraint closure steps:

Definition 3.34 (Multiple Constraint Closure). Let C0 =⇒∗ Cn iff C0 =⇒1 . . . =⇒1 Cn for
some n ≥ 0.

Each operational semantics rule corresponds to a single constraint closure rule.
The Variable Lookup rule of the operational semantics small step relation, for instance,
corresponds directly to the Transitivity rule of constraint closure. The same is true of
the Application rules; although the similarity is obscured slightly by the different algebraic
notation used in the rules, the type system Application rule has premises equivalent to

64

CHAPTER 3. FORMALIZATION

those in the evaluation system Application rule (except that these premises are mapped
across the alignment which, as previously discussed, forms a Galois connection). The most
significant difference between the two relations is the use of Φ(−,−) rather than α(−,−);
in practice, the former will only partly freshen variables so that the overall number of
constraints remains finite. The only oddity in this rule set is the Merging rule, which we
discuss below in Section 3.5.5.2.1.

The operational semantics has a definition for a “stuck” expression (Defini-
tion 3.17). The type system analogue is the inconsistent constraint set: a constraint set
which contains contradictory or otherwise problematic constraints. In traditional constraint
theory, such constraint sets typically include immediately false typing statements (such as
> ≤ ⊥). In TinyBang, there are no upper bounding constraints, but it is possible for a
function to be applied to an incorrect argument type.

Definition 3.35 (Inconsistency). A constraint set C is inconsistent iff there exists some
α0 α1 <: α2 ∈ C such that α0 α1 ;∅ Π

C # α′1\C ′1 @ C ′′1 . A constraint set which is not
inconsistent is consistent.

Given the above, we can now define what it means for a program to be type correct:

Definition 3.36 (Typechecking). A closed expression e typechecks iff JeKE = α\C and
C =⇒∗ C ′ implies that C ′ is consistent.

The definition of typechecking is also implicitly parametric in a polymorphism
model Φ/Υ.

3.5.5.2.1 Merging In addition to the rules aligning with the operational semantics,
the constraint closure rule includes a Merging rule. This rule is effectively used for type
variable unification; it adds constraints by using variable replacements provided by Υ on
the constraints we already have. This rule is not necessary for soundness (since the other
rules already simulate the behavior of the operational semantics), but it also does not in-
terfere with soundness. We provide an intuition for this fact as follows. Observe that both
the compatibility and matching relations are monotonic in the number of constraints in the
provided constraint set; that is, neither of them relies on the absence of a constraint from
the set in any way. Thus, adding more constraints to a set will only increase the ways in
which compatibility and matching will hold (both in terms of e.g. successful matches and
failed matches). Inconsistency is also a monotonic property on constraint sets: since it relies
only on the presence of constraints and matching relations (and never on their absence),
any inconsistent constraint set remains inconsistent regardless of how many additional con-
straints are added to it. Thus, as long as the constraint closure relation is a sound way of
statically modeling the small step semantics without the Merging rule, the addition of the

65

CHAPTER 3. FORMALIZATION

Merging rule cannot make an otherwise inconsistent constraint set appear to be consistent.
The value of the Merging rule is that it simplifies the computational complexity of

the constraint closure process. In practice, we use a polymorphism model with TinyBang
which we call ΦCR/ΥCR. We define that polymorphism model in Section 6.2 and show how
it simplifies the constraint closure process in Section 9.2.

66

Chapter 4

Proof of Soundness

The previous chapter formalized an operational semantics and type system for the
TinyBang language. In this chapter, we show that the provided type system is sound: it
does not admit any programs which become stuck. We begin by presenting our theorem
statement1:

Theorem 1 (Soundness). For any closed e, if e −→∗ e′ and e′ is stuck then e does not
typecheck.

This chapter proceeds first by discussing the overall proof strategy. We then group
the required lemmas by section and prove the above theorem statement at the end of the
chapter.

4.1 Proof Strategy

Proving a subtyping system sound is often accomplished via progress and preser-
vation [75], a technique which requires the demonstration of two key properties. First, one
must show that the type system never assigns valid types to stuck expressions. Second, one
must show that, when e −→1 e′, the type assigned to e is a supertype of the type assigned
to e′. It is then possible to use an inductive argument to demonstrate that the type system
will never assign a valid type to a program which will become stuck.

While subject reduction is an effective technique for traditional type systems,
it is not easily applied to TinyBang’s type system. Demonstrating the first property is
non-trivial but feasible: one must show that the initial alignment of any stuck expression

1Recall that the terms “closed” (Definition 3.6) and “stuck” (Definition 3.17) are provided in Section 3.4.

67

CHAPTER 4. PROOF OF SOUNDNESS

is inconsistent. To show the second property, however, one must demonstrate that the
initial alignment of e is a supertype of the initial alignment of e′. This poses a question
of subtyping between two polymorphic constrained types, which has been shown to be at
least NP-hard and potentially undecidable [38]. While previous work [67] has provided a
decidable approximation for this question, it is somewhat complex and difficult to integrate
with the TinyBang type system.

Instead of using progress and preservation, we opt for a proof of soundness by
simulation. We define a simulation relation between expressions and constraint sets (and
respectively between evaluation system constructs and their corresponding type system
constructs). We demonstrate that the initial alignment of an expression always produces a
constraint set which establishes this relation. We then demonstrate that each correspond-
ing pair of relations in the two systems – value compatibility and type compatibility, for
instance – maintain this simulation relation. Ultimately, this is used to show preservation of
simulation between the operational semantics and the constraint closure relation. Finally,
we show that any stuck expression is simulated only by inconsistent constraint sets; thus,
if the initial alignment of an expression closes only to consistent sets, the expression will
never become stuck.

As mentioned in Section 3.5, our approach is inspired in part by work in abstract
interpretation [21]. In a sense, one can view the constraint closure relation as an abstract
interpretation of an ANF TinyBang program. The initial alignment function J−KE can
be viewed as an abstraction function α2 (or a degenerate form thereof); the simulation
relation we preserve throughout type checking is related to the left adjoint of a Galois
connection between the evaluation system and the type system. Readers familiar with
abstract interpretations should feel free to use this intuition while reading the proof below.

Unlike abstract interpretations, however, the closure of the constraint set is mono-
tonic. Abstract interpretations involve the execution of an abstracted form of the underlying
program; both the concrete interpreter and the abstract interpreter are transition systems
which deduce properties relevant to program states. Our constraint closure, on the other
hand, monotonically gathers a set of time-invariant facts about the program. We utilize
this monotonicity to simplify this proof as well as the decidability proof in the next chapter
while still providing the flexibility and type precision offered by existing subtype constraint
theory.

2For readers unfamiliar with abstract interpretation, α is the traditional name of an abstraction function
from sets of concrete values to sets of abstract values (in contrast to the concretization function from sets of
abstract values to sets of concrete values, which is usually called γ). We are not referring to a type variable
here.

68

CHAPTER 4. PROOF OF SOUNDNESS

4.2 Simulation

This section defines the simulation relation we will use to show this alignment
between evaluation and constraint closure. Simulation (4) relates an evaluation construct,
such as an expression or a clause, to a type system construct, such as a constraint set or an
individual constraint. This relation is largely a homomorphism; information is only lost in
the following places:

1. When relating variables to type variables

(a) because this mapping may not be injective

2. When relating expressions to constraint sets

(a) because the ordering of clauses is not preserved

(b) and because the constraint set may be larger than otherwise necessary (due to
conservative approximation)

One subtlety arises in defining this otherwise straightforward relation. Some in-
formation loss (namely points 1a and 2b above) is acceptable at the top level of constraint
closure but becomes a problem during polyinstantiation. For instance, the presence of “ex-
tra” constraints (point 2b above) is admissible at top level during constraint closure because
it allows us to construct union types and thus conservatively approximate runtime behavior.
But during polyinstantiation, the alignment must be perfect in this respect to ensure that
the implicit set of bound variables is properly simulated. We begin our formal definitions
by specifying a bisimulation relation (≈) which is perfect with respect to points 1a and 2b
(but still lossy in point 2a above) and then define our simulation relation in terms of it.

4.2.1 The Bisimulation Relation

Bisimulation, like simulation, relates an evaluation construct to a type system
construct. Bisimulation is a three place relation; the third place contains a variable mapping
M which is a function mapping each value variable x to the type variable α which represents
it. We define bisimulation formally as follows:

Definition 4.1 (Bisimulation). The bisimulation relation ≈E M is defined as the least rela-
tion satisfying the rules in Figure 4.1 such that M is injective.

The bisimulation relation is a fairly straightforward formalization of the alignment
discussed intuitively in Section 3.5.1: variables align with type variables, expressions align
with constraint sets, and so on. The alignment between clauses and constraints is somewhat

69

CHAPTER 4. PROOF OF SOUNDNESS

() ≈E M ()
l x ≈E M l α iff x ≈E M α

x1 &x2 ≈E M α1 &α2 iff x1 ≈E M α1 and x2 ≈E M α2
p -> e ≈E M π → α\C iff p ≈E M π and e ≈E M α\C
x ≈E M α iff M(x) = α

x = v ≈E M τ
∣∣Π+

Π− <: α iff x ≈E M α and v ≈E M τ and
P+ ≈E M Π+ and P− ≈E M Π− and v\E ∼ ∅/P +

P−
↓◦ []

x2 =x1 ≈E M α1 <: α2 iff x1 ≈E M α1 and x2 ≈E M α2
x3 =x1 x2 ≈E M α1 α2 <: α3 iff ∀i ∈ {1..3}. xi ≈E M αi

() ≈E M ()
l x ≈E M l α iff x ≈E M α

x1 *x2 ≈E M α1 *α2 iff x1 ≈E M α1 and x2 ≈E M α2
x =ϕ ≈E M φ <: α iff x ≈E M α and ϕ ≈E M φ

n⨽−−⨼
f ≈E M

n⨽−−⨼
ψ iff ∀1 ≤ i ≤ n. fi ≈E M ψi

x\F ≈E M α\Ψ iff x ≈E M α and F ≈E M Ψ
n−⇀s ≈E M

n⨽−−⨼c iff ∀1 ≤ i ≤ n. si ≈E M ci

e ≈E M α\C iff RV(e) ≈E M α and e ≈E M C

Figure 4.1: Bisimulation relation

different from the rest of the relation. Here, the constraint includes patterns which the clause
does not; this is included in order to support the simulation relation, which we discuss in
the next section.

Readers familiar with abstract interpretation may have encountered a parallel to
this approach in Might and Manolios’s a posteriori approach to soundness in abstract in-
terpretation [42]. In that work, an allocation policy (represented there as π̂) is used to
perform abstraction of memory store locations. The resulting abstraction function (repre-
sented there as αL) induced by this policy is demonstrated to be sound on a per-analysis
basis. The strategy we use here is quite similar: the allocation policy π̂ is similar to the
polyinstantiation function Φ and the induced abstraction αL is similar to the mapping M
from the bisimulation relation here.

For notational convenience, we may alternately view a variable mapping function
M as a set of pairs of the form x 7→ α where x is unique throughout the set. This is
particularly relevant when creating new mappings, as in M ′ = M ∪ {x 7→ α}. When
creating new variable maps such as M ′, we will demonstrate that the uniqueness of x is
preserved.

4.2.2 The Simulation Relation

Bisimulation is a strong property; it is impossible to maintain throughout con-
straint closure. Because well-formed expressions define each variable exactly once, for in-

70

CHAPTER 4. PROOF OF SOUNDNESS

() 4E M ()
l x 4E M l α iff x 4E M α

x1 &x2 4E M α1 &α2 iff x1 4E M α1 and x2 4E M α2
p -> e 4E M π → α\C iff p -> e ≈E M π → α\C
x 4E M α iff M(x) = α

x = v 4E M τ
∣∣Π+

Π− <: α iff x 4E M α and v 4E M τ and
P+ ≈E M Π+ and P− ≈E M Π− and v\E ∼ ∅/P +

P−
↓◦ []

x2 =x1 4E M α1 <: α2 iff x1 4E M α1 and x2 4E M α2
x3 =x1 x2 4E M α1 α2 <: α3 iff ∀i ∈ {1..3}. xi 4E M αi

e 4E M C iff ∀s ∈ e. ∃c ∈ C. s 4E M c
e 4E M α\C iff RV(e) 4E M α and e 4E M C

Figure 4.2: Simulation relation

stance, any constraint set bisimulating a well-formed expression contains no union types.
Using this property, however, we can define the weaker simulation relation which we do
maintain throughout closure:

Definition 4.2 (Simulation). The simulation relation 4E M is defined as the least relation
satisfying the rules in Figure 4.2.

Note that, in the simulation relation, constraint sets are permitted to overapprox-
imate expressions: it is only necessary that a constraint exists for each clause, not that
there is a one-to-one relationship. We preserve the stronger relation over function bodies,
however: simulation between functions and their types is the same as bisimulation.

Now let us consider the alignment between clauses and constraints. Unlike the
other alignments, value clauses and lower-bounding constraints do not align perfectly:
lower-bounding constraints have type restrictions and the alignment requires a proof of
compatibility. Such restricted types are the “filter types” discussed in Section 3.5.1: we
use them to retain information gathered about arguments by pattern matching. But we
cannot use these filters without justification: it is always sound to overapproximate the
type of values which may appear at runtime, but any reduction in our approximation must
be supported. We accomplish this by attaching the compatibility proof obligation to the
simulation relation: the use of a filtered type constraint to simulate a value is only justified
if the value meets the conditions expressed by the filters.

4.2.3 Minimal Variable Mappings

In some cases, it is useful to ensure that the variable mapping used in a simulation
is minimal. We maintain a minimal mapping throughout the simulation proof so that, as
new variables enter the expression (as a result of freshening during evaluation), we preserve

71

CHAPTER 4. PROOF OF SOUNDNESS

the uniqueness property of the keys in the mapping; spurious mappings would make this
difficult. To support the proofs later in this section, we introduce the following lemma:

Lemma 4.3. If e 4E M C, then e 4E M ′ C such that the set of variables appearing in e is
exactly the domain of M ′.

Proof. If a variable appears in e but not in M , then this simulation could not hold; it
therefore suffices to induct on the number of variables in the domain of M not appearing
in e. A proof of the inductive step is immediate from the fact that simulation only uses M
to examine variables which appear somewhere within e.

Likewise, we can arbitrarily extend the mappings used in a simulation proof:

Lemma 4.4. If e 4E M C and M ′ ⊇M then e 4E M ′ C.

Proof. By induction on the size of the proof.

4.2.4 Simulation from Bisimulation

Because bisimulation is a stronger property than simulation, we also have the
following straightforward lemma.

Lemma 4.5. If e ≈E M C then e 4E M C.

Proof. By induction on the size of the proof of e ≈E M C.

The inclusion of the compatibility proof requirement in bisimulation exists largely
to make this proof trivial.

4.2.5 Expanding the Bisimulation Environment

The environment E used in the bisimulation relation ≈E M is used exclusively
for maintaining proofs of compatibility, ensuring that filtered types properly describe the
values they bisimulate. Throughout evaluation, this environment grows and the compati-
bility proofs are constructed over different environments. Fortunately, value compatibility
is monotonic in its environment, so we can demonstrate that the environment of a bisimu-
lation grows freely. We begin by formally stating the property that value compatibility is
monotonic:

Lemma 4.6. If v\E1 ∼ P+◦ /P+

P−
↑↓◦ E′ then v\E1 ||E2 ∼ P+◦ /P+

P−
↑↓◦ E′.

Proof. By inspection of the Value Compatibility relation (Figure 3.8), proofs may only rely
on the presence of individual clauses appearing in the environment. Because each clause
appearing in E1 also appears in E1 ||E2, this proof proceeds by induction on the size of the
proof of v\E1 ∼ P+◦ /P+

P−
↑↓◦ E′ and then by case analysis on the proof rule used.

72

CHAPTER 4. PROOF OF SOUNDNESS

Given this lemma, it is possible to prove our expansion property:

Lemma 4.7. If e ≈E1 M C then e ≈E1 ||E2 M C. Similar statements hold for the other pairs
at which bisimulation is defined.

Proof. By the same strategy as Lemma 4.6 – induction on the size of the proof followed by
case analysis on the proof rule – using Lemma 4.6 to show the same property on compati-
bility proofs.

Of course, a similar lemma holds for simulation:

Lemma 4.8. If e 4E1 M C then e 4E1 ||E2 M C. Similar statements hold for the other pairs
at which simulation is defined.

Proof. By the same strategy as Lemma 4.7, using Lemma 4.7 to show the same property
on bisimulation proofs.

4.2.6 Combining Simulation Proofs

As evaluation and constraint closure proceed, new clauses and constraints are
added. To show simulation over those new constraints and clauses, we simply demonstrate
that the concatenation of expressions and union of constraint sets is simulation-preserving.
We formally state this relatively simple lemma as follows for purposes of reference:

Lemma 4.9. If e1 4E M C1 and e2 4E M C2 then e1 || e2 4E M C1 ∪ C2.

Proof. Immediate from Definition 4.2.

4.3 Initial Alignment

Our overall proof strategy is to use the simulation to show that the type system
conservatively approximates stuck states of the evaluation system. At the beginning of type-
checking, we must establish the simulation which we will preserve throughout the constraint
closure process. This is accomplished by the initial alignment function (Definition 3.19);
in fact, this function establishes bisimulation as described above. To prove this, we first
require a concept of the depth of a pattern:

Definition 4.10 (Pattern Depth). We define the depth of a well-formed pattern x\F as
follows:

PD(() \F) = 0
PD(l x\F) = PD(x\F) + 1

PD(x1 *x2\F) = max(PD(x1\F),PD(x2\F)) + 1

73

CHAPTER 4. PROOF OF SOUNDNESS

Quite simply, the depth of a pattern is the maximum number of steps it takes to
reach a leaf of the pattern from its root. Using this definition, we can show that the initial
alignment function establishes a bisimulation.

Lemma 4.11. If e is well-formed then e ≈E M JeKE.

Proof. By taking E to be [] and M to be J−KV. By Definition 4.2, we must show that there
exists some M such that e ≈E M JeKE. By induction on the length of e, it suffices to show
that there is a one-to-one mapping between clauses and constraints.

Consider a clause of the form x1 = l x2. The initial alignment of this clause is
Jx1KV\ (Jl x2KE)

∣∣∅
∅ <: Jx1KV; assuming for notation that JxiKV = αi for each i, we have

α1\ l α2
∣∣∅
∅ <: α1; thus, it suffices in this case to show that x1 = l x2 ≈E M l α2

∣∣∅
∅ <: α1. By

Definition 4.1, this requires us to show that x1 ≈E M α1 and that x2 ≈E M α2 (both of which
are satisfied by M = J−KV) and also that x\E ∼ ∅/∅

∅ ↓◦ []. This latter proof is immediate
from the Leaf rule of Figure 3.8. Each other clause of the form x = v is simulated in a similar
fashion.

The above demonstrates that each clause is simulated by some constraint. To show
that this simulation is one-to-one, we recall that no two clauses in a well-formed expression
bind the same variable. Because all clauses bind a variable and all variable bindings must be
unique, each clause is only simulated by its corresponding constraint; that is, it is impossible
for two constraints to simulate the same clause.

To show simulation for functions, we must show that p ≈E M JpKP and that e′ ≈E M

Je′KE. The latter is true by induction on the size of e′. The former is shown in much the
same fashion as the above. By induction on the depth of p, it suffices to show simulation for
each pattern filter. This can be shown in the same fashion as the non-application clauses
above.

4.4 Compatibility

Once an initial simulation is established, we must demonstrate that each step
of evaluation preserves simulation. We accomplish this by showing simulation preserving
or simulation establishing properties for each relation used in typechecking, starting with
compatibility. In particular we need to show that, for a given proof of value compatibility
and a simulation on certain positions of the compatibility relation, a type compatibility proof
exists such that the remaining places in the relation are also in some form of simulation.
Using proofs of this form, we can eventually show the same properties for the operational
semantics and constraint closure rules.

74

CHAPTER 4. PROOF OF SOUNDNESS

Our argument proceeds by induction on the size of the value compatibility proof,
demonstrating that each rule that might’ve been used in the construction of the proof has
a corresponding rule in the type system whose premises can be satisfied by the premises of
the value compatibility rule and the given simulation. In most cases, this is quite simple,
but we do require some supporting lemmas. We give those lemmas below followed by the
establishing proof for the compatibility relations.

4.4.1 Combining Value Compatibility Proofs

The evaluation and type system have been carefully designed to parallel each
other; this similarity helps to simplify the proof of soundness. But in order to allow for
type refinement, lower-bounding constraints include sets of matching and non-matching
patterns; no corresponding patterns exist on the value side. As a result, the Value Selection
rule of value compatibility simply selects the value for a given variable; the corresponding
Type Selection rule of type compatibility selects a type for a given type variable and then
adds the restrictions of that type to the obligations of the proof. To accommodate this, we
have defined the simulation relation in Figure 4.2 to include a proof that a corresponding
value compatibility proof holds. This way, we can make use of this information when we
consider these two rules in our inductive preservation proof below.

For this information to be useful, though, we require a specific property of value
compatibility: that two proofs can, in a sense, be combined. The Type Selection rule
requires a single proof of compatibility in its premises which simultaneously demonstrates
the existing proof obligation as well as the restrictions imposed by the selected lower-
bounding type. The Value Selection rule provides a proof of value compatibility showing
the equivalent of the prior; the latter is shown by the proof of value compatibility given
by the simulation. To be able to combine these proofs, we first need a simple supporting
lemma:

Lemma 4.12. If x\E ∼ ∅/P+

P−
↑↓◦ E′ then E′ = [].

Proof. By induction on the size of the proof.

We then show the property of proof combination (and thus are able to satisfy the
premise of the Type Selection rule) in following lemma:

Lemma 4.13. Suppose x\E ∼ P+◦
1 /P+

1
P−1

↑↓◦ E′1 and x\E ∼ P+◦
2 /P+

2
P−2

↑↓◦ E′2 such that one of P+◦
1 or

P+◦
2 is empty. Then x\E ∼ P+◦

1 ∪P
+◦
2 /P+

1 ∪P
+
2

P−1 ∪P
−
2

↑↓◦ E′1 ||E′2.

Proof. By induction on the sum of the sizes of the two proofs. We begin by strengthening
the inductive hypothesis to include values: if v\E ∼ P+◦

1 /P+
1

P−1
↑↓◦ E′1 and v\E ∼ P+◦

2 /P+
2

P−2
↑↓◦ E′2

75

CHAPTER 4. PROOF OF SOUNDNESS

such that one of P+◦
1 or P+◦

2 is empty, then v\E ∼ P+◦
1 ∪P

+◦
2 /P+

1 ∪P
+
2

P−1 ∪P
−
2

↑↓◦ E′1 ||E′2. We proceed
by case analysis on the rules used, beginning with the cases for the variable form of the
relation.

Leaf. Suppose wlog that the proof of x\E ∼ P+◦
1 /P+

1
P−1

↑↓◦ E′1 uses the Leaf rule. Then

P+◦
1 = P+

1 = P−1 = ∅ and E′1 = []. Then a proof of x\E ∼ P+◦
1 ∪P

+◦
2 /P+

1 ∪P
+
2

P−1 ∪P
−
2

↑↓◦ E′1 ||E′2 can be

stated as a proof of x\E ∼ P+◦
2 /P+

2
P−2

↑↓◦ E′2, which we are given by assumption; thus, this case
is complete.

Variable Selection. Otherwise, both proofs must use the Variable Selection rule.
We thus have proofs of x = v ∈ E, v\E ∼ P+◦

1 /P+
1

P−1
↑↓◦ E′1, and v\E ∼ P+◦

2 /P+
2

P−2
↑↓◦ E′2. We note

that the premise x = v ∈ E satisfied in both original proofs must be the same because E
is well-formed. We have by assumption that one of P+◦

1 or P+◦
2 is ∅; thus, by the inductive

hypothesis we have v\E ∼ P+◦
1 ∪P

+◦
2 /P+

1 ∪P
+
2

P−1 ∪P
−
2

↑↓◦ E′1 ||E′2. This together with x = v ∈ E above

gives us x\E ∼ P+◦
1 ∪P

+◦
2 /P+

1 ∪P
+
2

P−1 ∪P
−
2

↑↓◦ E′1 ||E′2 and this case is finished.
Given the above, it suffices to show the second part of this lemma: that the

combination property can be shown for value proofs.
Binding. Suppose wlog that the proof of v\E ∼ P+◦

1 /P+
1

P−1
↑↓◦ E′1 uses the Binding

rule; then ↑↓◦ = ↓◦. As a result, case analysis on Figure 3.8 reveals that the proof of v\E ∼
P+◦

2 /P+
2

P−2
↑↓◦ E′2 must also use the Binding rule. We therefore know that x\E ∼ P+◦

1 /P+
1

P−1
↑◦ E′′1 ,

x\E ∼ P+◦
2 /P+

2
P−2

↑◦ E′′2 , E′′′1 = [x = v | x\F ∈ P+◦
1], E′′′2 = [x = v | x\F ∈ P+◦

2], E′1 = E′′1 ||E′′′1 , and
E′2 = E′′2 ||E′′′2 .

By the inductive hypothesis, we have that v\E ∼ P+◦
1 ∪P

+◦
2 /P+

1 ∪P
+
2

P−1 ∪P
−
2

↑◦ E′′1 ||E′′2 . For
notation, let j ∈ {1, 2} be the index of the proof such that P+◦

j = ∅ and let i ∈ {1, 2} such
that i 6= j. Then by Lemma 4.12, we have E′′j = []; thus, v\E ∼ P+◦

1 ∪P
+◦
2 /P+

1 ∪P
+
2

P−1 ∪P
−
2

↑◦ E′′i .
Because P+◦

j = ∅, we have that E′′′j = [] and so E′j = []. Therefore, by the Binding rule, we
have v\E ∼ P+◦

1 ∪P
+◦
2 /P+

1 ∪P
+
2

P−1 ∪P
−
2

↓◦ E′i. Since E′j = [], we have E′1 ||E′2 = E′i and so this case is
complete.

(Note that this requirement – that one of P+◦
1 or P+◦

2 be empty – is not solely to
avoid concerns of ordering in E′. It is necessary to ensure that E′, although possibly open,
is otherwise well-formed.)

Empty Onion Pattern. Suppose wlog that the proof of v\E ∼ P+◦
1 /P+

1
P−1

↑↓◦ E′1 uses the

Empty Onion Pattern rule. Then, for some P+◦
1
′∪P+

1
′ = {() \F} such that P+◦

1 = P+◦
1
′∪P+◦

1
′′

and P+
1 = P+

1
′ ∪ P+

1
′′, we have x\E ∼ P+◦

1
′′
/P+

1
′′

P−1
′′ ↑↓◦ E′1. By the inductive hypothesis, we

know v\E ∼ P+◦
1
′′∪P+◦

2 /P+
1
′′
∪P+

2
P−1 ∪P

−
2

↑↓◦ E′1 ||E′2. Then by the Empty Onion Pattern rule, we know

76

CHAPTER 4. PROOF OF SOUNDNESS

v\E ∼ P+◦
1 ∪P

+◦
2 /P+

1 ∪P
+
2

P−1 ∪P
−
2

↑↓◦ E′1 ||E′2 and this case is complete.

Conjunction Pattern. Suppose wlog that the proof of v\E ∼ P+◦
1 /P+

1
P−1

↑↓◦ E′1 uses the
Conjunction Pattern rule. This case proceeds exactly as in the case of the Empty Onion
Pattern rule. In particular, the rule adds a subset of a set comprehension for each of the
binding, positive, and negative patterns. Because, for instance, P+

1 ∪ P
+
2 is strictly larger

than P+
1 and because of the form of the set comprehensions, the combined proof may always

select the same subset.
Conjunction Weakening. Suppose wlog that the proof of v\E ∼ P+◦

1 /P+
1

P−1
↑↓◦ E′1 uses

the Conjunction Weakening rule; then ↑↓◦ = ↓◦ and v\E ∼ P+◦
1 ∪P

+◦
3 /P+

1 ∪P
+
3

P−1 ∪P
−
3

↑↓◦ E′1 for some P+◦
3 ,

P+
3 , and P−3 . By the inductive hypothesis, we have v\E ∼ P+◦

1 ∪P
+◦
2 ∪P

+◦
3 /P+

1 ∪P
+
2 ∪P

+
3

P−1 ∪P
−
2 ∪P

−
3

↑↓◦ E′1 ||E′2.

By the Conjunction Weakening rule, we have v\E ∼ P+◦
1 ∪P

+◦
2 /P+

1 ∪P
+
2

P−1 ∪P
−
2

↑↓◦ E′1 ||E′2. The premises
which originally held on the Conjunction Weakening rule in the first proof still hold in this
use in the combined proof, so this case is complete.

Empty Onion. Suppose wlog that the proof of v\E ∼ P+◦
1 /P+

1
P−1

↑↓◦ E′1 uses the Empty
Onion rule. Then v = (), P+◦

1 = P+
1 = ∅, E′1 = [], ↑↓◦ = ↑◦, and CtrPat(P−1). By case analysis

on Figure 3.8, we see that this is the only remaining case which acts on the value (), so
the proof of v\E ∼ P+◦

2 /P+
2

P−2
↑↓◦ E′2 must also use the Empty Onion rule; thus, P+◦

2 = P+
2 = ∅,

E′2 = [], and CtrPat(P−2). By Definition 3.8, we have CtrPat(P−1 ∪P
−
2); thus, by the Empty

Onion rule, we have () \E ∼ ∅/∅
P−1 ∪P

−
2
↑◦ [] and this case is finished.

Label. Suppose wlog that the proof of v\E ∼ P+◦
1 /P+

1
P−1

↑↓◦ E′1 uses the Label rule.

Then v = l x, P+◦
1 = l P+◦

1
′, P+

1 = l P+
1
′, P−1 = (l P−1

′) ∪ P−1
′′, ↑↓◦ = ↑◦, x\E ∼ P+◦

1
′
/P+

1
′

P−1
′ ↓◦ E′1,

CtrPat(P−1
′′), and {l x′\F ∈ P−1

′′} = ∅. As with the Empty Onion case, case analysis on
Figure 3.8 reveals that this the only remaining case which acts on the value l x, so the
proof of v\E ∼ P+◦

2 /P+
2

P−2
↑↓◦ E′2 must also use the Label rule; thus, P+◦

2 = l P+◦
2
′, P+

2 = l P+
2
′,

P−2 = (l P−2
′) ∪ P−2

′′, x\E ∼ P+◦
2
′
/P+

2
′

P−2
′ ↓◦ E′2, CtrPat(P−2

′′), and {l x′\F ∈ P−2
′′} = ∅.

Given the above, we aim to use the Label rule to show the combined proof. By the
inductive hypothesis, we have x\E ∼ P+◦

1
′∪P+◦

2
′
/P+

1
′
∪P+

2
′

P−1
′
∪P−2

′ ↓◦ E′1 ||E′2. By Definition 3.8, we have

that CtrPat(P−1
′′ ∪ P−2

′′). Because {l x′\F ∈ P−1
′′} = ∅ and {l x′\F ∈ P−2

′′} = ∅, we have
{l x′\F ∈ P−1

′′∪P−2
′′} = ∅. Thus, by the Label rule, we have l x\E ∼ l (P+◦

1
′∪P+◦

2
′)/l (P+

1
′
∪P+

2
′
)

(l (P−1
′
∪P−2

′
)∪P−1

′′
∪P−2

′′ ↑◦

E′1 ||E′2 and this case is complete.
Onion. Suppose wlog that the proof of v\E ∼ P+◦

1 /P+
1

P−1
↑↓◦ E′1 uses the Onion rule.

This case proceeds exactly as in the Label case, using the inductive hypothesis on the pairs
of proofs representing each side of the onion.

77

CHAPTER 4. PROOF OF SOUNDNESS

4.4.2 Discarding Bindings

The above combination lemma allows us to use the compatibility proof implied
by simulation in order to show that the two compatibility relations preserve simulation.
For this to be useful, we must be able to satisfy the simulation relation’s requirement of a
compatibility proof. As shown in Lemma 4.11, the base case (when a value’s corresponding
type has never been filtered) is trivial. As a value proceeds through pattern matches,
however, it is simulated by non-trivial filtered types. Value compatibility creates bindings
in the Binding rule and the selected values must be shown to be compatible with patterns
corresponding to these filtered types.

Fortunately, a sufficient proof is already present as the premise of the Binding rule.
To use it in simulation, however, we must discard its binding information. This leads to
the following supporting lemma:

Lemma 4.14. If x\E ∼ P+◦ /P+

P−
↑↓◦ E′ then x\E ∼ ∅/P+◦ ∪P+

P−
↑↓◦ [].

Proof. By induction on the size of the proof.

4.4.3 Establishing the Binding Simulation

Using the above supporting lemmas, we can now show the critical property of
the compatibility relations: that they establish a relationship between the value bindings
and the type bindings which we use later in the application process. The nature of this
relationship is somewhat subtle. The variable side of each binding must have properties quite
similar to bisimulation – a one-to-one correspondence – in order for the polyinstantiation
lemmas (discussed below in Section 4.6) to yield usable conclusions. But establishing a full
bisimulation over the binding sets is impossible; there’s no way to guarantee that the value
argument to compatibility (which, in practice, arrives from an argument during application)
is union-free and bisimilar to its type. For this reason, we require a sort of “one-and-a-half
similar” relation to address the special case of bindings; we call this the binding simulation.
Thankfully, this definition is comparatively terse:

Definition 4.15 (Binding Simulation). We write E′ wE M C to indicate that both of the
following are true:

• ∀s ∈ E′. ∃c ∈ C. s 4M E c

• ∀c ∈ C.∃s ∈ E′. s 4M E c.

78

CHAPTER 4. PROOF OF SOUNDNESS

Using this definition and the previously-given supporting lemmas, we can show
that the compatibility relations establish this binding simulation over their respective bind-
ings.

Lemma 4.16. Suppose that E 4E M C, P+◦ ≈E M Π+◦ , P+ ≈E M Π+, and P− ≈E M Π−.
Then x\E ∼ P+◦ /P+

P−
↓◦ E′ and x 4E M α together imply that α\C ∼ Π+◦ /Π+

Π−
↓◦ C ′ such that

E′ wE M C ′.

Proof. By induction on the size of the proof. We begin by strengthening the inductive
hypothesis to include values: v\E ∼ P+◦ /P+

P−
↓◦ E′ and v 4E M τ together imply that τ\C ∼

Π+◦ /Π+

Π−
↓◦ C ′ such that E′ wE M C ′. We then proceed by case analysis on the proof rule used.

Leaf. If the Leaf rule is used, then this property is immediate: ∅ wE M ∅ and
[] wE M ∅ for all E and M .

Variable Selection. If the Variable Selection rule is used, then x = v ∈ E and
v\E ∼ P+◦ /P+

P−
↑↓◦ E′. Because E 4E M C and x = v ∈ E, Definition 4.2 gives us that

τ
∣∣Π+′

Π−′ <: α ∈ C such that v 4E M τ , P+′ ≈E M Π+′, P−′ ≈E M Π−′, and v\E ∼ ∅/P+′

P−′
↓◦ [].

By Lemma 4.13, we have v\E ∼ P+◦ /P+∪P+′

P−∪P−′
↓◦ E′. By the inductive hypothesis, this gives

us τ\C ∼ Π+◦ /Π+∪Π+′

Π−∪Π−′
↓◦ C ′ such that E′ wE M C ′. We thus satisfy the premises for the Type

Selection rule of type compatibility (Figure 3.14) and this case is finished.
Conjunction Weakening. If the Conjunction Weakening rule is used, then v\E ∼

P+◦ ∪P+◦ ′/P+∪P+′

P−∪P−′
↓◦ E′. By the inductive hypothesis, we have τ\C ∼ Π+◦ ∪Π+◦ ′/Π+∪Π+′

Π−∪Π−′
↓◦ C ′

such that corresponding places simulate. By the Conjunction Weakening rule of the type
compatibility relation, τ\C ∼ Π+◦ /Π+

Π−
↓◦ C ′ and this case is finished.

Binding. If the Binding rule is used, then v\E ∼ P+◦ /P+

P−
↑◦ E′′1 , E′′2 = [x = v | x\F ∈

P+◦], and E′ = E′′1 ||E′′2 . We have v 4E M τ by premise. By the inductive hypothesis, we
have τ\C ∼ Π+◦ /Π+

Π−
↑◦ C ′′1 such that E′′1 wE M C ′′1 . Let C ′ = C ′′1 ∪C ′′2 where C ′′2 = {τ

∣∣Π+◦∪Π+

Π− <:
α | α\F ∈ Π+◦}; then, by the Binding rule of type compatibility, we have τ\C ∼ Π+◦ /Π+

Π−
↓◦ C ′.

It remains in this case to show that E′ wE M C ′.
We next aim to demonstrate that E′′2 wE M C ′′2 . By P+◦ ≈E M Π+◦ we have that

there exists orderings P+◦ = n⨽−−⨼p and Π+◦ = n⨽−−⨼π such that, for all i in {1..n}, we have

pi = xi\Fi ≈E M αi\Ψi = πi. Observe that E′′2 = n−−−⇀xi = v and that C ′′2 =
n⨽−−−−−−−−−−−−−−⨼

τ
∣∣Π+◦∪Π+

Π− <: αi. So
we need to show that, for all i in {1..n}, we have xi = v 4E M τ

∣∣Π+◦∪Π+

Π− <: αi.
Select wlog some i ∈ {1..n}. We have xi 4E M αi from P+◦ ≈E M Π+◦ above.

We have v 4E M τ by premise. From v\E ∼ P+◦ /P+

P−
↑◦ E′′1 , Lemma 4.14 gives us v\E ∼

∅/P+◦ ∪P+

P−
↑◦ []. These facts together give us that xi = v 4E M τ

∣∣Π+◦∪Π+

Π− <: αi for any i in
{1..n}, so E′′2 wE M C ′′2 .

The above demonstrates that E′′1 wE M C ′′1 and E′′2 wE M C ′′2 . It is then trivial by

79

CHAPTER 4. PROOF OF SOUNDNESS

Definition 4.15 that E1 ||E′′2 wE M C ′′1 ∪ C ′′2 ; restated, we have E′ wE M C ′ and this case is
complete.

Remaining Cases. The remaining cases proceed much as in the above. For each
rule used by the value compatibility proof, we use its premises together with the simulations
and bisimulations taken as premises of this lemma to demonstrate the premises of the
corresponding type compatibility rule. These cases are simpler than those above; they do
not require any supporting lemmas regarding bindings.

4.5 Matching

Next, we demonstrate that the application matching relations preserve simulation.
This proceeds similar to the argument for compatibility above; indeed, it’s somewhat simpler
since the relations are more similar. The only caveat is the use of the Sensible(−,−,−,−)
function in each type application matching rule, which we address with the following sup-
porting lemma:

Lemma 4.17. If x = v 4E M τ
∣∣Π+

Π− <: α and E 4E M C then Sensible(τ,Π+,Π−, C).

Proof. By Definition 4.2, we have v\E ∼ ∅/P+

P−
↓◦ [] for some P+ ≈E M Π+ and P− ≈E M

Π−. By Lemma 4.16, this gives us that τ\C ∼ ∅/Π+

Π−
↓◦ ∅, so by Definition 3.28 we have

Sensible(τ,Π+,Π−, C).

The alignment of the application matching relations is then shown as follows:

Lemma 4.18. Suppose x0 4E M α0, x1 4E M α1, E 4E M C, and P1 ≈E M Π1. Then
x0 x1 ;P1 P2

E � e @ E′′ implies that α0 α1 ;Π1 Π2
C � α′\C ′ @ C ′′ such that e ≈E M α′\C ′,

E′′ wE M C ′′, and P2 ≈E M Π2.

Proof. By the same strategy as Lemma 4.16, using the simulation and the premises of
value application matching to show the premises of type application matching. The only
premises which are not immediately satisfied in this manner are those premises of the form
Sensible(τ,Π+,Π−, C). In each rule, that premise appears alongside a premise of the form
τ
∣∣Π+

Π− <: α ∈ C, which we have previously shown from a x = v ∈ E which it simulates. As a
result, Lemma 4.17 satisfies this additional sensibility predicate.

4.6 Polyinstantiation

During constraint closure, we must be able to show alignment between the fresh-
ening of variables in the evaluation system and the polyinstantiation of type variables in

80

CHAPTER 4. PROOF OF SOUNDNESS

the type system. It is not possible to show a simulation-preserving alignment (since bisim-
ulation is necessary) nor is it possible to show a bisimulation-preserving alignment (since
type variable freshening is not injective). For our purposes, however, it is sufficient to show
that a bisimulating pair is reduced to a simulating pair by these α-substitution functions.

To understand why bisimulation is a necessary precondition of this alignment, we
consider the definition of BV and FV (Definition 3.6). A variable is bound in an expression
if it appears on the left-hand side of a clause; these are the variables which are freshened by
α(x,−). In bisimulation, these clauses are guaranteed to be one-to-one with the constraints
that bisimulate them; that is, bisimulation establishes an injective variable mapping as well
as the one-to-one correspondence: upper-bounding type variables map injectively to and
from the value variables appearing on the left side of clauses. Due to this injective mapping,
we can be sure that the restricted variable replacement σ

∣∣
− will replace variables in the same

way as α(−,−). Simulation by itself is insufficient because two value variables might be
mapped onto the same type variable. If one of these value variables is bound and the other
is free, there is no polyinstantiation for the type variable which preserves alignment.

We formalize the above property of bisimulation as follows:

Lemma 4.19. If e ≈E M C, x appears in e, and M(x) = α, then x ∈ BV(e) if and only if
α ∈ BV(C).

Proof. Define e = n−⇀s and C = m⨽−−⨼c . If some x ∈ BV(e), then x appears on the left of some
si. Because e ≈E M C, we have that some si ≈E M cj . Further, we have that α = M(x)
where α appears on the right of cj . So by Definition 4.1, if x ∈ BV(e) then α ∈ BV(C).

So it remains to show that, for any x appearing in e such that M(x) = α, x /∈
BV(e) implies that α /∈ BV(C). Suppose for contradiction that α ∈ BV(C). Then by
Definition 3.20, some c ∈ C is of the form . . . <: c. Because e ≈E M C, we have that there
is some s ∈ e of the form x′ = . . . such that s ≈E M c; thus, x′ ∈ BV(e) and also M(x′) = α.
Because M is injective, x = x′. But x /∈ BV(e) and x′ ∈ BV(e), which is a contradiction;
thus, α /∈ BV(C) and we are finished.

Ultimately, however, the freshening of type variables may map two value variables
onto the same type variable; in this circumstance, it is possible to show simulation of the
result but not bisimulation. We therefore state the (slightly lossy) alignment between the
two functions as follows:

Lemma 4.20. Suppose e ≈E M1
α1\C and E′ wE M1

C ′ and x0 ≈E M1
α0. Let α(x0,−) = ς

and let Φ(α0,−) = σ. Let e′′ = E′ || e and let C ′′ = C ′ ∪ C. Finally, suppose that the
codomain of ς is disjoint from the domain of M1. Then ς

∣∣
e′′

(e) 4E M3
σ
∣∣
C′′

(α1\C) and
BFresh(ς

∣∣
e′′
, E′) 4E M3

TFresh(σ
∣∣
C′′
, C ′) for some M3 ⊇M1.

81

CHAPTER 4. PROOF OF SOUNDNESS

Proof. By showing that it suffices to construct M3 by extending it with the same replace-
ments performed on e and C. We define M2 such that M2 ◦ ς

∣∣
e′′

= σ
∣∣
C′′
◦M1; this is to say,

let M2(x) = σ
∣∣
C′′

(M1((ς
∣∣
e′′

)−1(x))). (The replacement function (ς
∣∣
e′

)−1 is a well-defined
partial function because ς is injective.)

We begin by showing that ς
∣∣
e′′

(e) 4E M2
σ
∣∣
C′′

(α1\C); we simultaneously show
that, for any x in the domain of both M1 and M2, M1(x) = M2(x). By Definition 4.1,
bisimulation preserves all structure except the ordering of expressions and the uniqueness
of variables. α-substitutions do not affect expression ordering, so it suffices to show that, for
any x and α in e and C (respectively) such that x 4E M1

α, we have ς
∣∣
e′′

(x) 4E M2
σ
∣∣
C′′

(α).
Let ς

∣∣
e′′

(x) = x′ and let σ
∣∣
C′′

(α) = α′.
For any x appearing in e and its corresponding α, there are two cases: either x

is bound by e′′ or it is not. If it is, then Lemma 4.19 gives us that α is bound by C ′′. We
have M2(x′) = σ

∣∣
C′′

(M1((ς
∣∣
e′′

)−1(x′))) = σ
∣∣
C′′

(M1(x)) = σ
∣∣
C′′

(α) = α′ and so x′ 4E M2
α′.

Because x′ is in the codomain of ς, we have by assumption that it is not part of the domain
of M1; thus, this case is finished.

Otherwise, x is not bound by e′′ and so, by Lemma 4.19, α is not bound by C ′′.
Thus, we have x = x′ and α = α′. We proceed as above and thus have x′ 4E M2

α′. In this
case, x = x′ is in the domain of both M1 and M2, but M1(x) = α = α′ = M2(x′) and so
this case is finished.

Given the above, we have that ς
∣∣
e′′

(e) 4E M2
σ
∣∣
C′′

(α1\C) and thatM1(x) = M2(x)
for any x in bothM1 andM2. LetM3 = M1∪M2; by Lemma 4.4, we thus have ς

∣∣
e′′

(e) 4E M3

σ
∣∣
C′′

(α1\C).
It remains to show that BFresh(ς

∣∣
e′′
, E′) 4E M3

TFresh(σ
∣∣
C′′
, C ′). In this case, we

are using the binding simulation E′ wE M1
C ′ instead of bisimulation, but the freshening

functions do not freshen the value/type side of their arguments. Because those parts are
untouched and because binding simulation already requires each type and value to be in
simulation, it only remains to show that the value and type variables are in simulation after
they are freshened and polyinstantiated. This is demonstrated via the same strategy as in
e and C above.

4.7 Preservation

The previous sections demonstrate that pairs of relations in the evaluation and
type systems (e.g. the pair of value compatibility and type compatibility) preserve certain
simulation properties. One pair of relations remains: the (alternate) small step relation and
the constraint closure relation. We begin by providing a set of supporting lemmas regarding
variable freshness and then show our preservation lemma: that each small step is simulated

82

CHAPTER 4. PROOF OF SOUNDNESS

by some constraint closure step.

4.7.1 Freshness

In order to prove our preservation lemma, we must first show some properties
about the freshness of variables in the operational semantics. This is necessary to satisfy a
precondition of Lemma 4.20: that the simulation mappingM does not contain the variables
produced by α(x,−) by the time we reach the call site x.

The definition of α(−,−) requires that a strict partial order exists which represents
the lineage of the resulting variables. We begin by defining some notation for that partial
order:

Definition 4.21 (Fresh Variable Ordering). We write x ⋖ x′ if (1) x′ is in the codomain of
α(x,−) or (2) there exists some x′′ such that x ⋖ x′′ and x′ is in the codomain of α(x′′,−).
We write x ê x′ if this is not the case.

We then make some simple observations regarding this partial order; these lemmas
are helpful in simplifying our freshness lemma. The first lemma is quite similar to the
contrapositive of transitivity:

Lemma 4.22. If x1 ⋖ x2 and x1 ê x3, then x2 ê x3.

Proof. Trivial by contradiction.

Our second observation regarding the partial order is that, due to its injectivity,
two variables freshened from the same call site cannot ultimately be freshened from each
other.

Lemma 4.23. If x1 and x2 both appear in the codomain of α(x0,−) then w.l.o.g. x1 ê x2.

Proof. Assume for contradiction that x1 ⋖ x2. By Definition 4.21, this implies one of two
cases: (1) that x2 is in the codomain of α(x1,−) or (2) that there exists some x′ such that
x1 ⋖ x

′ and x2 is in the codomain of α(x′,−). We show a contradiction in each case.
In the first case, we know that α(−,−) is injective. Because the codomain of

α(x0,−) includes x2, the codomain of α(x1,−) cannot. By contradiction, this case is
complete.

In the second case, we use the same injectivity. Because the codomain of α(x0,−)
includes x2, we must conclude that x′ = x0. Then we conclude that x1 ⋖ x0. But x0 ⋖ x1

and ⋖ is a strict partial order, which is a contradiction; we are therefore finished.

We are now prepared to give our freshness lemma: that, given any unevaluated
call site x0 in the expression, none of the variables reserved for that call site appear in the
expression.

83

CHAPTER 4. PROOF OF SOUNDNESS

Lemma 4.24. Given an initial expression e0, let e0 −→1 e1 −→1 . . . −→1 en. For any
clause x0 =x1 x2 appearing in en and any variable x′′ appearing in en, we have x0 ê x

′′.

Proof. By induction on the length of the small step sequence. The base case is satisfied
by definition: α(−,−) is defined to have a codomain which is disjoint from the variables
appearing in e0.

For the inductive step, we consider ei −→1 ej where j = i + 1. If the Variable
Lookup rule applies, then all variables and application clauses appearing in ej appear in ei.
Thus, this property holds.

If the Application rule applies, then ei = E ||[x0 =x1 x2] || e′′ and ej = E || e′ || e′′.
The rule gives us that the subexpression e′ is the body of a function and some associated
bindings which have been freshened by α(x0,−). To demonstrate that ej meets our induc-
tion predicate, it suffices to show that, for each application clause binding some x′0 and each
variable x′′ in ej , we have x′0 ê x′′. Because E by construction does not contain application
clauses, it suffices to consider the following three cases:

1. The application clause appears in e′′ and the variable appears in either E or e′′,

2. The application clause appears in e′ and the variable appears in either E or e′′, or

3. The variable appears in e′.

Case 1: Choose w.l.o.g. an application clause binding some x′0 appearing in e′′

and a variable x′′ appearing in E or e′′. Because E and e′′ are subexpressions of ei, x′0 ê x′′

is given by the inductive hypothesis.
Case 2: Choose w.l.o.g. an application clause binding some x′0 appearing in e′ and

a variable x′′ appearing in E or e′′. Because x′0 is bound by a clause in e′, we know it was
replaced by this small step and so x0 ⋖ x

′
0. Because x′′ appears in either E or e′′ and an

application clause appears in ei which defines x0, we have by the induction hypothesis that
x0 ê x

′′. By Lemma 4.22, we have x′0 ê x′′.
Case 3: Choose w.l.o.g. an application clause binding some x′0 appearing in e′′

and a variable x′′ appearing in e′. We have two subcases: either (1) x′′ is bound by e′ or
(2) it is not. In subcase 1, x′′ is bound by e′ and so was replaced in this small step; thus,
we know x′′ appears immediately in the codomain of α(x0,−). We know x′0 appears as the
variable bound by an application clause in e′ and so was replaced in this small step; thus,
x′0 also appears immediately in the codomain of α(x0,−). By Lemma 4.23, we therefore
have x′0 ê x′′.

In subcase 2, x′′ is not bound by e′ and so it was not replaced in this small step.
Because it appears free in the original (pre-replacement) expression and because ei is closed,

84

CHAPTER 4. PROOF OF SOUNDNESS

the definition of x′′ must appear in E. We therefore have that both x′′ and the application
clause binding x′0 appear in ei and so, by the induction hypothesis, x′0 ê x′′.

4.7.2 Preservation Lemma

Here, we provide the preservation lemma itself. This lemma shows that each
small step of evaluation is aligned with a constraint closure step such that simulation is
preserved. In order to do this, the simulation itself must be using the same environment as
the evaluation step: the largest prefix of the current expression which is an environment.
We therefore provide the following definition for the purpose of stating the lemma:

Definition 4.25 (Maximal Environment). Let e′ = E0 || e0. Then E0 is maximal for e′ iff
e′ = E0 ||E1 || e1 only when E1 = []. (That is, E0 is the largest prefix of e′ of the form E.)
We may write that “E0 is maximal” if e′ is understood from context.

Using this definition of maximality, we can now give our preservation lemma: for
any small step, there is a corresponding closure step which preserves simulation.

Lemma 4.26 (Preservation). Suppose that E0 || e0 −→1 E3 || e3 (for maximal E0 and E3)
and that E0 || e0 4E0 M0

C0. Then there exists some C3 and M3 such that C0 =⇒ C3 and
E3 || e3 4E3 M3

C3.

Proof. By showing that, given a simulation, each premise of an operational semantics rule
proves a corresponding premise of a constraint closure rule. We proceed by case analysis
on the operational semantics rule used.

Variable Lookup. If the Variable Lookup rule is used, then e0 = [x2 =x1] || e3 and
E3 = E0 ||[x2 = v] where x1 = v ∈ E0. By Definition 4.2 and E0 || e0 4E0 M0

C0, the fact that
x2 =x1 ∈ E0 || e0 gives us that some α1 <: α2 ∈ C0 such that x1 4E0 M0

α1 and x2 4E0 M0
α2.

Likewise, because x1 = v ∈ E0 || e0, there is some τ
∣∣Π+

Π− <: α1 ∈ C0 for which we know the
following: x1 4E0 M0

α1, v 4E0 M0
τ , P+ ≈E0 M0

Π+, P− ≈E0 M0
Π−, and v\E0 ∼ ∅/P+

P−
↓◦ [].

Let C3 = C0 ∪ {τ
∣∣Π+

Π− <: α2}. By the Transitivity rule in Figure 3.16, we have
that C0 =⇒ C3. If we let M3 = M0, then it suffices to show that E3 || e3 4E3 M0

C3.
Because E3 = E0 ||[x2 = v], it suffices by Lemma 4.8 to show that E0 ||[x2 = v] || e3 4E0 M0

C3.
By E0 || e0 4E0 M0

C0, we already have proofs of simulation for all clauses except the new
clause: x2 = v. So it suffices to show that there exists some constraint c ∈ C3 such that
x2 = v 4E0 M0

c.
We choose c = τ

∣∣Π+

Π− <: α2. By Definition 4.2, the premises of x2 = v 4E0 M0

τ
∣∣Π+

Π− <: α2 are the same as the premises of x1 = v 4E0 M0
τ
∣∣Π+

Π− <: α1 (which we have from
above) except that we must show x2 4E0 M0

α2; we have this from x2 =x1 ∈ E0 || e0 and the
original simulation. Therefore, E3 || e3 4E0 M3

C3 and we are finished.

85

CHAPTER 4. PROOF OF SOUNDNESS

Application. The only other case is when the Application rule applies. Then e0 =
[x2 =x0 x1] || e1, e3 = e′′ ||[x2 = RV(e′′)] || e1, and we know the following from the premises:
x0 x1 ;∅ P

E0 e′ @ E′, ς = α(x2,−), ς ′ = ς
∣∣
E′ || e′ , e

′′ = ς ′(e′), and E′′ = BFresh(ς ′, E′). As
above, we proceed by showing that the premises of the Application closure rule apply and
by showing that the resulting expression and constraint set preserve the simulation.

By Lemma 4.3, there exists some M1 such that E0 || e0 4E0 M1
C0 and the domain

of M1 is exactly the set of variables appearing in E0 || e0. We will proceed using M1 and
make use of this domain property shortly.

By Definition 4.2 and because x2 =x0 x1 ∈ e0, we have that α0 α1 <: α2 ∈ C0 such
that xi 4E0 M1

αi for i ∈ {0, 1, 2}. By Lemma 4.18, we have that α0 α1 ;∅ Π
C0 α

′
1\C ′1 @ C ′′1

such that e′ ≈E0 M1
α′1\C ′1 and E′ wE0 M1

C ′′1 .
Let σ = Φ(α2,−), σ′ = σ

∣∣
C′1∪C

′′
1
, α′2\C ′2 = σ′(α′1\C ′1), and C ′′2 = TFresh(σ′, C ′′1).

Given these definitions, the Application rule of constraint closure (Figure 3.16) gives us
that C0 =⇒ C0 ∪ C ′2 ∪ C ′′2 ∪ {α′2 <: α2}. We define C3 to be the latter and so it suffices to
show that E3 || e3 4E3 M3

C3 for some M3 and E3.
By Lemma 4.24 and because we know that x2 =x0 x1 ∈ E0 || e0, we know that any

variable appearing in either E0 or e0 is not in the codomain of ς; thus the domain ofM1 and
the codomain of ς are disjoint. This together with the property above that the domain of
M1 is exactly the set of variables appearing in E0 || e0 satisfies the premises of Lemma 4.20.

By Lemma 4.20, we have e′′ 4E0 M2
α′2\C ′2 and E′′ 4E0 M3

C ′′2 for some
M3 ⊇ M1. By Lemma 4.4, we can extend our previous simulations from M1 to
M3. Thus, by Lemma 4.9, we add the original environment and constraints to obtain
E0 ||E′′ || e′′ ||[x2 = RV(e′′)] || e1 4E0 M3

C0 ∪ C ′′2 ∪ C ′2 ∪ {α′2 <: α2}. We let E3 = E0 ||E′′;
then the previous can be restated as E3 || e3 4E0 M3

C3. By this and Lemma 4.8, we have
E3 || e3 4E3 M3

C3 and we are finished.

4.8 Stuck Simulation

The initial alignment lemma (Section 4.3) allows us to establish a simulation be-
tween an expression and its initial constraint set. The preservation lemma (Section 4.7.2)
allows us to retain this simulation throughout evaluation. To prove soundness, we require
one final lemma: that stuck programs are always simulated by inconsistent constraint sets.
We present supporting lemmas for this property and show that the property holds.

86

CHAPTER 4. PROOF OF SOUNDNESS

4.8.1 Totality of Compatibility

To show that stuck programs are simulated by inconsistent constraint sets, we
need the property that every application matching step during evaluation either explicitly
succeeds or fails; this allows us to argue about the nature of stuck programs, specifically
when the Application rule does not apply. To demonstrate that application matching is
total in this sense, however, we also require that value compatibility is similarly total. We
state this property as follows:

Lemma 4.27. Suppose E = n−⇀s is well-formed and x0 appears in E. For any pattern p,
either x\E ∼ ∅/∅

{p} ↑↓◦ [] or, for some E′, x\E ∼ {p}/∅
∅ ↑↓◦ E′.

Proof. By induction first on the index i of the clause si which defines x and then on the
depth (PD) of p. Because x appears in E and E is well-formed (and thus closed), there
must exist some clause si = x0 = v. Because we know this clause exists, it is sufficient by
the value selection rule to show that either v\E ∼ ∅/∅

{p} ↑↓◦ [] or that, for some P+◦ 3 p and
some E′, v\E ∼ {p}/∅

∅ ↑↓◦ E′.
If ↑↓◦ = ↓◦, then it suffices by the Binding rule to show either that v\E ∼ {p}/∅

∅ ↑◦ E′

for some E′ or that v\E ∼ ∅/∅
{p} ↑◦ []. Otherwise, ↑↓◦ = ↑◦ and the same conditions suffice.

Conjunction Patterns. We have three cases: p is a conjunction pattern, an empty
pattern, or a constructor pattern. If p is a conjunction pattern, then let p = x′1 *x′2\F , let
p′1 = x′1\F , and let p′2 = x′2\F . By the Conjunction Pattern rule, it suffices to show that one
of three conditions is always true: (1) v\E ∼ {p′1,p

′
2}/∅
∅ ↑◦ E′ for some E′, (2) v\E ∼ ∅/∅

{p′1}
↑◦ [],

or (3) v\E ∼ ∅/∅
{p′2}
↑◦ []. By Definition 4.10, PD(p′1) < PD(p) and PD(p′2) < PD(p), so the

inductive hypothesis gives us either that v\E ∼ {p′1}/∅
∅ ↑◦ E′ for some E′ or that v\E ∼ ∅/∅

{p′1}
↑◦

[]; we have likewise for p′2. If the latter case is true for p′1, then (regardless of p′2) condition
2 above holds. If the latter case is true for p′2, then (regardless of p′1) condition 3 above
holds. If both p′1 and p′2 are compatible, then Lemma 4.13 together with the proofs for p′1
and p′2 satisfy condition 1 above. Thus, if p is a conjunction pattern, this lemma holds.

Empty Pattern. If p is an empty pattern () \Ψ, then it suffices by the Empty
Onion Pattern rule to show that v\E ∼ ∅/∅

∅ ↓◦ E′. This process is syntax directed by
v. For instance, if v is a label l x′, then the Label rule shows that it is suffices to show
x′\E ∼ ∅/∅

∅ ↓◦ E′, which is true by the Leaf rule. The remaining premises of the Label
rule are trivial because all three pattern sets are empty. In general, each form of v has a
corresponding rule which reduces to trivial conditions on empty sets and, in the cases of
variables, uses of the Leaf rule.

The above demonstrates that this lemma holds when CtrPat(p) is false. We ad-
dress the cases in which p is a constructor pattern by case analysis on v. Again, it suffices

87

CHAPTER 4. PROOF OF SOUNDNESS

to show either that v\E ∼ {p}/∅
∅ ↑◦ E′ for some E′ or that v\E ∼ ∅/∅

{p} ↑◦ [].
Empty Onion. Suppose v = (); then the Empty Onion rule applies. We let

P− = {p} and this case is finished.
Onion. Suppose v = x1 &x2. Because E is closed and x1 &x2 appears in E, we

have that some clause sj1 = x1 = v′1 ∈ E; likewise, some clause sj2 = x2 = v′2 ∈ E. Again
because E is closed, we have that j1 < i and j2 < i. By induction, we have that, for each
k ∈ {1, 2}, either xjk\E ∼ {p}/∅

∅ ↑◦ E′ for some E′ or that xjk\E ∼ ∅/∅
{p} ↑◦ []. If either k = 1 or

k = 2 is the former case, then the Onion rule gives us that v\E ∼ {p}/∅
∅ ↑◦ E′ for some E′; if

both k = 1 and k = 2 are the latter case, then the Onion rule gives us that v\E ∼ ∅/∅
{p} ↑◦ [].

Either way, this case is complete.
Label. Suppose v = l x′. Either p is of the form l p′ or it is not. If not, then

observe that by the Leaf rule we have x′\E ∼ ∅/∅
∅ ↓◦ []. By the Label rule, this demonstrates

that v\E ∼ ∅/∅
{p} ↑◦ [] and that subcase is finished.

Otherwise, p = l p′. Because E is closed and l x′ appears in E, we have by the
same argument as in the Onion rule that the inductive hypothesis applies to x′. Thus,
either x′\E ∼ {p′}/∅

∅ ↑◦ E′ for some E′ or x′\E ∼ ∅/∅
{p′} ↑◦ []. In the prior case, the Label rule

demonstrates that v\E ∼ {p}/∅
∅ ↑◦ E′; in the latter case, the Label rule demonstrates that

v\E ∼ ∅/∅
{p} ↑◦ []. Thus, the case in which v = lx′ is complete and we are finished.

4.8.2 Totality of Matching

Using the above, we can demonstrate that matching can be phrased as a function:
for a given environment and application site, matching as it is used in the operational
semantics either succeeds or fails. To demonstrate the proof by induction, we explicitly
identify the semantics of the pattern positions in the lemma statement:

Lemma 4.28. Suppose E = n−⇀s is well-formed and x0 and x1 appear in E. For some P1,
suppose that ∀p ∈ P1. x1\E ∼ ∅/∅

{p} ↓◦ []. Then x0 x1 ;P1 P2
E � e @ E′ for some e, E′, P2, and

�. Further, when � = #, then we have for each p in P2 that x1\E ∼ ∅/∅
{p} ↓◦ [].

Proof. By induction on the index i of the clause si which defines x0. Because x0 appears
in E and E is well-formed (and thus closed), there must exist some clause si = x0 = v. We
proceed by case analysis on v.

Function. Suppose v = p -> e. By Lemma 4.28, either x1\E ∼ {p}/∅
∅ ↓◦ E′ for some

E′ or x1\E ∼ ∅/∅
{p} ↓◦ []. In the prior case, we use Lemma 4.13 to show that x1\E ∼ {p}/∅

P1
↓◦ E′

for some E′ and the Function Match rule applies.
In the latter case, we use Lemma 4.13 to show that x1\E ∼ ∅/∅

P1∪{p}
↓◦ [] and the

Function Mismatch rule applies. Because � = #, we are under the additional obligation to

88

CHAPTER 4. PROOF OF SOUNDNESS

show that all patterns in P2 are incompatible with x1; namely, we must show x1\E ∼ ∅/∅
{p} ↓◦ [],

which we have from the original case analysis which led us to the latter case.
Onion. Suppose v = x2 &x3. Because E is closed and x2 &x3 appears in E, there

must be clauses sj = x2 = v′2 and sk = x3 = v′3 both appearing in E. Further, because E is
closed, we have j < i and k < i. By induction, we have x2 x1 ;P1 P2

E �2
e @ E′ for some �2.

Also, if �2 = #, then we have for each p in P2 that x1\E ∼ ∅/∅
{p} ↓◦ []. If �2 = , then the

Onion Left rule applies and we are finished.
Otherwise, �2 = #. By induction, we have x3 x1 ;P1 P2

E �3
e @ E′; if �3 = # then

we also have for each p in P3 that x1\E ∼ ∅/∅
{p} ↓◦ []. The Onion Right rule applies and, if

�3 = , this case is finished. If �3 = #, then the additional obligation that the patterns in
P2 ∪ P3 are shown incompatible is satisfied by the previous inductive conclusions and the
distributivity properties of set union with regards to universal quantifiers. Thus, this case
is finished.

Non-Function, Non-Onion. Suppose v is neither an onion nor a function; then the
Non-Function rule applies. Because P2 = ∅ in this case, we are finished.

We then formally state and prove that stuck programs are simulated by stuck
constraint sets.

Lemma 4.29. For any e, if e 4E0 M C and e is stuck, then C is inconsistent.

Proof. By definition, e of the form E is not stuck; therefore, e = E ||[s] || e1 such that s
is not of the form x = v. We also observe that s cannot be of the form x =x′ because e is
closed; thus, there must be some clause appearing in E which binds x′ and so the Value
Lookup rule applies. By elimination, s must be of the form x2 =x0 x1.

The premises of the Application rule of the operational semantics are total α-
renamings, function restrictions, or the condition x0 x1 ;∅ P

E e
′ @ E′; thus, the latter must

be false for e to be stuck. The value application matching relation is total for closed e

(Lemma 4.27), so we must have that x0 x1 ;∅ P
E # e′ @ E′. By Lemma 4.18 gives us that

α0 α1 ;∅ Π
C # α

′
1\C ′1 @ C ′′1 . By Definition 3.35, C is inconsistent.

4.9 Proof of Soundness

The above lemmas are sufficient to prove the soundness of the TinyBang type
system. We restate that theorem here for convenience and then give its proof.

Theorem 1 (Soundness). For any closed e, if e −→∗ e′ and e′ is stuck then e does not
typecheck.

89

CHAPTER 4. PROOF OF SOUNDNESS

Proof. Let JeKE = α\C. Because e is closed, Lemma 4.11 gives us that e 4[] M α\C. Let E
be maximal for e; Lemma 4.8 gives us e 4E M α\C.

We have that e −→∗ e′ where e′ is stuck. By induction on the number of steps in
the proof of e −→∗ e′, Lemma 4.26 gives us that that there exists a C ′ such that C =⇒∗ C ′

and e′ 4E′ M ′ C
′. Lemma 4.29 gives us that C ′ is inconsistent. Therefore C closes to an

inconsistent constraint set and, by Definition 3.36, e does not typecheck.

90

Chapter 5

Proof of Decidability

This chapter proves that the type system presented in Section 3.5 is decidable.
Throughout this chapter, we assume the existence of some well-formed expression einit

which is to be typechecked. As the chapter proceeds, we define a series of values based upon
einit and then demonstrate that various relations are decidable with respect to them. We
then show that we can use these decidable relations to determine whether einit typechecks.
Although einit is fixed, it is also arbitrary; thus, this is sufficient to demonstrate an effective
method for deciding whether any well-formed expression typechecks.

Recall from Section 3.5.5.1 that the type system is parametric in a polymorphism
model. Whether the TinyBang type system is decidable depends on certain properties of the
polymorphism model, specifically with regards to bounding the number of type variables it
introduces to constraint closure. (For example, the perfectly precise polymorphism model,
in which Φ(−,−) behaves exactly like α(−,−), creates a type system which is undecidable
on any program containing recursion.) We begin this chapter by introducing some useful
notation. We then define properties of polymorphism models which allow us to constrain our
proof to those models which yield decidable type systems. Next, we state our decidability
theorem in Section 5.2. The remainder of the chapter is dedicated to the proof of that
theorem, which proceeds much as outlined above. Because the proof of decidability proceeds
largely by selecting sets which bound the values which can appear during closure, it is helpful
to introduce the additional type grammar terms in Figure 5.1.

91

CHAPTER 5. PROOF OF DECIDABILITY

A ::= ⨽−−⨼α type variable sets
T ::= ⨽−−⨼τ type sets

Figure 5.1: Decidability Type Grammar Extensions

5.1 Polymorphism

The decidability proof relies upon demonstrating several type system relations de-
cidable, most notably the constraint closure relation. It accomplishes this by demonstrating
a finite upper bound on the set of constraints which can be closed from the initial align-
ment of einit. For this to be possible, we must have a finite bound on the type variables
produced by the polymorphism model for a given program. If a polymorphism model has
this property, we call it a finitely freshening model. We formalize this property as follows:

Definition 5.1 (Finitely Freshening). A polymorphism model Φ/Υ is finitely freshening iff
there exists a freshness bounding function ϑ from expressions e onto type variable sets A
such that, for any e, all of the following are true:
• ϑ(e) is a finite superset of the type variables appearing in JeKE.
• For every α and α′ in ϑ(e), we have that Φ(α, α′) ∈ ϑ(e).
• For every α ∈ ϑ(e), every A ⊆ ϑ(e), and every σ ∈ Υ(A), we have that σ(α) ∈ ϑ(e).

For the monomorphic model, for instance, ϑ(e) is exactly the set of type variables
appearing in JeKE. The remaining conditions of Definition 5.1 are immediate by Defini-
tion 3.32. It is still sufficient for a reader to consider the monomorphic model in this
chapter; Chapter 6 introduces the polymorphism model we use in practice; we show it to
be finitely freshening in Section 6.3.

Throughout the remainder of this chapter, we assume that some finitely freshening
polymorphism model Φ/Υ is being used. We also assume that both Φ and Υ are computable
functions.

5.2 Decidability Theorem

Given the definitions from the previous sections, we now state our decidability
theorem as follows:

Theorem 2 (Decidability). With a finitely freshening polymorphism model, typechecking
is decidable.

The remainder of this chapter works toward proving this theorem. Recall from
the introduction of this chapter that we assume that we are considering (without loss of

92

CHAPTER 5. PROOF OF DECIDABILITY

generality) some well-formed expression einit. We write all lemma statements in context of
this assumption.

Much of the strategy involves demonstrating the finiteness of certain sets, such as
the type variables in a constraint set under closure or the patterns used in the compatibility
relation, and using that finiteness to show the relations used during typechecking to be
decidable. While this is sufficient for decidability, we do not show complexity bounds on
the type checking process. We do discuss the properties of typechecking which make it
computationally feasible in practice in Chapter 9.

5.3 Conventions

As described above, the proof of decidability proceeds by finitely bounding sets of
terms which appear at various points throughout the typechecking process. The notation
consistently used throughout this chapter is as follows:

• When finitely bounding a set for the purposes of the entire constraint closure, we
annotate the set with the subscript max. For instance, the set of all type variables
appearing during closure will be written Amax.

• When finitely bounding the set of values which may appear in a given place of a
relation during a proof search, we annotate the set with a wide hat. For instance, the
set of all type variables which may appear in the search for a compatibility proof will
be written Â.

• When discussing a proof search for a particular instance of a relation, the arbitrarily-
chosen places of that relation are denoted with a wide tilde. For instance, the set of
constraints chosen when discussing an arbitrary instance of the compatibility relation
is written C̃.

The above provides a summary of the notational form we use. These definitions
appear at different points throughout the chapter: Amax, for instance, is defined in the next
section whereas Πmax is defined in Section 5.9. The definitions are ordered in this fashion
due to their dependency on the machinery presented in the intervening sections.

5.4 Finite Variables

We begin by demonstrating that the typechecking of einit involves only finitely
many type variables. We show this by demonstrating that each constraint closure step only
introduces type variables from the finitely freshening polymorphism model. More formally,

93

CHAPTER 5. PROOF OF DECIDABILITY

Definition 5.2 (Type Variable Bounding Set). Let Amax = ϑ(einit) where ϑ is the freshness
bounding function of the finitely freshening polymorphism model.

We first demonstrate that the type compatibility relation does not generate type
variables outside of the bounds of that set.

Lemma 5.3. Suppose either α\C ∼ Π+◦ /Π+

Π−
↑↓◦ C ′ or τ\C ∼ Π+◦ /Π+

Π−
↑↓◦ C ′ such that all variables

appearing within C, Π+◦ , Π+, Π−, and either τ or α itself also appear within Amax. Then
all variables appearing within C ′ also appear within Amax.

Proof. By induction on the size of the proof of compatibility. By inspection of the rules
in Figure 3.14, it is immediate that the only rule which adds type variables to C ′ is the
Binding rule; all other rules either specify an empty set in that location or provide a union
of sets obtained from the C ′ position of compatibility premises and therefore are trivially
addressed by their inductive premises. So it suffices to show that the C ′ position of the
Binding rule includes only variables which appear within Amax. By inspection, this includes
τ , Π+◦ , Π+, Π−, and a type variable from a pattern within Π+◦ . Since we already have by
assumption that the variables appearing within these are in Amax, we are finished.

Demonstrating a similar conclusion for the type application matching relation is
fairly straightforward:

Lemma 5.4. Suppose that α0 α1 ;Π1 Π2
C � α′\C ′ @ C ′′ such that all variables appearing

within {α0, α1}, C, and Π1 also appear in the set Amax. Then all variables appearing
within Π2 also appear in Amax. Further, if � = , then all variables appearing within {α′},
C ′, and C ′′ also appear in Amax.

Proof. By induction on the size of the proof of application matching. We proceed by case
analysis on the rule set.

Function Match. In the Function Match rule, π, α′, and C ′ are taken from a
function type appearing in C and therefore contain only variables appearing in Amax. Since
Π2 = {π}, it now suffices to show this property for C ′. This is immediate from Lemma 5.3,
so this case is finished.

Function Mismatch. In this case, � = #, so it suffices to show this property only
of Π2. This is shown as above; Π2 contains a single pattern taken from a function type
appearing in C.

Non-Function. In this case, � = #, so it suffices to show this property only of Π2.
This is trivial, since Π2 = ∅.

Onion Left. For the Onion Left rule, this property is trivially satisfied by the
inductive hypothesis.

94

CHAPTER 5. PROOF OF DECIDABILITY

Onion Right. By induction, we have from the first matching premise that Π2

contains only variables appearing in Amax. By this and the second matching premise,
we have this property for α′3, C ′3, C ′′3 , and Π3. From this, the conclusion is immediately
satisfied.

We finally demonstrate this finiteness of variables on the constraint closure itself.

Lemma 5.5. Suppose that C =⇒ C ′. If C contains only type variables appearing in Amax,
then C ′ contains only type variables appearing in Amax.

Proof. By case analysis on the set of rules in Figure 3.16.
Transitivity. For the Transitivity rule, this is trivial; the only constraints which

appear in C ′ but not C are those which are created from types, variables, and patterns
taken directly from constraints in C.

Application. In the Application rule, α0 and α1 are taken from a constraint ap-
pearing in C. This (together with the empty set of patterns in the Π1 position of the
application matching premise) gives us by Lemma 5.4 that α′1, C ′1, and C ′′1 contain only
variables appearing in Amax. By Definition 5.1, we have that σ will produce from those vari-
ables only other variables appearing in Amax; thus, α′2, C ′2, and C ′′2 contain only variables
appearing in Amax. Because C ′ is comprised of constraints containing only those variables
and the contents of C, this case is finished.

Merging. This case is trivial by Definition 5.1.

5.5 Finite Types

In this section, we demonstrate that only finitely many types may appear during
closure. This follows much the same process as the previous lemmas. We begin by defining
a maximal, finite set of types and show that each relation respects it.

Definition 5.6 (Type Bounding Set). Suppose T to be the set of all types appearing within
JeinitKE (including types nested within functions). Let Tmax =

⋃
{f(τ) | τ ∈ T} where f

is a function accepting a type τ and producing a set of all types which can be derived by
replacing the variables appearing in τ with variables appearing in Amax.

Of course, Tmax is an extreme overapproximation of the types which will actually
appear in closure; even in the most pathological program, it is impossible for every variable
to be inserted into every type position. But Tmax is finite (since JeinitKE is finite, Amax is
finite, and there are finitely many type variables in each type) and serves as an upper bound
on the types appearing during constraint closure. We now show the appropriate properties
for each relation, starting with compatibility.

95

CHAPTER 5. PROOF OF DECIDABILITY

Lemma 5.7. Suppose either α\C ∼ Π+◦ /Π+

Π−
↑↓◦ C ′ or τ\C ∼ Π+◦ /Π+

Π−
↑↓◦ C ′ such that all

types appearing in C also appear in Tmax (and, if appropriate, τ ∈ Tmax). Then all types
appearing within C ′ also appear within Tmax.

Proof. By the same strategy as Lemma 5.3. We begin by induction on the size of the proof.
If it is a type variable compatibility proof, there are two cases: Leaf (which is trivially
satisfied) or Type Selection. In the latter case, the type provided is taken from C, so
the inductive premises are satisfied; the resulting C ′ is taken directly from the inductive
conclusions and so the type variable compatibility proof case is finished.

Otherwise, the proof is a type compatibility proof. By inspection of the rules, all
cases other than Binding are trivially satisfied by the inductive hypothesis. In the Binding
rule, the types added to the C ′ position of the compatibility relation are taken directly from
C, so we are finished.

We then proceed to matching:

Lemma 5.8. Suppose α0 α1 ;Π1 Π2
C � α′\C ′ @ C ′′. If all types appearing within C also

appear within Tmax then all types appearing within C ′ and C ′′ also appear in Tmax.

Proof. By induction on the size of the proof tree. The Function Match base case is addressed
by Lemma 5.7; the Function Mismatch and Non-Function base cases are trivial, as C ′ =
C ′′ = ∅. The Onion Left and Onion Right rules both take their C ′ and C ′′ directly from
inductive conclusions, so we are finished.

Finally, we show this property on constraint closure as well.

Lemma 5.9. Suppose C =⇒ C ′ where all types appearing in C also appear in Tmax. Then
all types appearing in C ′ also appear in Tmax.

Proof. By case analysis on the rule used.
Transitivity. This case is trivial exactly as in Lemma 5.5.
Application. In the Application rule, Lemma 5.8 gives us that C ′1 and C ′′1 contain

only types appearing in Tmax. By Definition 5.1, the replacement function σ can only yield
variables which appear in Amax; thus, by Definition 5.6, C ′2 and C ′′2 contain only types
appearing in Tmax. These two sets contain the only new types added to C to form C ′, so
this case is finished.

Merging. By Definition 5.1, the replacement function σ can only yield variables
which appear in Amax; thus, by Definition 5.6, σ(C) contains only types appearing in Tmax

and we are finished.

96

CHAPTER 5. PROOF OF DECIDABILITY

5.6 Decidable Compatibility

Next, we demonstrate that the type compatibility relation is decidable. We ac-
complish this by demonstrating that there are only finitely many ways to build a proof tree
of a particular judgment from the rules in Figure 3.14. For the purposes of this section, we
select arbitrarily a compatibility judgment of discourse of either the form α̃\C̃ ∼ Π̃+◦ /Π̃+

Π̃−
↑̃↓◦ C̃ ′

or the form τ̃\C̃ ∼ Π̃+◦ /Π̃+

Π̃−
↑̃↓◦ C̃ ′ and show an algorithm for determining whether or not it

holds (much in the fashion that we have done for einit).

5.6.1 Finitely-Bounded Judgments

We begin by demonstrating that we can finitely bound the judgments used in any
proof tree of our judgment of discourse. In order to do so, we show a finite bound for the
values which appear at each place in the relation. To give these finite bounds, we begin by
providing some auxilliary definitions.

5.6.1.1 Pattern Type Depth

Definition 4.10 gives a notion of the depth of a well-formed pattern; in the following
discussion, a corresponding definition is necessary for pattern types as well:

Definition 5.10 (Pattern Type Depth). We define the depth of a well-formed pattern type
α\Ψ as follows:

PD(() \Ψ) = 0
PD(l α\Ψ) = PD(α\Ψ) + 1

PD(α1 *α2\Ψ) = max(PD(α1\Ψ),PD(α2\Ψ)) + 1

5.6.1.2 The All-Points Function

In finitely bounding the judgments which appear within a proof tree of our judg-
ment of discourse, we must bound the patterns which can appear in such judgments. The
filter constraint sets of the patterns do not change throughout compatibility and the only
new patterns introduced come from C̃; since all of these sources are finite, any pattern con-
structed from them (that doesn’t create new filter constraints) will be as well. We formalize
this intuition by giving an all-points function on patterns which yields the set of patterns
which occur at all points within it.

Definition 5.11 (All-Points Function). We define the all-points function over patterns
to be AllPoints(α\Ψ) = {α′\Ψ | α′ appears in ψ}. For notational convenience, we write
AllPoints(Π) to mean

⋃
{AllPoints(π) | π ∈ Π}.

97

CHAPTER 5. PROOF OF DECIDABILITY

For instance, consider α0\Ψ where Ψ = {‘A α1 <: α0, () <: α1}. Then
AllPoints(α0\Ψ) = {α0\Ψ, α1\Ψ}: it returns each subpattern of α0\Ψ, each of which starts
at a different point in the filter constraint set. This leads us to a simple lemma:

Lemma 5.12. For all acyclic π, π ∈ AllPoints(π). Likewise, for all Π containing only
acyclic pattern types, Π ⊆ AllPoints(Π).

Proof. The first statement is immediate from the definition of pattern depth (Defini-
tion 5.10), since the root of π necessarily appears within its filter constraint set. The
second statement is immediate from the first statement as well as the notation provided in
Definition 5.11.

In our proof below, it is also helpful to show some other properties of the all-points
function. We first observe that, if a pattern is one of the points of another pattern, then
it appears in the points of any set containing that latter pattern. This is a fairly simple
property, but stating it here helps to clarify the discussion below.

Lemma 5.13. If π1 ∈ AllPoints(π2) and π2 ∈ Π then π1 ∈ AllPoints(Π).

Proof. Immediate from Definition 5.11: since π2 is in Π, AllPoints(Π) will include
AllPoints(π2) as one of its unioned sets.

We next observe that the all-points function is monotonic on sets, preserving the
subset relation.

Lemma 5.14. If Π1 ⊆ Π2 then AllPoints(Π1) ⊆ AllPoints(Π2).

Proof. Immediate from Definition 5.11.

We also observe that the all-points function is idempotent on sets.

Lemma 5.15. AllPoints(Π) = AllPoints(AllPoints(Π))

Proof. Immediate by Definition 5.11. By inspection of that definition, AllPoints(Π) con-
tains the same filter constraint sets Ψ as Π does; thus, the same type variables appear in
those filter constraint sets. Since these are the only properties used in the set comprehension
within the definition, the result of the set comprehension will be the same.

5.6.1.3 Bounding the Judgment Places

Using the all-points function, we can define the bounding sets on each place in the
relations which could appear in the subproofs of the judgment of discourse.

Definition 5.16 (Compatibility Bounding Sets). We provide the following bounding sets:

98

CHAPTER 5. PROOF OF DECIDABILITY

• Let T̂ be all types appearing in C̃ as well as τ̃ .

• Let Â be all type variables appearing in C̃ unioned with all type variables appearing
in Π̃+◦ ∪ Π̃+ ∪ Π̃− as well as α̃ itself.

• Let Π̂ = AllPoints(Π) where Π is Π̃+◦ ∪ Π̃+ ∪ Π̃− as well as all patterns appearing in
C̃ ′.

• Let Ĉ ′ = {τ
∣∣Π+

Π− <: α | τ ∈ T̂ ∧ α ∈ Â ∧Π+ ⊆ Π̂ ∧Π− ⊆ Π̂}.

We observe that each of the above sets is finite. We know T̂ and Â to be finite
because C̃ and C̃ ′ are finite. We know Π̂ to be finite because it is a finite set comprehension
over the union of finite sets. We know Ĉ ′ to be finite because it is the finite set comprehension
of finite sets.

It would be possible to define and use the maximal sets which bound constraint
closure (e.g. Amax) rather than use the bounding sets provided above. The above bounding
sets provide a somewhat more precise bound and more clearly demonstrate the relationship
to the judgment of discourse. We later demonstrate that these bounding sets are subsets of
those used to bound overall constraint closure.

5.6.1.4 Proving Finitely Many Possible Judgments

Using the above bounding sets, we can now demonstrate that any proof of type
compatibility over the judgment of discourse uses only premises with places taken from
those bounding sets; that is, we can finitely enumerate the compatibility judgments which
may appear in any proof of the judgment of discourse. Formally, we state this property as
the following lemma. This lemma is left quite general (and then specialized below) as the
general form is quite useful later.

Lemma 5.17. Suppose α ∈ Â, τ ∈ T̂ , and Π+◦ ∪ Π+ ∪ Π− ⊆ Π̂. In any proof of α\C ∼
Π+◦ /Π+

Π−
↑↓◦ C ′ or τ\C ∼ Π+◦ /Π+

Π−
↑↓◦ C ′, all subproofs are either (1) immediately decidable; (2)

proofs of the form α′\C ∼ Π+◦ ′/Π+′

Π−′
↑↓◦′ C ′′ such that α′ ∈ Â, Π+◦ ′∪Π+′∪Π−′ ⊆ Π̂, and C ′′ ⊆ Ĉ ′;

or (3) proofs of the form τ ′\C ∼ Π+◦ ′/Π+′

Π−′
↑↓◦′ C ′′ such that τ ′ ∈ T̂ , Π+◦ ′ ∪Π+′ ∪Π−′ ⊆ Π̂, and

C ′′ ⊆ Ĉ ′. Further, C ′ ⊆ Ĉ ′.

Proof. By induction on the size of any such proof. We proceed by case analysis on the proof
rule used.

Leaf. If the Leaf rule is used, then the rule has no premises and this case is trivial.
Type Selection. If the Type Selection rule is used, then the proven judgment is

of the form α\C ∼ Π+◦ /Π+

Π−
↑↓◦ C ′ and we have two premises: τ

∣∣Π+
1

Π−1
<: α ∈ C and τ\C ∼

99

CHAPTER 5. PROOF OF DECIDABILITY

Π+◦ /Π+∪Π+
1

Π−∪Π−1
↑↓◦ C ′. Because C is finite, the first premise is trivially decidable. It then suffices

in this case to show that τ ∈ T̂ , Π+◦ ∪Π+ ∪Π+
1 ∪Π− ∪Π−1 ⊆ Π̂, and C ′ ⊆ Ĉ ′.

We have τ ∈ T̂ because τ appears in C and T̂ includes all types appearing in C
by Definition 5.16. We have by the inductive hypothesis that C ′ ⊆ Ĉ ′, so that obligation
is trivial. It then suffices in this case to show that Π+◦ ∪Π+ ∪Π+

1 ∪Π− ∪Π−1 ⊆ Π̂. We have
by premise that Π+◦ ∪ Π+ ∪ Π− ⊆ Π̂ , so it suffices to show that Π+

1 ∪ Π−1 ⊆ Π̂. We have
this because Π+

1 and Π−1 were taken from a type appearing in C and, by Definition 5.16, all
points of any patterns appearing in C are in Π̂. Thus, this case is finished.

Otherwise, the proven judgment is of the form τ\C ∼ Π+◦ /Π+

Π−
↑↓◦ C ′. We continue

by case analysis on the proof rule used.
Trivial Non-Constructor Patterns. If the Binding, Empty Onion Pattern, or Con-

junction Pattern rules are used, the place-bounding property is trivial. In each case, each
premise is either immediately decidable (e.g. a finite set comprehension over finite sets)
or is a subjudgment where each place in the relation is either equal to or a subset of the
corresponding place in the original judgment (as appropriate). Thus, if each place in the
judgment is taken from our bounding sets, each place in the subjudgment is as well.

In all of these cases other than Binding, the obligations to show C ′ ⊆ Ĉ ′ is trivial
by the inductive hypothesis. In the case of Binding, it suffices to show that the additional
bindings C ′′ appear within Ĉ ′, which is immediate from Definition 5.16.

Conjunction Weakening. In the Conjunction Weakening rule, the proven judgment
is τ\C ∼ Π+◦

1 /Π
+
1

Π−1
↑↓◦ C ′. All premises are trivially decidable except for the subjudgment

τ\C ∼ Π+◦
1 ∪Π+◦

2 /Π
+
1 ∪Π+

2
Π−1 ∪Π−2

↑↓◦ C ′. By the same reasoning as in the trivial cases, it suffices to show

that Π+◦
2 ∪Π+

2 ∪Π−2 is from the bounding set Π̂.
Without loss of generality, let us consider Π+

2 : each pattern π2 appearing within
Π+

2 is of the form α\Ψ where some π1 = α1 *α2\Ψ appears in Π+
1 and either α = α1 or

α = α2. By Definition 5.11, π2 ∈ AllPoints(π1) (because α appears in π1). Recall from
premises that π1 ∈ Π̃; then by Lemma 5.13, π2 ∈ AllPoints(Π̃). By Definition 5.16, Π̃ is
defined by Π̃ = AllPoints(Π) for some set Π; thus, π2 ∈ AllPoints(AllPoints(Π)) and, by
Lemma 5.15, π2 ∈ AllPoints(Π) so π2 ∈ Π̃. This demonstrates that each pattern in Π+

2 is
in the bounding set for the judgment of discourse; as this argument proceeded without loss
of generality, the same holds for Π+◦

2 and Π−2 . This case is therefore finished.
Trivial Types. If the Empty Onion rule or the Function rule is used, the only

premise is trivial. If the Onion rule is used, both of the non-trivial premises are handled
in the same fashion as in the Trivial Non-Constructor Patterns case above: each place is
either equal to or a subset of (as appropriate) the place in the original judgment, so this
lemma’s conclusion holds by the premises of the lemma.

100

CHAPTER 5. PROOF OF DECIDABILITY

Label. If the Label rule is used, the argument proceeds as in the Conjunction
Weakening case: each pattern appearing in the non-trivial subjudgment represents a point
from a pattern in the original judgment and so the former pattern appears in the all-points
set of the latter. Because the all-points function is idempotent and because the bounding
set Π̂ is defined using the all-points function, the former pattern appears in this bounding
set. Since this is true for each pattern appearing in the subjudgment and all other places
in this relation are the same (except the binding state, which is not relevant), this case is
complete.

We then specialize the above lemma to the judgment of discourse:

Lemma 5.18. In any proof of α̃\C̃ ∼ Π̃+◦ /Π̃+

Π̃−
↑̃↓◦ C̃ ′ or τ̃\C̃ ∼ Π̃+◦ /Π̃+

Π̃−
↑̃↓◦ C̃ ′, all subproofs are

either (1) immediately decidable; (2) proofs of the form α\C̃ ∼ Π+◦ /Π+

Π−
↑↓◦ C ′ such that α ∈ Â,

Π+◦ ∪ Π+ ∪ Π− ⊆ Π̂, and C ′ ⊆ Ĉ ′; or (3) proofs of the form τ\C̃ ∼ Π+◦ /Π+

Π−
↑↓◦ C ′ such that

τ ∈ T̂ , Π+◦ ∪Π+ ∪Π− ⊆ Π̂, and C ′ ⊆ Ĉ ′

Proof. Immediate from Lemma 5.17. This lemma is applicable because α̃ ∈ Â (by defini-
tion), τ̃ ∈ T̂ (by definition), and Π̃+◦ ⊆ Π̂ (and likewise for Π̃+ and Π̃−) by Lemma 5.12.

5.6.2 Finite Proof Search

The proof that the set of judgments appearing in the proof tree is bounded con-
stitutes most of the work in demonstrating the property we need for compatibility. Next,
we demonstrate that the search space for a proof is finite. We do so by showing that proofs
of the judgment exists iff at least one of the proofs can be finitely bounded in height. We
first define this bound:

Definition 5.19 (Compatibility Proof Height Bound). For the judgment of discourse, let
J be the Cartesian product (Â ∪ T̂) × P(Π̂) × P(Π̂) × P(Π̂) × {↓◦, ↑◦} × Ĉ ′; because C̃ is
constant throughout all proofs of compatibility for the judgment of discourse, J is a finite
set which is isomorphic to all judgments which can be constructed from the bounding sets
in Definition 5.16. Let ñ = |J | be the size of this set.

Using the above definition, we now show that ñ does act as a bound on the size
of one of the proof trees (if any proof trees exist).

Lemma 5.20. The judgment α̃\C̃ ∼ Π̃+◦ /Π̃+

Π̃−
↑̃↓◦ C̃ ′ (resp. τ̃\C̃ ∼ Π̃+◦ /Π̃+

Π̃−
↑̃↓◦ C̃ ′) holds if and

only if there exists a proof of α̃\C̃ ∼ Π̃+◦ /Π̃+

Π̃−
↑̃↓◦ C̃ ′ (resp. τ̃\C̃ ∼ Π̃+◦ /Π̃+

Π̃−
↑̃↓◦ C̃ ′) whose tree is of

a height no larger than ñ.

Proof. The forward implication is trivial: if such a proof tree exists, then the judgment
holds by Definition 3.26. We prove the reverse implication by induction on the number of

101

CHAPTER 5. PROOF OF DECIDABILITY

nodes in the proof tree.
Suppose that a proof of the judgment exists of height n > ñ. By definition of

the height of a tree, there must exist some path in the tree of length n. All nodes in this
proof tree must be elements of J so, because ñ < n, this path must contain at least one
judgment at two different nodes. An equivalent proof may therefore be constructed by
replacing node closest to the root of the tree with any node in its strict subtree. (This is
analogous to the statement that the proof Q1 ⇐ Q2 ⇐ Q3 ⇐ Q2 ⇐ Q4 is equivalent to the
proof Q1 ⇐ Q2 ⇐ Q4 – we may take any proof of Q2 and we elect to take the shorter one.)

In the resulting proof tree, we have two cases: either that tree’s height is larger
than ñ or it is not. In the case that it is not, we are finished. If the new tree’s height is
still larger than ñ, we observe that it has strictly fewer nodes than the original proof tree;
by these two facts, we may proceed by induction and so we are finished.

5.6.3 Proof

Using the above, we can state the decidability of compatibility:

Lemma 5.21. The mutual relations α\C ∼ Π+◦ /Π+

Π−
↑↓◦ C ′ and τ\C ∼ Π+◦ /Π+

Π−
↑↓◦ C ′ are

decidable.

Proof. Without loss of generality, select a particular judgment of discourse α̃\C̃ ∼ Π̃+◦ /Π̃+

Π̃−
↑̃↓◦

C̃ ′ (or τ̃\C̃ ∼ Π̃+◦ /Π̃+

Π̃−
↑̃↓◦ C̃ ′). Let S be the set of all trees which have the following properties:

(1) a height no greater than ñ; (2) an average branching factor no greater than four; and (3)
each non-leaf node annotated with a judgment from the set J (with leaf nodes unannotated).
We aim to show that, if a proof of our judgment of discourse exists, its proof tree is exactly
one of the trees in this set.

If the judgment of discourse holds, we know by Lemma 5.20 that at least one
proof tree has height no greater than ñ. By inspection of Figure 3.14, we observe that each
proof rule has at most four premises; thus, the proof tree has an average branching factor
of less than four. By inspection of the same figure, each premise is either trivially decidable
(a leaf node) or a subjudgment of compatibility (a non-leaf node). By Lemma 5.18, each
subjudgment is drawn from the finite set J ; also, all trees in S are annotated at all non-leaf
nodes with a judgment from J .

So it suffices to determine if a tree appearing in the finite set S is a valid proof
tree for the judgment of discourse according to the rules in Figure 3.14. By inspection
of this rule set, verifying a proof is trivially decidable. We therefore have finitely many
decidable operations to perform to determine if the judgment of discourse holds. As the
judgment of discourse was selected without loss of generality, the type compatibility relation

102

CHAPTER 5. PROOF OF DECIDABILITY

is decidable.

5.7 Decidable Matching

Using the above proof, our next objective is to show that the application matching
relation is decidable. This proof follows the same strategy as the above but is simpler: in
a proof of application matching, few positions change in each of its subproofs than is the
case with compatibility. As with the previous section, we select a judgment of discourse
α̃0 α̃1 ;Π̃1 Π̃2

C̃ �̃
α̃2\C̃ ′ @ C̃ ′′ for discussion throughout this section.

5.7.1 Bounding the Judgment Places

As in Section 5.6.1, we define finite sets from which we intend to demonstrate
that all subproofs draw the places of their judgments. In this case, our bounding sets are
somewhat simpler:

Definition 5.22 (Matching Bounding Sets). We provide the following bounding sets:

• Let Â′ be the set of all type variables appearing in Ã.

• Let Π̂′ be the set of all patterns appearing in C̃.

Each of the above sets is, of course, finite.

5.7.1.1 Proving Finitely Many Possible Judgments

Next, we give a lemma to demonstrate that there are finitely many judgments of
application matching in any proof tree of that relation. In a fashion similar to Section 5.6.1.3,
we first give the lemma in a general form:

Lemma 5.23. Suppose that α0 ∈ Â′ and Π1 ⊆ Π̂′. In all proofs of α0 α1 ;Π1 Π2
C̃ �

α2\C ′1 @
C ′′1 , all subproofs are either (1) immediately decidable, (2) shown decidable by a previous
lemma (and thus leaf nodes), or (3) proofs of the form α′0 α1 ;Π′1 Π′2

C̃ �′
α2\C ′2 @ C ′′2 where

α′0 ∈ Â′ and Π′1 ∪Π′2 ⊆ Π̂′. Further, Π2 ⊆ Π̂′.

Proof. By induction on the size of the proof. We proceed by induction on the proof rule
used.

Base Cases. If the Function Match rule is used, then Π2 = {π} for some π
appearing in a function type in C̃; thus, by definition, Π2 ⊆ Π̂′. The first two premises are
trivially decidable. The next premise is a use of the Sensible(−,−,−,−) predicate, which
is defined solely in terms of compatibility; thus, it and the fourth premise (a compatibility
condition) are decidable by Lemma 5.21. If the Function Mismatch rule is used, then this

103

CHAPTER 5. PROOF OF DECIDABILITY

argument proceeds the same way. If the Non-Function rule is used, the same argument
applies except that Π2 = ∅ (from which the lemma conclusion follows trivially) and there
is one less compatibility premise.

Onion Left. If the Onion Left rule is used, the argument proceeds as in the
Function Match case above except in handling the final premise. That premise is addressed
by the inductive hypothesis; the inductive premises are satisfied because α2 appears in a
type which occurs in C̃ and so is by definition in Â′ and also because Π1 and Π2 are the
same in this proof and its subproof.

Onion Right. If the Onion Right rule is used, we proceed as in the Onion Left
rule. As a result of the inductive conclusion for the first application matching premise, we
have that Π2 ⊆ Π̂′; this is necessary to show the inductive premise that Π1 ∪ Π2 ⊆ Π̂′ for
the second application matching premise. Likewise, the inductive conclusion that Π3 ⊆ Π̂′

is necessary to show this lemma’s conclusion that Π2 ∪Π3 ⊆ Π̂′.

5.7.2 Finite Proof Search

As in Section 5.6.2, we now demonstrate that only finitely many trees need to be
inspected to determine if a proof of a given application matching judgment exists. We first
define the bound on the judgments to be inspected:

Definition 5.24 (Matching Proof Height Bound). For the judgment of discourse, let J ′ be
the Cartesian product Â′×P(Π̂′)×P(Π̂′); thus, J ′ is a finite set isomorphic to all judgments
which can be constructed from the bounding sets in Definition 5.22. Let ñ′ = |J ′| be the
size of this set.

Using this definition, we show (as with compatibility) that ñ′ is a bound on the
size of one of the proof trees (if any proof trees exist):

Lemma 5.25. The judgment α̃0 α̃1 ;Π̃1 Π̃2
C̃ �̃

α̃2\C̃ ′ @ C̃ ′′ holds iff there exists a proof of
that judgment whose tree is of a height no larger than ñ′.

Proof. By the same strategy as Lemma 5.20, inducting on the number of nodes in the proof
tree and using Lemma 5.23 to demonstrate that any proof tree taller than ñ′ includes a
compressable path.

5.7.3 Proof

Finally, we show that application matching is decidable in much the same way as
we showed for compatibility in Section 5.6.3.

Lemma 5.26. The relation α0 α1 ;Π1 Π2
C � α′\C ′ @ C ′′ is decidable.

104

CHAPTER 5. PROOF OF DECIDABILITY

Proof. By the same strategy as Lemma 5.21, using Lemma 5.21 to show the compatibility
premises decidable. In particular, if any judgment of application matching holds, then at
least one proof is of bounded height and average branching factor and all non-leaf nodes
are identified by one of the judgments in the finite set J ′. Thus, it suffices to consider the
finitely many trees which have this property to determine if any of them are valid proof
trees; as all non-matching premises in the rules are trivially decidable, we are finished.

5.8 Decidable Constraint Closure

This section demonstrates that the single-step constraint closure relation is decid-
able. This property is actually trivial to show, especially in comparison to the compatibility
and application matching relations:

Lemma 5.27. The relation C =⇒ C ′ is decidable.

Proof. By inspection of the rules in Figure 3.16. All premises are either trivially decidable
or are decidable via Lemma 5.26.

It is also necessary to show decidability for the inconsistency of a constraint set.

Lemma 5.28. Whether a constraint set is inconsistent (Definition 3.35) is decidable.

Proof. By Definition 3.35, a constraint set C is decidable iff α0 α1 <: α2 ∈ C such that
α0 α1 ;∅ Π

C # α
′
1\C ′1 @ C ′′1 . By Lemma 5.26, the latter condition is decidable; thus, it suffices

to test this condition for each constraint of the form α0 α1 <: α2 appearing in C. Because
C is finite, inconsistency is decidable.

5.9 Closure Convergence

In the previous sections, we have demonstrated that a single constraint closure
step is decidable. To show that typechecking is decidable, we will also need to demonstrate
that only finitely many closure steps are necessary; that is, constraint closure must converge.
Our strategy is similar to the above in that we select a finite set and show that it is an
upper bound of the constraints which may appear during closure.

5.9.1 Bounding the Constraints

Bounding the constraints is a relatively straightforward process. Constraints are
only introduced during closure by Transitivity (which is quite straightforward to bound),
function bodies through type variable replacement, and the bindings produced by com-
patibility. Although we cannot bound constraint closure in general, we can do so for the

105

CHAPTER 5. PROOF OF DECIDABILITY

arbitrary expression einit (which, having been selected without loss of generality, allows us
to demonstrate later that typechecking is decidable in general).

Definition 5.29 (Closure Bounding Sets). We give the following bounding sets:

• Let Πmax = AllPoints(Π) where Π is the set of all patterns appearing in JeinitKE as well
as all replacements of variables appearing in those patterns with variables appearing
in Amax.

• Let Cmax =
{
α0 <: α1 | {α0, α1} ⊆ Amax

}
∪
{
α0 α1 <: α2 | {α0, α1, α2} ⊆ Amax

}
∪
{
τ
∣∣Π+

Π− <: α | α ∈ Amax ∧ τ ∈ Tmax ∧ (Π+ ∪Π−) ⊆ Πmax
}

We know Πmax to be finite by Definition 5.11 and because both JeinitKE and Amax

are finite. We know Cmax to be finite because it is the union of finite set comprehensions
of finite sets.

5.9.1.1 Properties of the Constraint Bounds

In order to simplify the discussion of the constraint bounds provided above, we
prove some simple lemmas.

Lemma 5.30. If τ appears in Cmax then τ ∈ Tmax.

Proof. By inspection of Definition 5.29, all types appearing in Cmax are taken directly from
Tmax.

Lemma 5.31. If π appears in Cmax then π ∈ Πmax.

Proof. By Definition 5.29, all patterns appearing in Cmax either (1) appear in Πmax directly
or (2) appear within a function type within Cmax. By Lemma 5.30, all patterns in the
latter set appear within a function type in Tmax. By Definition 5.6, all such function types
are taken from JeinitKE with variables replaced by those in Amax. By Definition 5.29, Πmax

includes all such patterns.

Lemma 5.32. If α appears in Cmax then α ∈ Amax.

Proof. By inspection of Definition 5.29, all variables appearing in Cmax are (1) taken directly
from Amax, (2) appear in some τ in Cmax, or (3) appear in some π in Cmax. In the first
case, we are finished.

In the second case, the variable appears in a type. By Lemma 5.30, that type
must appear in Tmax. By Definition 5.6, all types in Tmax contain variables which are either
replacements from Amax (in which case we are finished) or which appear in JeinitKE. By

106

CHAPTER 5. PROOF OF DECIDABILITY

Definition 5.2, Amax contains all variables appearing in JeinitKE (because, by Definition 5.1,
ϑ includes all variables in the original set). Thus, the second case is complete.

In the third case, the variable appears in a pattern. By Lemma 5.31, that pattern
must appear in Πmax. By Definition 5.29, all patterns in Πmax contain only variables taken
directly from JeinitKE or replacement variables from Amax. The argument proceeds as in the
previous case.

Because type variables appearing immediately within Cmax, within types in Cmax,
and within patterns in Cmax all appear within Amax, we are finished.

5.9.1.2 Bounding Bindings

To show that constraint closure respects the bounds in Definition 5.29, we must
first demonstrate that the bindings produced by application matching (and thus compati-
bility) do so. We begin by showing this property for compatibility, for which the general
lemmas and definitions provided in Section 5.6 are quite helpful.

Lemma 5.33. Suppose α\C ∼ Π+◦ /Π+

Π−
↓◦ C ′ such that α ∈ Amax, C ⊆ Cmax, and Π+◦ ∪Π+ ∪

Π− ⊆ Πmax. Then C ′ ⊆ Cmax.

Proof. By Lemma 5.17, we have that C ′ ⊆ Ĉ ′. By Definition 5.16, this is (for this judgment)
equivalent to C ′ ⊆

{
τ
∣∣Π+

Π− <: α | α ∈ Â ∧ τ ∈ T̂ ∧ (Π+ ∪ Π−) ⊆ Π̂
}
. By Definition 5.29, it

suffices to show each of Â ⊆ Amax, T̂ ⊆ Tmax, and Π̂ ⊆ Πmax.
Recall that Π+◦ ∪ Π+ ∪ Π− ⊆ Πmax. By Definition 5.16, we have that Π̂ =

AllPoints(Π) where Π contains all patters appearing in C as well as Π+◦ , Π+, and Π−. Be-
cause all of these patters are contained in Πmax, we have that Π ⊆ Πmax. By Lemma 5.14,
we have AllPoints(Π) = Π̂ = AllPoints(Πmax); because Πmax is defined immediately as the
result of the all-points function on a set of patterns, Lemma 5.15 gives us that Π̂ ⊆ Πmax.

Recall that Â contains all variables appearing in C as well as those appearing in
Π+◦ , Π+, and Π−. Because C ⊆ Cmax, we know that all variables appearing in C must appear
in Cmax; we know the same for the pattern sets and Πmax. By inspection of Definitions 5.11
and 5.29, all such variables appearing in those sets must appear in Amax; thus, Â ⊆ Amax.

So it remains to show that T̂ ⊆ Tmax. By Definition 5.16, T̂ contains only those
types appearing in C. Since we have by assumption that C ⊆ Cmax, we know that T̂
contains only types appearing in Cmax. By Lemma 5.30, T̂ ⊆ Tmax and we are finished.

We next show that application matching preserves this bound on bindings. This is
relatively simple, as bindings in application matching are taken from a single compatibility
proof; the only work is in showing that the premises of the previous lemma are satisfied.
We also show the same for the function body it produces.

107

CHAPTER 5. PROOF OF DECIDABILITY

Lemma 5.34. Suppose α0 α1 ;Π1 Π2
C � α′\C ′ @ C ′′ such that α1 ∈ Amax, C ⊆ Cmax, and

Π1 ⊆ Πmax. Then Π2 ⊆ Πmax. Further, if � = then α′ ∈ Amax and C ′ ⊆ Cmax,
C ′′ ⊆ Cmax.

Proof. By induction on the size of the proof. We proceed by case analysis on the rule used.
Function Match. If the Function Match rule is used, then we have Π2 = {π} for

π → α′\C ′ which appears in C. We have by Lemma 5.32 that, because α′ appears in C,
α′ ∈ Amax. Because π appears in C, Lemma 5.31, we have that π ∈ Πmax and so Π2 ⊆ Πmax.
This gives us the premises of Lemma 5.33, so we use it to conclude that C ′′ ⊆ Cmax.

It remains to show that C ′ ⊆ Cmax. We know by Lemmas 5.30, 5.31, and 5.32
that all types, patterns, and type variables appearing within any constraint in C ′ appear
within Tmax, Πmax, or Amax (respectively). By inspection of Definition 5.29, Cmax contains
all constraints which can be constructed from anything in those sets; thus, every constraint
in C ′ must appear in Cmax and this case is finished.

Other Cases. In all other cases, the proof is relatively trivial. If the Function
Mismatch rule is used, then the argument proceeds as above. Because � = #, we need only
show the property on the set Π2. If the Non-Function rule is used, � = # and Π2 = ∅ and
so that case is trivial. If the Onion Left rule is used, the proof is trivial by induction: the
premises satisfy the inductive premises and the inductive conclusions satisfy the conclusions.
Finally, if the Onion Right rule is used, then we have by induction on the first matching
subproof that Π2 ⊆ Πmax. By this and induction on the second matching subproof, we
satisfy our conclusions.

5.9.1.3 Bounding Constraint Closure

Using the above, we now demonstrate that constraint closure is closed under the
bounding set Cmax. We begin by observing a critical property of type variable replacements
generated by our polymorphism model:

Lemma 5.35. Suppose α ∈ Amax and σ = Φ(α,−). If C ⊆ Cmax, then σ
∣∣
C′

(C) ⊆ Cmax for
any C ′. Further, TFresh(σ

∣∣
C′
, C) ⊆ Cmax.

Proof. For any variable α ∈ Amax, we have by Definition 5.2 that σ
∣∣
C′

(α) ∈ Amax for any
C ′ (since the result is in Amax whether it is a replacement or not). By Definition 5.29, all
constraints appearing in Cmax select their type variables arbitrarily from Amax; the same is
true for type variable selections within the definitions of Πmax and Tmax. This demonstrates
that replacing a variable in Amax with another in Amax does not change whether a constraint
appears in Cmax and we are finished.

We then proceed to the main bounding lemma:

108

CHAPTER 5. PROOF OF DECIDABILITY

Lemma 5.36. If C ⊆ Cmax and C =⇒ C ′ then C ⊆ Cmax.

Proof. By case analysis on the rules used.
Transitivity. If the Transitivity rule is used, the only new constraint appearing in

C ′ is τ
∣∣Π+

Π− <: α2. By Lemmas 5.30, 5.31, and 5.32, τ ∈ Tmax, Π+ ⊆ Πmax, Π− ⊆ Πmax,
and α2 ∈ Amax. By Definition 5.29, this new constraint appears in Cmax; thus, this case is
finished.

Application. If the Application rule is used, then we begin by observing that,
by Lemma 5.32, we have α1 ∈ Amax and α2 ∈ Amax. Trivially, ∅ ⊆ Πmax; thus, we use
Lemma 5.34 to conclude that α′1 ∈ Amax, C ′1 ⊆ Amax, and C ′′1 ⊆ Amax. By Definition 5.2,
α′2 ∈ Amax; by Lemma 5.35, C ′2 ⊆ Cmax and C ′′2 ⊆ Cmax. Because α2 ∈ Amax and α′2 ∈ Amax,
we have by Definition 5.29 that α′2 <: α2 ∈ Cmax. Therefore, C ′ ⊆ Cmax and this case is
finished.

Merging. By the same strategy as the Transitivity case. In the Merging case, we
also handle the intermediate and application constraints using this strategy (as Lemma 5.30
is sufficient in those cases).

5.9.2 Proof

Using the above, we now demonstrate that constraint closure always converges.
We do so by demonstrating that no closure chain can have more steps than there are
constraints in Cmax (excluding trivial steps of the form C =⇒ C). We begin by observing
a monotonicity property on constraint closure:

Lemma 5.37. If C =⇒ C ′ then C ⊆ C ′.

Proof. Trivial by inspection of Figure 3.16.

We then proceed to demonstrate that closure sequences must be bounded by the
number of elements in Cmax:

Lemma 5.38. Suppose C0 ⊆ Cmax. For any closure sequence C0 =⇒ C1 =⇒ . . . =⇒ Cn

such that Ci 6= Ci+1 for any i, n ≤ |Cmax|.

Proof. Because closure is monotonic (Lemma 5.37), we observe that |Ci| < |Ci+1| for all
i. We have that |C0| ≥ 0; thus, by induction on the length of the chain, we have that
|Cn| ≥ n. Also by induction on the length of the chain and using Lemma 5.36, we have
that Cn ⊆ Cmax; thus, |Cn| ≤ |Cmax|. Thus, n ≤ |Cmax| and we are finished.

109

CHAPTER 5. PROOF OF DECIDABILITY

5.10 Proving Decidability

In this section, we use the lemmas provided in the previous sections to prove the
decidability theorem originally stated in Section 5.2.

Theorem 2 (Decidability). With a finitely freshening polymorphism model, typechecking
is decidable.

Proof. By Definition 3.36, a closed expression einit typechecks iff JeinitKE = α\C and C =⇒∗

C ′ implies that C ′ is consistent. The initial alignment function is trivially decidable by
inspection of Figure 3.13; Lemma 5.28 demonstrates that the consistency of any C ′ is
decidable. So it suffices to show that the set of all C ′ such that C =⇒∗ C ′ can be computed.

Lemma 5.38 demonstrates that all sequences C =⇒∗ C ′ have finitely many steps;
Lemma 5.36 demonstrates that all such sequences contain only sets which are subsets of
Cmax, a finite set. There are finitely many lists of constraint sets of finitely bounded length
which are subsets of Cmax; it therefore suffices to consider each of these lists to determine
if they represent valid closure sequences. For any such list, Lemma 5.27 demonstrates by
induction on the length of the list that it is decidable whether that list represents a valid
closure sequence. This is to say that, to compute all C ′ such that C =⇒∗ C ′, it suffices
to consider finitely many judgments of a decidable relation; thus, the set of all such C ′ is
computable and we are finished.

Although the above demonstrates that typechecking is decidable, it does not bound
the complexity of the operation. We argue that typechecking is feasible by describing our
proof-of-concept implementation in Chapter 9.

110

Chapter 6

Polymorphism in TinyBang

This chapter presents a polymorphism model suitable for TinyBang and, in par-
ticular, the use cases given in Chapter 2. The TinyBang type system defined in Section 3.5
is parametric in its polymorphism model, which is defined in terms of two functions: Φ,
which polyinstantiates constraint sets; and Υ, which generates replacements from variable
sets. Chapter 4 proves the type system system sound regardless of which polymorphism
model is being used. To ensure that the type system is decidable, Section 3.5.5.1 outlines a
set of necessary properties; Section 5.1 gives formal definitions for those properties.

Section 3.5.5.1 proposes a monomorphic model ΦMono/ΥMono for the purposes of
illustration. This model trivially satisfies the properties in Section 5.1, but it is clearly
unsatisfying. To typecheck the examples in Chapter 2, we must use a considerably more
sophisticated approach.

This chapter proceeds by formalizing a polymorphism model ΦCR/ΥCR (which
we call CR) that we have used in the TinyBang implementation. After we formalize this
model, we prove that it satisfies the formal properties in Section 5.1. The TinyBang type
system used with CR typechecks all of the examples provided thus far in this text.

6.1 Motivating CR

We design the CR model for a good trade-off between expressiveness and effi-
ciency. More traditional approaches such as let-bound polymorphism lack the expressive-
ness needed for common programming patterns. For example, consider:

1 let factory x = (‘get _ -> x) in

111

CHAPTER 6. POLYMORPHISM IN TINYBANG

2 let mkPair f = ‘A (f 0) & ‘B (f ’z’) in
3 mkPair factory

Here, factory creates simple polymorphic value container. In a let-bound model,
the type given to f within mkPair is monomorphic; thus, the best type we can assign to the
argument type of f where it is used is int∪char (and not just int or char in either position).
The novel seal function in Section 2 also fails to typecheck using let-bound polymorphism
because obj would be mono-typed from within the catch-all message handler added by the
sealing routine.

To provide sufficient precision, the TinyBang type system uses call site polymor-
phism: rather than polyinstantiating variables where they are named, we polyinstantiate
functions when the function is invoked. We thus view every function as having a polymor-
phic type. In order to ensure maximal polymorphism, every variable bound by the body of
the function should be polyinstantiated. This approach is inspired by flow analyses [62, 1]
and has previously been ported to a type constraint context [74]. A program can have an
unbounded number of function call sequences, so some compromise must be made for re-
cursive programs. A standard solution to this problem is to chop off call sequences at some
fixed point. While such arbitrary cutoffs may work for program analyses, they work less
well for type systems: they make the system hard for users to understand and potentially
brittle to small refactorings.

Our approach is to conservatively model the runtime stack (as in [43]). In par-
ticular, we abstract call sequences as restricted regular expressions called contours1 and a
single type variable associated with a regular expression will represent all runtime variables
whose call strings match the regular expression. This model is powerful enough to assign
useful types to the above code as well as all of the code in the overview. Like most polymor-
phic type systems (including ML’s), CR is exponential when presented with pathological
code examples. It behaves well in practice, however; implementation details are given in
Chapter 9.

6.2 The Definition of CR

We now define CR. As described in Section 3.5.5.1, this consists of defining two
functions: ΦCR and ΥCR. In this section, we provide some supporting definitions and then
give definitions of those functions.

1We pick the name CR as an abbreviation of “contour regexes”.

112

CHAPTER 6. POLYMORPHISM IN TINYBANG

6.2.1 Contours

The CR polymorphism model functions by creating fresh polyinstantiations of
every variable at every call site and then merging these variables when recursion is detected.
More precisely, a type variable merging occurs if (1) two type variables represent the type
of the same variable from the original program and (2) they do so in the context of the same
call site in the original program. In order to track this information, we define a bijection
⇔ between type variables and type variable descriptors for a given typechecking pass. We
describe type descriptors informally here and give a formal definition below.

A type variable descriptor represents two pieces of information. The first is the
type variable JxKV that was decided for the program variable x during initial alignment. The
second is a contour representing the set of call strings at which this type variable applies.
(We give a precise definition of contours below.) For instance, suppose 〈αx, αy〉 ⇔ α where
αy is a contour representing just the call string “αy”; then α is the polyinstantiation of αx

when it is reached by a call site αy appearing at the top level of the program. For example,
in the program

1 i = p \ { p = () } -> { x = p };
2 v = 4;
3 y = i i;
4 z = i 4;

the function i is the identity function. The type variable 〈αx, αy〉 ⇔ α represents the type
of x when it is expanded into the call site at y; it does not represent the type of x when it
is expanded into the call site at z. Formally, we define contours as follows:

Definition 6.1 (Contour). A contour C is a regular expression in which all symbols are
type variables. Further, a contour is a concatenation only of literals and Kleene closures
over disjunctions of literals. We use ε to denote the contour matching only the empty call
string. We use ∅ to denote the contour matching no call strings.

As stated above, contours could be arbitrarily long. For decidability, we provide
the following refinement on contours which we maintain inductively through each closure
step:

Definition 6.2 (Well-Formed Contour). A contour C is well-formed if each type variable
appears at most once within it.

For example, the contour α0(α1|α2)∗ is well-formed but the contour α0α1α0 is not.
The bijection only admits descriptors with well-formed contours. In theory, an unboundedly
long contour could still consist of unique variables. Throughout our use of the polymorphism
model, however, we bound the variables appearing in a contour with the variables appearing

113

CHAPTER 6. POLYMORPHISM IN TINYBANG

during initial alignment.
For the purposes of the definitions below, we define simple notation on contours:

Notation 6.3 (Contours). We provide the following notation for contours:

• We write C || C′ to indicate the concatenation on contours in the sense of regular
expressions.

• We write C ≤ C′ to denote that the set of call strings matched by C is a subset of the
call strings matched by C′.

• We say that C overlaps C′ (equiv. C and C′ overlap) if there exists any call string
accepted by both contours.

• We may write a type variable’s descriptor in place of that type variable. For instance,
we use int <: 〈α,∅〉 as shorthand for “int <: α′ such that 〈α,∅〉 ⇔ α′”.

Note that, while contours are closed under concatenation, well-formed contours
are not.

Given the above, we can also provide a formal definition of type variable descrip-
tors:

Definition 6.4 (Type Variable Descriptor). A type variable descriptor for a variable α is
a pair 〈α′, C〉. We call α′ the root variable of α; we call C the contour of α.

6.2.1.1 Least Well-Formed Contours

As contours are a restricted form of regular expression, we extend the partial
ordering of regular expressions to cover them. Formally, we state the following:

Definition 6.5 (Contour Partial Ordering). A contour C is less than a contour C′ if the set
of call strings accepted by the former is a strict subset of those call strings accepted by the
latter.

As an example of the above, the contour α0
∗α1 is less than the contour α0

∗α1
∗,

but the contours α0
∗α1 and α0α1

∗ have no ordering. This ordering becomes important
throughout the definition and discussion of ΦCR/ΥCR because it gives rise to the notion of
a least well-formed contour greater than another. As an example, the contour α0α1α0 is
ill-formed; the least well-formed contour which subsumes it is (α0|α1)∗. We demonstrate
here that, for any contour, a unique least well-formed contour exists.

Lemma 6.6. For any contour C, there exists a unqiue least well-formed contour C′ which
subsumes it.

114

CHAPTER 6. POLYMORPHISM IN TINYBANG

Proof. If C is well-formed, then C = C′ and this lemma is trivial. We thus consider the case
in which C is ill-formed.

If C is ill-formed, then there exists some type variable α which appears in C more
than once. Contours may only be comprised of terminal symbols and Kleene closures of
disjunctions of terminal symbols (Definition 6.1); thus, the only means by which this dupli-
cation may be eliminated is to join the duplicate symbols together with all intervening sym-
bols into a single Kleene closure (e.g. . . . α1α2(α3|α4)∗α1 . . . becomes . . . (α1|α2|α3|α4)∗ . . .).
This duplicate-eliminating process is confluent (because the Kleene closures are unordered)
and decidable (by induction on the length of the contour): thus, the resulting well-formed
contour C′ subsuming C is unique.

6.2.2 Polyinstantiation

We begin our management of polymorphism with initial alignment. In particular,
we always choose the type variable bijection such that each fresh type variable JxKV chosen
by initial alignment has a fixed mapping.

Definition 6.7 (Initial Alignment Bijection). If the variable x is defined within a pattern
or the body of a function, then 〈JxKV,∅〉 ⇔ JxKV. Otherwise, 〈JxKV, ε〉 ⇔ JxKV (to reflect
the fact that α represents x at top level and in the empty call string).

Other than this initial set, new type variables are only introduced to closure via
polyinstantiation or merging. We define the polyinstantiation function ΦCR to instantiate
variables appearing in a constraint set as follows:

Definition 6.8 (Polyinstantiation for CR). Without loss of generality, consider α′1 =
〈α1, C1〉 and α′2 = 〈α2, C2〉. Let C′1 be the least well-formed contour such that, if
some call string s is accepted by C1, then s ||α1 is accepted by C′1. If C2 = ∅, then
ΦCR(α′1, α′2) = 〈α2, C′1〉; otherwise, ΦCR(α′1, α′2) = α′2.

As an example, consider a call site α′1 = 〈α1, α3α4〉. This variable represents the
program point α1 when the call stack has a call from α3 followed by a call from α4. Consider
also a type variable α′2 = 〈α2,∅〉 representing program point α2 inside of the function being
called. For this polyinstantiation, we replace α′2 with 〈α2, α3α4α1〉: this represents the type
of program point α2 when the call stack has a call from α3 followed by a call from α4 and
then by a call from α1.

As another example, consider α′1 = 〈α1, α3α1α4〉 with the same α2 above. In this
case, we have witnessed a call cycle: the call site α1 reaches the call site α4 which then
returns to the call site α1. Because α3α1α4α1 is not a well-formed contour, it is replaced
by the least well-formed contour which covers this case: α3(α1|α4)∗.

115

CHAPTER 6. POLYMORPHISM IN TINYBANG

We observe that ΦCR does not freshen variables if they have already been polyin-
stantiated once. Only variables for which the contour is empty are replaced. This ensures
that variables captured in the closure of a function do not present any difficulties.

6.2.3 Merging

Although the above polyinstantiation function is sufficient to express the poly-
morphism we require for our code examples, it is incredibly inefficient. If a set of call sites
may be visited in any order before repeating (such as may occur in e.g. the body of an
interpreter’s evaluation function), then the number of contours created is factorial in the
number of call sites. This problem is addressed by defining a merging function to unify
variables which exist in overlapping contours; then, once a cycle is discovered, it collapses
every variable which might participate in it. While this is a weakening in theory, the only
code it affects in practice is code whose type correctness depends on the specific statically-
known order in which it recurses; such code is simultaneously unusual and quite poor form,
so we embrace this concession.

The key to the merging function is that it merges all visible contours which inter-
sect. We formally define this function as follows:

Definition 6.9 (Merging for CR). Let f be a function of two type variables returning a
single type variable replacement function. For any variable α0 which is not α1, we define
σ = f(α1, α2) such that σ(α0) = α0. For α1, we let σ(α1) = α2 if C1 overlaps C2 and
σ(α1) = α1 otherwise. Given this definition, ΥCR(A) = {f(α1, α2) | α1 ∈ A,α2 ∈ A}.

As formalized here, the merging function does not reduce the number of con-
straints during closure; to the contrary, it considerably increases them. Due to the nature
of this replacement, however, it becomes possible in an implementation to replace constraints
rather than adding new constraints with the replaced variables. Consider two constraints
〈α1, C1〉 <: α2 and 〈α1, C′1〉 <: α2. When C1 ≤ C′1, the first constraint becomes redun-
dant (due to the definitions of inconsistency and typechecking). We defer discussion of
implementation details to Chapter 9.

6.3 Finite Freshening of CR

As mentioned above, Chapter 4 demonstrates that the type system is sound re-
gardless of which polymorphism model is used. To show that the TinyBang type system is
decidable when used with CR, however, we must demonstrate the finite freshening property
defined in Section 5.1. We do so in this section.

116

CHAPTER 6. POLYMORPHISM IN TINYBANG

6.3.1 Freshness Bounding Function

The first step in this process is to define the freshness bounding function for the
polymorphism model. As described in Section 5.1, this function must be able to identify all
of the (finitely many) type variables which will be generated by the polymorphism model
based on the type variables gathered from initial alignment. We give such a function below:

Definition 6.10 (Freshness Bounding for CR). For CR, we define the freshness bounding
function ϑCR(e) as follows. Let A be the set of type variables appearing in JeKE. Let A′ be
the root variables of the variables appearing in A; that is, A′ = {α | 〈α, C〉 ∈ A}. Let ⨽−−⨼C be
the set of all well-formed contours which can be constructed from the variables appearing
in A′. Then ϑCR(e) = {〈α, C〉 | α ∈ A′, C ∈ ⨽−−⨼C }.

6.3.2 Properties of Freshness Bounding

In order to demonstrate that the function above is a suitable freshness bounding
function, we must demonstrate that it has the properties specified in Definition 5.1. We
begin with the assertion that it identifies all variables appearing in the initial alignment of
the expression:

Lemma 6.11. ϑCR(e) is a finite superset of the variables appearing in JeKE.

Proof. Let A be the set of type variables appearing in JeKE. By Definition 6.7, each of these
variables is of the form 〈α, C〉 where C = ε or C = ∅. By Definition 6.10, ϑCR(e) contains
all variables of the form 〈α′, C′〉 where α′ appears as the root of some variable in A and C′

is a well-formed contour constructed of the roots of the variables in A. Because both ε and
∅ are trivially well-formed, any variable 〈α, C〉 ∈ A also appears in ϑCR(e).

It remains to show that ϑCR(e) is finite. We observe that ϑCR(e) is isomorphic to
the product of the root variables appearing in JeKE (finite because e is finite) and the set of
well-formed contours which can be constructed from a finite set of variables. As variables
cannot repeat within well-formed contours, as there are finitely many variables, and as the
syntax of a contour does not contain any repeating terms, this set of well-formed contours
is finite. Therefore, ϑCR(e) is finite and we are finished.

We next demonstrate that the polyinstantiation function does not escape the
bounds of this set.

Lemma 6.12. For each α1 and α2 in ϑCR(e), ΦCR(α1, α2) ∈ ϑCR(e).

Proof. Let A be the set of roots of variables appearing in JeKE; then we have by Defini-
tion 6.10 that α1 = 〈α′1, C1〉 and α2 = 〈α′2, C2〉 where α′1 ∈ A, α′2 ∈ A, and both C1 and C2

117

CHAPTER 6. POLYMORPHISM IN TINYBANG

are well-formed contours constructed from variables in A. If C2 6= ∅ then, by Definition 6.8,
ΦCR(α1, α2) = α2 and, because we already know α2 ∈ ϑCR(e), we are finished.

Otherwise, C2 = ∅. Let C′1 be the least well-formed contour accepting all strings
which are accepted by C1 ||α′1; this contour is, by definition, both well-formed and con-
structed from variables in A. In this case, ΦCR[ΦCR]α1α2 = 〈α′2, C′1〉, so it suffices to show
that 〈α′2, C′1〉 ∈ ϑCR(e). By Definition 6.10, ϑCR(e) contains all variables with a root vari-
able from the set of roots in JeKE (defined here as A) and a well-formed contour constructed
from those variables. Because α′2 ∈ A and because C′1 is such a well-formed contour, we are
finished.

Finally, we show that the merging function also remains within the bounds of the
set.

Lemma 6.13. For every α ∈ ϑCR(e) and A ⊆ ϑCR(e) and σ ∈ ΥCR(A), we have that
σ(α) ∈ ϑCR(e).

Proof. Without loss of generality, select some α0 ∈ ϑCR(e) and A ⊆ ϑCR(e). We have by
Definition 6.9 that each σ appearing in ΥCR(A) is derived from some pair of variables α1

and α2 which appear in A. Select some σ and the corresponding α1 and α2 without loss of
generality. If α0 6= α1 then σ(α0) = α0 and we are finished.

Otherwise, α0 = α1. We have two cases: either the contours of α1 and α2 overlap
or they do not. If they do not, then σ(α0) = α0 and we are finished. Otherwise, let
α1 = 〈α′1, C1〉 and let α2 = 〈α′2, C2〉. We have that σ(α0) = α2; because α2 also appears
within A, we are finished.

6.3.3 Statement of Finite Freshening

Finally, we can formally state the finite freshening property of CR:

Theorem 3 (CR is Finitely Freshening). The polymorphism model ΦCR/ΥCR is finitely
freshening.

Proof. By Definition 5.1 and Lemmas 6.11, 6.12, and 6.13.

6.4 Computability of CR

The proof of decidability also assumes that the functions defining the polymor-
phism model are computable. We demonstrate this relatively trivial property here, begin-
ning with the polyinstantiation function.

Lemma 6.14. ΦCR is computable.

118

CHAPTER 6. POLYMORPHISM IN TINYBANG

Proof. All evaluation of ΦCR(α1, α2) is trivially computable except for the determination
of the least well-formed contour for an arbitrary contour. That determination is shown to
be decidable by Lemma 6.6. We are therefore finished.

We then give a lemma for the same property on merging:

Lemma 6.15. ΥCR is computable.

Proof. Trivial by inspection of Definition 6.9: the function computes a finite set compre-
hension over a finite set.

6.5 The Expressiveness of CR

As stated above, this polymorphism model is expressive enough to typecheck all
of the examples presented above. In general, it loses no information except at type variable
unions (an inevitable consequence of the type system) and at recursion. We discuss related
work in the field of abstract interpretation and then present a concrete example of CR’s
expressiveness.

As stated in Chapter 3.5, TinyBang’s type system is similar to abstract inter-
pretations; it is appropriate, then, to compare its expressiveness to abstract interpretation
polyvariance models [33]. As a point of reference, the monomorphic system ΦMono/ΥMono

is analogous to 0-CFA, the degenerate form of Shivers’ seminal work in control-flow analysis
[62].

The more general form, k-CFA, bears more resemblance to ΦCR/ΥCR in that it
uses a call history of depth k to distinguish between the different ways a single point in a
program is reached. Though useful in many program analyses, k-CFA has the undesirable
property of producing arbitrary cutoffs – the selection of k is insensitive to the particular
needs of a programmer at any given point in the program – which, in a type system, would
yield a sense of brittleness as minor refactorings could introduce false type errors [76, 68].
In comparison to models involving arbitrary cutoff, we believe the information loss of CR
to be intuitive.

Might and Shivers’ ∆CFA [43] make use of call string abstractions in a fashion
similar to the CR polymorphism model presented in this chapter. In that work, however,
call string abstractions focus on the number of transitions between functions and not the call
sites themselves. As a result, ∆CFA and CR are differently expressive; neither subsumes
the other.

We call out the above polyvariance models because they are especially comparable
to CR. Other common polyvariance models (such as CPA [1], which creates new contours
based on the types of function arguments) are not similar enough to allow straightforward

119

CHAPTER 6. POLYMORPHISM IN TINYBANG

comparison. For a deeper discussion of the expressiveness and complexity of other poly-
variance models, we refer the reader to [33].

6.5.1 An Example

For an example of how CR loses (and retains) precision, consider the following
nested TinyBang code:

1 let fixpoint = fun f -> (fun g -> fun x -> g g x) (fun h -> fun y -> f (h h) y) in
2 let map = fun f -> fixpoint (fun self -> fun x ->
3 ((fun ‘Nil _ -> ‘Nil ())
4 & (fun ‘Hd y * ‘Tl t -> ‘Hd (f y) & ‘Tl (self t)))) in
5 let fn = (fun ‘A x -> ‘Z x) &
6 (fun ‘B y -> ‘Y y) in
7 map atoz (‘Hd (‘A ()) & ‘Tl (‘Hd (‘B ()) & ‘Tl ‘Nil ()))

Informally, this code is mapping the list [‘A () , ‘B ()] using the function fn; it
results in the list [‘Z () , ‘Y ()]. In the type system, however, the atoz function is called
only from one place: the f y invocation on line 4. As a result, the body of the function
only receives a single contour for both invocations of fn and the resulting list is given a
union type. However, the code

1 let fixpoint = fun f -> (fun g -> fun x -> g g x) (fun h -> fun y -> f (h h) y) in
2 let map2 = f -> fixpoint (fun self -> fun x ->
3 ((fun ‘Nil _ -> ‘Nil ())
4 & (fun ‘Hd y * ‘Tl ‘Nil _ -> ‘Hd (f y) & ‘Tl ‘Nil ())
5 & (fun ‘Hd y * ‘Tl (‘Hd z & ‘Tl t) ->
6 ‘Hd (f y) & ‘Tl (‘Hd (f z) & ‘Tl (self t))))) in
7 let fn = (fun ‘A x -> ‘Z x) &
8 (fun ‘B y -> ‘Y y) in
9 map2 atoz (‘Hd (‘A ()) & ‘Tl (‘Hd (‘B ()) & ‘Tl ‘Nil ()))

does not exhibit the same behavior. This code is identical in behavior to the previous
example, but the map2 function maps two elements at a time. As a result, there are two
call sites on line 6 and so two union types are ascribed to the resulting list: one for the
even-indexed positions and the other for the odd-indexed positions. In this example, the
type given to the list is quite precise. If we extend this example with an additional case,

1 let fixpoint = fun f -> (fun g -> fun x -> g g x) (fun h -> fun y -> f (h h) y) in
2 let map3 = f -> fixpoint (fun self -> fun x ->
3 ((fun ‘Nil _ -> ‘Nil ())
4 & (fun ‘Hd y * ‘Tl ‘Nil _ -> ‘Hd (f y) & ‘Tl ‘Nil ())
5 & (fun ‘Hd y * ‘Tl (‘Hd z & ‘Tl ‘Nil _) ->

120

CHAPTER 6. POLYMORPHISM IN TINYBANG

6 ‘Hd (f y) & ‘Tl (‘Hd (f z) & ‘Tl (‘Nil ()))) in
7 & (fun ‘Hd y * ‘Tl (‘Hd z & ‘Tl (‘Hd w & ‘Tl t))) ->
8 ‘Hd (f y) & ‘Tl (‘Hd (f z) & ‘Tl (‘Hd (f w) & ‘Tl (self t)))))
9 let fn = (fun ‘A x -> ‘Z x) &

10 (fun ‘B y -> ‘Y y) in
11 map3 atoz (‘Hd (‘A ()) & ‘Tl (‘Hd (‘B ()) & ‘Tl ‘Nil ()))

then the call to map3 reaches line 6, which doesn’t recurse. This invocation is indistin-
guishable from calling a non-recursive function and the type of the resulting list is exactly
correct: the type system has knowledge that the first element’s type is ‘Z (), the second
element’s type is ‘Y (), and that the list contains exactly two elements. While this is not a
scalable way to achieve more type precision on lists in general, these examples demonstrate
that TinyBang equipped with CR is capable of inferring precise types for fairly complex
data structures.

121

Chapter 7

Built-Ins

The formalization presented in Chapter 3 gives a restricted version of ANF Tiny-
Bang which, for purposes of illustration, elides basic components such as integer types and
state. This chapter briefly formalizes a version of ANF TinyBang including those opera-
tions. The soundness and decidability arguments for these new components follow largely
in the form of those in Chapters 4 and 5.

We introduce these built-in operations via a general framework for n-ary operators.
The examples we provide below demonstrate how integers, addition, and state can be added
to TinyBang; similar primitives follow the same pattern.

7.1 Environment

To ensure that this framework is sufficiently general to properly handle state (which
makes cyclic data references possible), our environment must be able to handle cyclic scope.
Conveniently, none of our discussion thus far as relied upon the ordering of any E. To this
end, we amend the definition of well-formed expressions: every clause in an expression E || e
is closed in the variable x if any clause in E binds x (regardless of its position). We formalize
this definition as follows:

Definition 7.1 (Bound and Free Variables (Revised)). We modify Definition 3.6 with the
following handling of expressions:
Expressions

BV(E) = {x | x = v ∈ E} FV(E) =
⋃
{FV(v) | x = v ∈ E} − BV(E)

BV(E || n−⇀s) = BV(E || n−1−⇀s) ∪ BV(sn) FV(E || n−⇀s) = FV(E || n−1−⇀s) ∪ (FV(sn)− BV(n−1−⇀s))

122

CHAPTER 7. BUILT-INS

s ::= x =� −⇀x | . . . clauses
� ::= + | . . . built-ins

Builtin
�(E, x′, n−⇀x) = 〈E′, x′′〉

E ||[x′ =� n−⇀x] || e −→1 E′ ||[x′ =x′′] || e

Figure 7.1: Built-In Framework Operational Semantics Additions

c ::= � −⇀α <: α | . . . constraints

Jx′ =�
n−⇀x� KE = Jx′KV\�

n−−−⇀

Jx�KV <: Jx′KV

Builtin
�
n−⇀α <: α′ �(C,α′, n−⇀α) = 〈C ′, α′′〉

C =⇒1 C ∪ C ′ ∪ {α′′ <: α′}

Figure 7.2: Built-In Framework Type System Additions

We modify Definition 3.20 in a corresponding fashion.

7.2 Framework

The built-in framework makes additions to the language grammar and operational
semantics; these additions appear in Figure 7.1. Each individual built-in operator is repre-
sented by a symbol in the grammar �. We define for each builtin a metatheoretic function
�(−,−,−) that defines the operator’s behavior; this function is from an environment, a call
site variable, and a list of operand variables onto a pair between a resulting environment
and value.

The contents of Figure 7.2 parallel these modifications at the type system level.
We also overload our operator function: we define a metatheoretic function �(−,−,−)
from a constraint set, call site type variable, and list of operand type variables onto a pair
between a resulting constraint set and a resulting type variable.

To create a built-in operator, it is then sufficient to define the value and type level
metatheoretic functions. Note that these functions may be partial; not every built-in can
accept every variable. If the value level built-in function is partial, then evaluation becomes

123

CHAPTER 7. BUILT-INS

v ::= Z | . . . values
ϕ ::= x : int | . . . filters

Let CtrPat(x : int \F) be true.

Integer
CtrPat(P) P+◦ ∪ P+ = {x : int \F ∈ P} P− = P − (P+◦ ∪ P+)

Z\E ∼ P+◦ /P+

P− ↑◦ [x =Z]

Figure 7.3: Built-In Integer Operational Semantics Additions

stuck. Correspondingly, we modify the definition of inconsistency in the following way:

Definition 7.2 (Inconsistency). A constraint set C is inconsistent either as indicated in
Definition 3.35 or iff there exists some �n−⇀α <: α′ ∈ C such that �(C,α′, n−⇀α) is undefined.

In order to preserve the soundness proof, it is necessary for each pair of functions
�(E, x′, x) and �(C,α′, α) to preserve the bisimulation property of Definition 4.1. Although
this imposes the burden of showing soundness on an operator-by-operator basis, it permits
the operators considerable freedom in the constraints that they generate.

7.3 Integers and Addition

For simplicity, integers were not included in the formalization in Chapter 3. We
introduce integer values, patterns, types, and operations here to illustrate built-ins. We
begin with the changes to the operational semantics shown in Figure 7.3. This figure
introduces literal integer values and an integer pattern filter. It defines integer patterns to
be constructor patterns and it gives a compatibility rule which operates on integer patterns
and integer types.

The integer pattern filter defined in this figure is of the form x : int rather than
simply int. Note that a pattern is then of the form x0\{x1 : int <: x0}. There are two
variables associated with the filter: one which is part of the structure of the pattern (x0)
and one which is part of the filter itself (x1). The intention here is to allow the strict
binding of the integer. A strict binding excludes all content which does not participate in a
pattern match. For this case, consider matching the above pattern with the value 5 & ‘A 0.
Although x0 would be bound to the entire value, x1 would be bound to the 5 only.

This strict binding is critical to the definition of an addition function which can
correctly handle onion values. We give that definition here:

124

CHAPTER 7. BUILT-INS

τ ::= int | . . . types
φ ::= α : int | . . . filters

Let CtrPat(α : int \Ψ) be true.

Integer
CtrPat(Π) Π+◦ ∪Π+ = {α : int \Ψ ∈ Π} Π− = Π− (Π+◦ ∪Π+)

int \C ∼ Π+◦ /Π+

Π− ↑◦ {int <: α}

Figure 7.4: Built-In Integer Type System Additions

Definition 7.3 (Operational Semantics of Addition). Suppose p = x0 : int \F for some x0.
We define + (E, x′, [x1, x2]) = 〈E ||[x3 =n3], x3〉 when all of the following are true:
• x1\E ∼ {p}/∅

∅ ↑◦ E′ such that x0 =n1 ∈ E′,
• x2\E ∼ {p}/∅

∅ ↑◦ E′ such that x0 =n2 ∈ E′,
• n3 is the sum of n1 and n2, and
• x3 = α(x′, x′).

This definition uses the strict binding properties of the integer pattern to extract
just the integer component from the value. We then use this integer component to determine
the addition. In this way, we have a proper type-driven destructor for primitive types in
onions. This allows us to evaluate an expression such as (5 & ‘A 4) + 1 to an appropriate
value (such as 6). The variable x′ is used here both as the call site and, in its freshened
form, the return variable; this is solely for convenience.

The above extensions define a TinyBang operational semantics which includes
addition. To typecheck this addition, we provide similar, nearly parallel extensions to the
type system. These modifications can be found in Figure 7.4. These rules are nearly
syntactically identical to the operational semantics rules; alignment between them follows
exactly as in the soundness proof in Chapter 4. This parallel includes the strict binding
variable seen in the evaluation system’s pattern filter.

Finally, we define a type system function for closing over addition operations:

Definition 7.4 (Typing of Addition). Suppose π = α0 : int \Ψ for some α0. We define
+ (C,α′, [α1, α2]) = 〈C ∪ {int <: α3}, α3〉 when all of the following are true:
• α1\C ∼ {π}/∅

∅ ↑◦ C ′ such that int <: α0 ∈ C ′,
• α2\C ∼ {π}/∅

∅ ↑◦ C ′ such that int <: α0 ∈ C ′,
• α3 = Φ(α′, α′).

125

CHAPTER 7. BUILT-INS

v ::= . . . | refx values
ϕ ::= . . . | refx filters

Let CtrPat(refx\F) be true.

Reference
CtrPat(P) P+◦ ∪ P+ = {refx\F ∈ P} P− = P − (P+◦ ∪ P+)

refx′\E ∼ P+◦ /P+

P− ↑◦ [x =x′]

Figure 7.5: Built-In State Operational Semantics Additions

7.4 State

The previous section demonstrated how a simple primitive type and its built-
in operators can be introduced to TinyBang. This section shows how a somewhat more
complex property – state – can be introduced. We introduce state via explicit reference
cells. We introduce a primitive reference cell type as well as an operator for assigning to
that cell. Retrieval from cells is accomplished by pattern matching; in fact, reference cells
are grammatically very similar to labels. We introduce the new grammar rules and other
definition changes in Figure 7.5.

The Reference rule of compatibility added here has the property of binding the
variable under the reference pattern to the contents of the reference type. This has the
effect of extracting the contents of that cell as evaluation proceeds. In order to allow cells
to be updated, we define an operator := and define its behavior as follows:

Definition 7.5 (Operational Semantics of Assignment). Suppose p = refx0\F for some
x0. We define := (E, x′, [x1, x2]) = 〈E′ ||[x3 = ()], x3〉 when all of the following are true:
• x1\E ∼ {p}/∅

∅ ↑◦ E′′ such that x0 =x′′ ∈ E′′ (that is, the first argument has a cell with
body x′′),
• x2 = v ∈ E (that is, x2 has a value),
• E′ is exactly E where x′′ = v′ is replaced by x′′ = v (that is, the cell’s content variable

is assigned to the value), and
• x3 = α(x′, x′) (so a return variable can be defined).

Here, the definition of this function uses the bindings from compatibility to identify
the content variable of the reference cell so that its clause in the environment may be
modified. The assignment operation always returns (), which it stores in a fresh variable.

To modify the type system accordingly, we again perform a perfect syntactic trans-
lation of the operational semantics which appears in Figure 7.6. We then give a definition

126

CHAPTER 7. BUILT-INS

τ ::= . . . | refα types
φ ::= . . . | refα filters

Let CtrPat(refα\Ψ) be true.

Reference
CtrPat(Π) Π+◦ ∪Π+ = {refα\Ψ ∈ Π} Π− = Π− (Π+◦ ∪Π+)

refα′\C ∼ Π+◦ /Π+

Π− ↑◦ {α′ <: α}

Figure 7.6: Built-In State Type System Additions

of the type system assignment function as follows:

Definition 7.6 (Typing of Assignment). Suppose π = refα0\Ψ for some α0. We define
:= (C,α′, [α1, α2]) = 〈C ∪ C ′ ∪ {() <: α3}, α3〉 when all of the following are true:
• α1\C ∼ {π}/∅

∅ ↑◦ C ′′ such that α′′ <: α0 ∈ C ′′,
• C ′ = {τ

∣∣Π+

Π− <: α′′ | τ
∣∣Π+

Π− <: α2 ∈ C} (that is, all lower bounds of the argument flow
into the cell), and
• α3 = Φ(α′, α′).

As in evaluation, this function identifies the content variable of the reference cell.
Where evaluation copies the value of the argument into the cell, this function copies the
lower-bounding type of the argument into the cell. The set comprehension is necessary
because there may be many lower-bounding types. Unlike the evaluation system, however,
no replacement is necessary; the constraint system is monotonic in nature, so we simply
add the new lower bounds. This produces a flow-insensitive model of state in TinyBang:
the type of the contents of a cell is the union of all types it has ever been or will be.

127

Chapter 8

LittleBang

The previous chapters have defined a formal type system for ANF TinyBang,
a mechanism by which built-in operations such as addition can be defined, and an A-
translation mechanism to convert nested TinyBang expressions into the ANF language.
This chapter defines LittleBang, a language with a variety of common scripting language
features, by encoding them into nested TinyBang. The initial exploration of several of
these encodings was formalized in [26]; we give many of them again here for the purposes
of refinement and completeness. In each case, we present the formal encoding and discuss
our choices especially with respect to static typing.

8.1 The Encoding Process

Rather than presenting a formal LittleBang syntax all at once, we begin with a
basic LittleBang syntax and incrementally add to its grammar as we define their encodings.
This basic LittleBang syntax appears in Figure 8.1. This syntax is nearly identical to the
nested TinyBang syntax in Figure 2.1, but the concrete syntax of functions and application
have been changed in order to distinguish them from the forms we will give them in Lit-
tleBang. Specifically, TinyBang’s functions are prefixed with tbfun (rather than fun) and
TinyBang application is written using the explicit infix operator � .

The syntax in Figure 8.1 is simply a different concrete form of nested TinyBang;
the manner in which it is translated into TinyBang is evident. For each encoding, we give an
extension to the syntax in Figure 8.1 and then provide an encoding function which translates
this extension into the syntax which has already been defined. As the chapter proceeds,

128

CHAPTER 8. LITTLEBANG

e ::= x | () | Z | S | l e | e & e | ref e | ! e | x := e in e | expressions
letx = e in e | tbfun p -> e | e � e | e� e

p ::= x | () | int | str | l p | p * p patterns
� ::= (binary operators: equality, addition, etc.) operators
l ::= ‘(alphanumeric) labels
x variables

Figure 8.1: LittleBang Basic Syntax

later sections may translate either to syntax appearing in Figure 8.1 or to extensions which
have been defined in previous sections. Thus, a full LittleBang program may be translated
to nested TinyBang by applying the encodings in the opposite order in which they appear
in this chapter.

To describe an encoding, we use “banana brackets” parameterized with the gram-
mar non-terminal that they desugar; for instance, we may write LfooMe = bar to indicate
that the form foo is encoded as the form bar in the context of an expression (e). The use
of the grammar non-terminal here does not indicate e.g. a particular expression but rather
expressions in general.

As encodings are often required to use fresh variable names, we use the nota-
tion ?

x to denote a fresh variable. When the same fresh variable symbol appears in the
same encoding (with the same subscript, if appropriate), it is the same variable; for in-
stance, Lfoo x1Me = bar ?

x2
?
x2

?
x1 x indicates that the code foo x may desugar to e.g.

bar z z y x. We use
?

l as a similar notation for label names.
We give each of our encodings below. What follows is a laundry list of encodings

presented, when possible, in order from simplest to most complex.

8.2 Booleans

We begin our encodings with a simple example: boolean values. Rather than
requiring users to write ‘True (), we expect to write (as in most languages) true. We
formally define that behavior as follows:

Encoding 8.1. We extend the grammar of LittleBang below:

e ::= . . . | true | false

129

CHAPTER 8. LITTLEBANG

This grammar extension is encoded as follows:

LtrueMe = ‘True ()

LfalseMe = ‘False ()

8.2.1 Boolean Operations

For the sake of completeness, we can also define some boolean operations. These
do not need to be addressed using the built-ins mechanism described in Chapter 7 because
the operations are defined over a finite space determined entirely by value types.

Encoding 8.2. We extend the grammar of LittleBang below:

e ::= . . . | e and e | e or e | not e

This grammar extension is encoded as follows:

Le1 and e2Me = ((‘1 ‘True () * ‘2 ‘True () -> ‘True ())
& (‘1 ‘False () * ‘2 ‘True () -> ‘False ())
& (‘2 ‘True () * ‘2 ‘False () -> ‘False ())
& (‘2 ‘False () * ‘2 ‘False () -> ‘False ())
) (‘1 (e1) & ‘2 (e2))

Le1 or e2Me = ((‘1 ‘True () * ‘2 ‘True () -> ‘True ())
& (‘1 ‘False () * ‘2 ‘True () -> ‘True ())
& (‘2 ‘True () * ‘2 ‘False () -> ‘True ())
& (‘2 ‘False () * ‘2 ‘False () -> ‘False ())
) (‘1 (e1) & ‘2 (e2))

Lnot eMe = ((‘True () -> ‘False ())
& (‘False () -> ‘True ())
) (e)

In practice, of course, a compiler would not perform function application for every
boolean operation; dispatch tables such as those above can be recognized and transformed
into the appropriate machine instructions. While optimization is outside of the scope of
this document, the TinyBang type system was designed with eventual optimization in mind.
The above is simply presented as a formal encoding such as is used in the proof-of-concept
interpreter implementation.

The above encoding works together with the type system to perform some amount
of partial evaluation on boolean conditions. Recall from Chapter 2 that built-in oper-
ations like == are expected to return (using Notation 3.27) values of type ‘True () ∪

130

CHAPTER 8. LITTLEBANG

‘False (). Thus, the expression 1 == 2 will return a general boolean type. The expres-
sion 1 == 2 or true, however, will always yield a value of type ‘True (): no recursion
appears at this call site and the only arguments passed to the function in the or encod-
ing lead to branches which yield a ‘True () value. Therefore, the LittleBang expression
if (1 == 2 or true) then 3 else ’z’ is inferred to have type int.

8.3 Records

We continue by encoding ML-style records: a data structure example which in-
cludes a pattern form. As indicated in Section 1.3, records are trivially encoded in TinyBang
using labels and onions. We formally define that behavior here:

Encoding 8.3. We extend the grammar of LittleBang below:

z ::= (alphanumeric) names

e ::= . . . | { z1 = e1 , . . . , zn = en }

This grammar extension is encoded as follows:

L{ z1 = e1 , . . . , zn = en }Me = (‘ z1 e1) & . . . & (‘ zn en)

Thus, the expression {a=5,b=4,c=3} is encoded as (‘a 5) & (‘b 4) & (‘c 3).
This encoding is quite simple, but it serves to illustrate the process we use in defining
encodings for LittleBang. Of course, it is convenient to have a pattern form for matching
records as well; we define one here:

Encoding 8.4. We extend the grammar of LittleBang below:

p ::= . . . | { z1 = p1 , . . . , zn = pn }

This grammar extension is encoded as follows:

L{ z1 = p1 , . . . , zn = pn }Mp = (‘ z1 p1) * . . . * (‘ zn pn)

8.3.1 Projection

For convenience, we also define syntax to project a record component. This syntax
is defined in terms of the record patterns shown above:

Encoding 8.5. We extend the grammar of LittleBang below:

e ::= . . . | e . z

131

CHAPTER 8. LITTLEBANG

This grammar extension is encoded as follows:

Le . zMe = (tbfun { z = ?
x } -> ?

x) � e

This function simply matches on the 1-ary record with a value under the projected
label and returns its contents. This demonstrates the manner in which we define encodings
in terms of other encodings.

8.4 Lists

Standard cons-cell lists are trivial to encode in TinyBang. We give that encoding
here for completeness and because LittleBang lists have interesting typing properties. We
will use the typical syntax: brackets for literal lists and :: for list construction.

Encoding 8.6. We extend the grammar of LittleBang below:

e ::= . . . | [e , . . . , e] | e :: e

p ::= . . . | [p , . . . , p] | p :: p

This grammar extension is encoded as follows:

Le1 :: e2Me = ‘Hd e1 & ‘Tl e2

L[]Me = ‘Nil ()

L[e1 , . . . , en]Me = (e1) :: ([e2 , . . . , en])

Lp1 :: p2Mp = ‘Hd p1 & ‘Tl p2

L[]Mp = ‘Nil ()

L[p1 , . . . , pn]Mp = (p1) :: ([p2 , . . . , pn])

8.4.1 Lists Are Tuples

An interesting consequence of the TinyBang type system is that no encoding is
necessary for tuples. Recall from Section 3.2 that each subexpression in nested TinyBang
is given a unique variable in A-normal form. Recall also that Section 6.2 uniquely polyin-
stantiates any variables that are not immediately subject to recursion. As a result, literal
lists have heterogeneous types (while iteratively-constructed lists have homogeneous types).
For instance, consider the following LittleBang code:

1 let f0 = (tbfun self ->
2 tbfun ‘1 (n * int) * ‘2 v1 * ‘3 v2 ->
3 let hd = (if n > 3 then v1 else v2) in
4 if n == 0 then [] else hd::(self (‘1 (n-1) & ‘2 v))

132

CHAPTER 8. LITTLEBANG

5) in
6 let f = f0 f0 in
7 f (‘1 8 & ‘2 ’z’ & ‘3 0)

The above code creates a function f which recursively generates a list of some
size; all elements in the list are the value given in the ‘2 label excepting the last three,
which are the value given in the ‘3 label. Here, for instance, the list which is generated is
[’z’,’z’,’z’,’z’,’z’,0,0,0]. Because the function recurses on itself at the call site on
line 4, the contours dictating the types of each element in the list are merged (to prevent
unbounded growth) and so the list has the type α\{‘Nil () <: α, ‘Hd (int∪char) & ‘Tlα <:
α} (that is, each element in the list is either a char or an int). This should be relatively
unsurprising and is the type commonly inferred by systems with subtyping.

On the other hand, the CR polymorphism model is quite expressive when recursion
is absent. Consider the following LittleBang code, which is a literal unrolling of the above:

1 [’z’,’z’,’z’,’z’,’z’,0,0,0]

Here, each element of the list is named explicitly at a different point in the program;
the A-translation of this code gives a distinct variable name to each value in the list. As
a result, the list has type [char , char , char , char , char , int , int , int]; that is, the type
system knows that the first element in this list is a character while the last element in this
list is an integer. This is exactly the precision (and complexity) demonstrated by tuples in
other languages and, as a result, we need not provide a tuple encoding in LittleBang; we
use literal lists instead.

8.5 Functions and Application

As indicated in Section 2.4, scripting languages typically use C-like parameter list
function syntax (as opposed to the curried application form used in functional programming
languages). We define functions and their application in LittleBang to conform to the
former. Additionally, we give a combined encoding here that can handle both named and
default arguments.

We begin by giving the following definition for the invocation of functions. We
start with invocations because they are simpler and give an idea of how we expect the
arguments to be handled:

Encoding 8.7. We extend the grammar of LittleBang below:

a ::= e | z = e arguments

e ::= . . . | e (a , . . . , a)

133

CHAPTER 8. LITTLEBANG

This grammar extension is encoded as follows:

Le (a1 , . . . , an)Me = e � (ArgDec(1, a1) & . . . & ArgDec(n, an))

where ArgDec(i, z = e) = ‘ z e

ArgDec(i, e) = ‘ i e

Quite simply, application wraps each argument in a label and onions those labeled
arguments together. If the argument is named, the label matches its name; otherwise, the
label matches the index of its position. For this application to work correctly, our encoding
of LittleBang functions must be prepared to accept either the named or unnamed form
of each argument; it must also be prepared to handle missing arguments if a default has
been defined for the parameter in question. We approach this by defining the function in
four stages: a series of argument extraction functions, a function representing the actual
body to execute, a function which applies default values, and a function which organizes
the arguments into a normalized, nominal form.

Encoding 8.8. We extend the LittleBang grammar as follows:

q ::= x | x : p | x = e | x : p = e parameters

e ::= . . . | fun (q , . . . , q) -> e

We restrict the above extension such that, in a function’s parameter list, no pa-
rameter which includes default expressions (that is, of the form of the last two productions)
may appear before a parameter without a default expression.

We then encode this grammar extension as depicted in Figure 8.2.

8.5.1 Examples

Although the mathematical notation for this encoding is somewhat opaque, the
intuition is fairly straightforward and we illustrate it by example. Consider a LittleBang
function declaration let f = fun (x,y,z=4) -> x+y-z in Here, we have three pa-
rameters, two of which are required; thus, n = 3 and k = 2. This desugars to the following
(using variables prefixed with a as fresh variables):

1 let a1’’ = ((tbfun ‘3 a0’’ -> ‘z a0’’)
2 & (tbfun a0’’ -> ())) in
3 let a1 = tbfun ‘x x * ‘y y * ‘z z -> x+y-z in
4 let a2 = tbfun a0’’ -> a1 � (a0’’ & a1’’ � a0’’ & ‘z 4) in
5 ((a0 * ‘1 (a1’ * ()) * ‘2 (a2’ * ()) -> a2 � (‘x a1’ & ‘y a2’ & a0’))
6 & (a0 * ‘1 (a1’ * ()) * ‘y (a2’ * ()) -> a2 � (‘x a1’ & a0’))
7 & (a0 * ‘x (a1’ * ()) * ‘y (a2’ * ()) -> a2 � a0’)

134

CHAPTER 8. LITTLEBANG

LxMq = x : ()
Lx = eMq = x : () = e
Lfun (q1 , . . . , qn) -> eMe =

let ?
x′′k+1 = ((tbfun ‘ (k + 1) ?

x′′0 -> ‘xk+1
?
x′′0)

& (tbfun ?
x′′0 -> ()))

in
...
let ?

x′′n = ((tbfun ‘ (n) ?
x′′0 -> ‘xn

?
x′′0)

& (tbfun ?
x′′0 -> ()))

in
let ?

x1 = tbfun ‘x1 (x1) * . . . * ‘xn (xn) -> e in
let ?

x2 = tbfun ?
x′′0 -> ?

x1 �
(?x′′0 & ?

x′′k+1 �
?
x′′0 & . . . & ?

x′′k+1 �
?
x′′0 &

‘xk+1 e
′
k+1 & . . . & ‘xn e′n) in

((?
x′0 * ‘ 1 (?x′1 * p1) * . . . * ‘ k (?x′k * pk) ->
?
x2 � (‘x1

?
x′1 & . . . & ‘xk

?
x′k & ?

x′0))
& (?

x′0 * ‘ 1 (?x′1 * p1) * . . . * ‘ (k − 1) (?x′k−1 * pk−1) * ‘xk (?x′k * pk) ->
?
x2 � (‘x1

?
x′1 & . . . & ‘xk−1

?
x′k−1 & ?

x′0))

&
...

& (?
x′0 * ‘x1 (?x′1 * p1) * . . . * ‘x1 (?x′k * pk) ->
?
x2 � (?x′0))

)
where VarOf(x : p) = x

VarOf(x : p = e) = x
PatOf(x : p) = p
PatOf(x : p = e) = p
DfltOf(x : p = e) = e
xi = VarOf(qi)
pi = PatOf(qi)
e′i = DfltOf(qi)
1 ≤ k ≤ n = the index of the last non-default parameter

Figure 8.2: Function Definition Encoding

135

CHAPTER 8. LITTLEBANG

8)

If we invoke this function as f(2,3,5), then the onion (‘1 2 & ‘2 3 & ‘3 5)

is passed to the argument normalization function at line 5. This argument matches the
first simple function, so the contents of the ‘1 and ‘2 labels are copied onto the left of
the argument record as ‘x and ‘y labels; this organizes the required arguments into a
normalized nominal form. That record is passed to the function a2, which adds two ele-
ments to the right of it before passing it to a1: the expression tbapply a1’’ a0’’, which
similarly copies the optional argument ‘3 5 into a label ‘z 5 and the defaulting expres-
sion ‘z 4 which, since there is a ‘z 5 to the left of it, has no effect. Thus, the record
‘x 2 & ‘y 3 & ‘1 2 & ‘2 3 & ‘3 5 & ‘z 5 & ‘z 4 is passed to the function a1, which
extracts 2, 3, and 5 as x, y, and z (respectively) and correctly returns 0.

The above illustrates positional arguments and the handling of present optional
arguments. This next example shows how positional and nominal arguments are combined
and how absent optional arguments are handled: consider the invocation f(2,y=3). The
onion (‘1 2 & ‘y 3) is passed to the normalization function at line 5. Because there is no
‘2 label, the argument fails to match the first simple function but succeeds in matching the
second; this causes ‘x 2 & ‘1 2 & ‘y 3 to be passed to a2. Here the same two expressions
are added to the right of the record. This time, the expression tbapply a1’’ a0’’ yields
an empty onion () because no ‘3 label is present in the argument; nonetheless, ‘z 4 is
added to the right, leaving ‘x 2 & ‘1 2 & ‘y 3 & () & ‘z 4 to be passed to a1. This
way, a1 binds x, y, and z to 2, 3, and 4 (respectively).

8.5.2 Performance

The above pattern-matching process is fairly involved and requires numerous Tiny-
Bang function invocations at each LittleBang call site. Although a naïve implementation
of the above would suffer greatly in performance, this is not a property fundamental to
the encoding. The BigBang research group is, concurrent to this work, developing a layout
calculus which reduces the effort involved at the dispatch of each function call to a single
table lookup (based on tags attributed to onions as they are constructed, which is similarly
cheap); thus, each function call here costs at most a table lookup.

In cases where the static layout of the arguments is known (e.g. a typical call such
as f(2,3,5) above), we expect that this, combined with generous inlining by the compiler,
will result in approximately the same overhead as argument marshalling in traditional lan-
guages such as C. The above encoding does open the possibility of fundamentally dynamic
dispatches which cannot be statically inlined, such as when the argument record is union
typed: e.g.

136

CHAPTER 8. LITTLEBANG

1 let f = . . . in
2 let b = . . . in
3 let x = ‘1 2 & (if b then ‘2 3 else ‘2 ’z’) in
4 f � x

Here, we assume b to be a runtime-determined boolean and f to be a function
of two arguments which is overloaded such that the second argument may be either an
integer or a character. Because it is not known at compile time the specific overloading to
which the call will dispatch, inlining cannot prevent the table lookup in this case. Similarly,
inlining is prevented when the function type itself is a higher-order argument. With the
optimizations above, we expect this performance overhead to be comparable to current
compiled languages. However, the specifics of this optimization process are well outside the
scope of this document.

8.5.3 Extra Arguments

The above encoding admits spurious named and positional arguments at call sites.
For instance, invoking the example function above as f(2,3,4,5) has an identical effect
to (2,3,4); in the encoding, the last argument is encoded as ‘4 5 and, since none of the
patterns match that argument, it is ignored. This is undesirable and can easily lead to user
error.

Addressing this problem in the presence of positional arguments is quite
easy. At line 5, for instance, we can left-onion another simple function of the form
tbfun ‘4 () -> () � () onto the normalization function. If a fourth argument is
present, this will attempt to evaluate the application of the empty onion, which is a type
error. Because TinyBang’s application is typechecked using a path-sensitive model – func-
tion bodies which are not called are never expanded – this will not produce a type error
unless an invocation with at least four arguments appears. We can use a similar approach
for arguments which are named in duplicate (e.g. f(2,3,4,z=5), where ‘3 4 and ‘z 5

refer to the same argument).
Addressing spurious nominal arguments (e.g. f(2,3,q=0)) is somewhat more

difficult as it is not possible to enumerate all labels which should not appear at a call site. In
a sense, this is fundamental to the structurally subtyped nature of onions: pattern matching
will always match a subtype and the addition of an absent label to a record produces a
structural subtype. Spurious arguments are, however, one example of a case in which
structural subtyping is not desirable. Although rather involved encodings exist which can
generate type errors for spurious nominal arguments, they are relatively inefficient; instead,
this problem is best addressed by augmenting the pattern matching process with a form

137

CHAPTER 8. LITTLEBANG

of pattern which fails when labels outside of a given set are present. Because this pattern
operates contrary to the subtyping properties of other patterns, it requires special handling
when matching onions. Nonetheless, the existence of such a pattern is not unsound.

8.6 Objects

A central motivator in much of the development of TinyBang was a successful en-
coding of objects. Object-orientation is featured prominently in modern scripting languages
and we desire a typed encoding which can handle the flexible object operations they use.
Our encoding of objects is relatively simple (in comparison to the previous encoding, for
example) and was covered in large part in Section 2.6. We present here a formal encoding
that utilizes the function dispatch mechanisms from above:

Encoding 8.9. We extend the grammar of LittleBang below:

d ::= z = e | z (q , . . . , q) = e member declarations

e ::= . . . | object { d . . . d } | e . z (a , . . . , a)

This grammar extension is encoded as follows:

Lz = eMd = ‘ z e

Lz (q1 , . . . , qn) = eMd = fun (message : ‘ z () , self , q1 , . . . , qn) -> e

Lobject { d1 . . . dn }Me =

let fixpoint =
tbfun f -> (tbfun g -> tbfun x -> g � g � x)

(tbfun h -> tbfun y ->
f � (h � h) � y) in

let seal = fixpoint � (tbfun seal -> tbfun obj ->
(tbfun msg -> obj � (msg & ‘self (seal � obj)))
& obj) in

seal � (Ld1Md & . . . & LdnMd)
Le . z (a1 , . . . , an)Me = (e) (‘ z () , a1 , . . . , an)

The above presentation of the seal function is the same as in Section 2.6.2; it has
been rewritten in the LittleBang grammar given in this section. We can freely intersperse
the uses of TinyBang and LittleBang function definitions and application here because the
latter desugars to the former. Recall that the purpose of seal is to capture the object in a
positive position and then add that (recursively sealed) object to every subsequent method
invocation as an implicit argument ‘self. Due to the argument encoding we have selected,
this is the same as adding a self=. . . argument in a LittleBang function invocation. As a

138

CHAPTER 8. LITTLEBANG

result, the encoding of methods may require a self argument that the encoding of method
invocations does not provide (so long as the object is sealed before that method is called,
as it is by the object encoding).

The above outlines the behavior of seal. We discuss the typing of this function
in Section 8.6.2 with the assistance of the mixins we present next.

8.6.1 Mixins

As discussed in Section 2.6.4, mixins are trivial to define in this model. Because
an object is merely an onion, a mixin is simply an onion which can be concatenated with an
object before it is sealed. We formalize an encoding of mixins here. The mixin expression
defines a mixin; the mixing member declaration form incorporates a mixin into an object
as it is defined.

Encoding 8.10. We extend the grammar of LittleBang below:

d ::= . . . | mixing e

e ::= . . . | mixin { d . . . d }

This grammar extension is encoded as follows:

Lmixing eMd = e � ()

Lmixin { d1 . . . dn }Me = tbfun () -> Ld1Md & . . . & LdnMd

Note that this encoding is exceedingly simple. The encoding of the mixin expres-
sion is the same as an object expression except that (1) it is not sealed and (2) it is placed
behind a lazy evaluation barrier. The mixing member declaration is even simpler: it just
results in the mixin expression itself (pulling on the function to yield the members). In a
sense, the mixin serves as an alias for a collection of object members. The use of laziness
here ensures that, if a mixin declares fields, those fields are created anew for each use of the
mixin.

8.6.2 Typing Seal

The typing of the above encoding is somewhat subtle. From Chapter 4, we can
glean that this encoding is sound, but how are we to be sure that it generates usable
object types? The fixpoint function from the above is simply the Y-combinator, the type
for which can be inferred in common subtype constraint systems. The typing of seal is
somewhat more delicate. As mentioned in Section 2, the key is that we capture the type
of ‘self in a closure rather than passing it as an argument at method invocations. For
seal to be effective, it must capture a different type for each object that is sealed. This is

139

CHAPTER 8. LITTLEBANG

where the TinyBang polymorphism model defined in Chapter 6 comes into play. Consider
the following LittleBang code:

1 let obj1 = object {
2 x = ref 5
3 f() = self.x := !self.x + 1
4 } in
5 let obj2 = object {
6 x = ‘A ()
7 f() = self.x
8 } in
9 ‘First (obj1.f()) & ‘Second (obj2.f())

The above code will typecheck and yield a value of type
‘First int & ‘Second ‘A (). The ‘selfs for these two objects are captured sep-
arately: there is one invocation of seal for obj1 and another for obj2. TinyBang
assigns the contents of each of these ‘self labels a distinct type variable, so there is no
confusion between them. Even if the encoding of object were to reuse the definition
of seal (which it would do in practice), the invocations of seal are distinct syntax
points in the desugared program and the CR polymorphism model ensures that they are
polyinstantiated separately.

This also illustrates the point at which the type of seal becomes confused. Con-
sider instead the following TinyBang code:

1 let mixins = [mixin { f() = self.x }
2 , mixin { g() = self.x }
3 , mixin { h() = self.x }
4] in
5 let fixpoint = . . . in
6 let loop = fixpoint (tbfun self ->
7 (tbfun [] -> [])
8 & (tbfun (m:ms) ->
9 let obj =

10 object {
11 x = 5
12 mixing m
13 } in
14 obj:(self ms)
15)) in
16 loop mixins

We assume that fixpoint above is the Y-combinator as in the object encoding.
The loop function above encodes a simple map operation over a list of mixins, using each

140

CHAPTER 8. LITTLEBANG

in the definition of an object. The expression loop mixins produces a list of (two) objects.
In this case, the TinyBang type system cannot determine that the three objects have an
f, g, and h method (respectively). This is because the recursion on line 14 causes contour
folding: each application handled at that call site uses the same type variable. As a result,
it is impossible to tell the difference between e.g. the g-method object and the h-method
object at the type level. In general, type precision is lost whenever the type of the object
being created varies based on loops or other recursive structures.

Note that this does not prevent the creation of objects in loops; it only means
that, when two objects are created at the same point in different loop iterations, the type
ascribed to them is at least the least upper bound of the two. Note also that this weakness
only applies when the object construction site is the same. Using Python as an example,
TinyBang would be unable to typecheck the equivalent of

1 class Foo:

2 def __init__(self, x): self.y = x

3 class Bar:

4 def __init__(self, x): self.z = x

5 for b in [True,True,False]:

6 obj = Foo(1) if b else Bar(2)

7 if b: obj.y

8 else: obj.z

The above would not typecheck because the type of obj hinges upon the value of
b; TinyBang’s type system does not include such general dependent types. However, the
equivalent of the following Python code would typecheck correctly:

1 class Foo:

2 def __init__(self, x): self.y = x

3 def set(self, z): self.y = z

4 class Bar:

5 def __init__(self, x): self.y = x

6 def inc(self): self.y += 1

7 for b in [True,True,False]:

8 obj = Foo(1) if b else Bar(2)

9 obj.y

Note in this example that the field of Bar is now y; thus, obj.y makes use of an
interface common to both types of objects which appear here. It would also be possible to
dispatch on the presence of a field in the object to determine how to react to it. In any case,
we expect that this degree of type precision is sufficient to typecheck well-designed scripts;

141

CHAPTER 8. LITTLEBANG

rechecking a condition to determine the type of a value as in the previous example above
is, generally speaking, poor form.

8.7 Classes

To develop LittleBang’s encoding of classes, we take the perspective that they
are merely objects which act as factories for other objects. We provide a notion of static
members – members of the class object itself rather than the object it creates – and define
construction in terms of the special name new. We give that encoding here:

Encoding 8.11. We extend the grammar of LittleBang below:

d̃ ::= ~ d static member declarations

e ::= . . . | class (q , . . . , q) { d . . . d d̃ . . . d̃ }

This grammar extension is encoded as follows:

Lclass (q1 , . . . , qn) { d1 . . . dm ~ d′1 . . . ~ d
′
k }Me =

object {

d′1 . . . d
′
k

new (q1 , . . . , qn) = let thisclass = self in

object { d1 . . . dm

getclass () = thisclass }

}

The class decodes into an object whose members are the static members declared
on the class. The object also has a static method, new, which creates an object containing all
non-static members as well as a function getclass which retrieves the object representing
the encoded class. Of course, the above grammatic restriction that static members ap-
pear after non-static members is merely for notational convenience; in practice, no specific
declaration order is necessary.

8.7.1 Subclasses

A subclass is simply a class with a superset of the members of another class; this
is particularly so because we are using a structural subtyping model, so the identity of the
class is irrelevant. As a result, encoding subclasses is quite similar to encoding mixins: we
merely need to directly incorporate the properties of the parent class. We simply add a
syntactic position to the class declaration which identifies the parent class (as an expression)
and then make use of that parent class in our encoding.

142

CHAPTER 8. LITTLEBANG

Encoding 8.12. We extend the grammar of LittleBang below:

e ::= . . . | class (q , . . . , q) < e { d . . . d d̃ . . . d̃ }

This grammar extension is encoded as follows:

Lclass (q1 , . . . , qn) < e { d1 . . . dm ~ d′1 . . . ~ d
′
k }Me =

let thissuperclass = e in

object {

d′1 . . . d
′
k

mixing thissuperclass

new (q1 , . . . , qn) = let thisclass = self in

object { d1 . . . dm

mixing (thissuperclass . new (

VarOf(q1) , . . . , VarOf(qn)))

getclass () = thisclass

getsuperclass () = thissuperclass }

}

In the object representing the subclass, we add to our previous encoding a mixin

declaration. This declaration adds the superclass object to the onion which we seal to
produce the subclass. This is taking advantage of the object resealing property discussed in
Section 2.6.2.1: as a result, the self-aware class will have access to all members of both the
superclass (through the mixin) as well as the subclass. The same process occurs when an
instance of the class is created: the superclass is instantiated and then treated as a mixin
to the subclass, so the object will include the members of both when it is sealed.

143

Chapter 9

Implementation

This section briefly discusses the current proof-of-concept implementation of Lit-
tleBang, which includes a source translator, an interpreter, and a type checker and inference
algorithm. The source translator is simple: it merely follows the encodings in the previ-
ous chapter to transform a LittleBang AST into a form which can be injected into nested
TinyBang. The interpreter for TinyBang is similarly straightforward as an implementation
of the deterministic operational semantics in Section 3.4. This chapter therefore focuses
on the typechecker. The current TinyBang typechecker uses the type system formalized
in Section 3.5 with extensions from Chapter 7 and the polymorphism model described in
Chapter 6.

We presented the TinyBang type system from a formal mathematical perspective,
but naïve implementation of the strategies described – especially those in Chapter 5, where
decidability is proven – is completely infeasible. In Section 3.5.5, for instance, inconsistency
is defined in terms of all sets which can be reached via constraint closure; inspecting all such
sets is obviously impractical. Here, we discuss properties of the type system which can be
used to implement a TinyBang typechecker with reasonable performance; we also discuss
the current proof-of-concept typechecker, describe our reasoning for the optimizations we
applied, and outline optimizations which have not yet been applied but which should yield
considerable improvements over the current system.

144

CHAPTER 9. IMPLEMENTATION

9.1 Complete Closure is Sufficient

Typechecking as given in Definition 3.36 indicates that all constraint sets reachable
by closure must be consistent. Testing these sets individually is, of course, impractical; like
other constraint closure models, we aim to show that it is sufficient to complete the deductive
closure and then to check the result. The argument for this property is not complex, but
we articulate it below for completeness.

For a single, complete closure to be sufficient, we require two properties: that the
constraint closure is confluent (all closure sequences converge to the same result) and that
inconsistency is monotonic (adding constraints to a set never removes inconsistency). To
begin this discussion, we present notation for describing the complete closure of a constraint
set.

Notation 9.1 (Complete Closure). We write C =⇒! C ′ to indicate that C =⇒∗ C ′ and that
there exists no C ′′ 6= C ′ such that C ′ =⇒ C ′′.

9.1.1 Confluence of Closure

We begin by demonstrating that constraint closure is confluent. This is not true
for all polymorphism models; strictly speaking, the merging function Υ may be defined to
return any set of replacements for any set of variables. If we restrict the merging function to
be monotonic in the set of variables provided, however, then the addition of constraints only
increases the number of available replacements; that is, any merge that can be performed
at a given point in closure can always be performed later. We define this monotonicity
property as follows:

Definition 9.2 (Monotonic Merging). A merging function Υ is monotonic iff A1 ⊆ A2

implies that Υ(A1) ⊆ Υ(A2).

The monomorphic model’s merging function is trivially monotonic. The merging
function of the polymorphism model presented in Chapter 6, ΥCR, is monotonic because
the definition produces at most one replacement function per pair of type variables in its
argument (and the replacements it creates considers no other type variables).

Assuming Υ to be monotonic, we can demonstrate the confluence of constraint
closure. While this can be a complex property to demonstrate in some systems, it is quite
simple in TinyBang:

Lemma 9.3. Constraint closure is confluent; that is, if C0 =⇒! C1 and C0 =⇒! C2 then
C1 = C2.

Proof. By Newman’s Lemma [47], it is sufficient to show that constraint closure converges
(Lemma 5.38) and that it is locally confluent. By inspection, all constraint closure rules

145

CHAPTER 9. IMPLEMENTATION

(and the relations upon which they rely) test only for the presence (and not the absence)
of constraints. Further, constraint closure is monotonic: no constraint closure rule removes
constraints. As a result, any two independent constraint closure steps can be interchanged
and constraint closure is locally confluent. We are therefore finished.

9.1.2 Monotonicity of Inconsistency

We likewise note that inconsistency is monotonic:

Lemma 9.4. Inconsistency of constraint sets is monotonic; that is, if C1 is inconsistent and
C2 ⊇ C1 then C2 is inconsistent.

Proof. Again by observing that application matching and compatibility are monotonic in
the constraint set. Each of these relations holds by the presence (and not the absence) of
constraints; thus, any proof of inconsistency for C1 holds (by induction on the height of the
proof) for C2.

9.1.3 Proof of Sufficience of Complete Closure

We can therefore prove that, in practice, it suffices to complete constraint closure
in any order and then check for inconsistency:

Lemma 9.5. An expression e typechecks iff JeKE = α\C and C =⇒! C ′ and C ′ is consistent.

Proof. We begin by considering the forward implication. If e typechecks, then by Defini-
tion 3.36 we have that C =⇒∗ C ′′ implies that C ′′ is consistent. Because C =⇒! C ′ requires
by definition that C =⇒∗ C ′, we know that C ′ is consistent.

The reverse implication is also straightforward: assuming C ′ is consistent, we
must show that all C =⇒∗ C ′′ imply that C ′′ is consistent. Suppose for contradiction that
C ′′ is inconsistent. By Lemma 9.3, we have C ′′ =⇒∗ C ′. Because constraint closure is
monotonic, we have that C ′′ ⊆ C ′. By Lemma 9.4, we have that C ′ is inconsistent, which
is a contradiction. We therefore have that there exists no C =⇒∗ C ′′ such that C ′′ is
inconsistent and we are finished.

The above lemma demonstrates that, to determine if an expression typechecks,
it is sufficient to compute the largest set from constraint closure and then determine the
consistency of that set.

146

CHAPTER 9. IMPLEMENTATION

9.2 Variable Replacement

The TinyBang polymorphism interface described in Section 3.5.5.1 includes a
merging function Υ, the purpose of which is to merge or unify type variables. The for-
mal definition of this function actually produces a set of type variable replacements which
may then be applied during closure to any constraint in the constraint set; thus, formally,
this merging function has the effect of increasing the size of the constraint set rather than
decreasing it. In practice, however, these replacements can be used to unify the type vari-
ables. We illustrate this by example using the polymorphism model CR (and the notation
from Chapter 6).

For the purposes of this example, suppose the existence of two contours C1 and
C2 which overlap. Let the least well-formed contour which covers both of them be C3.
Intuitively, one can imagine C1 describing the case in which we recurse within a function f
and then call a function g where we do not recurse. One can also imagine C2 describing the
case in which we do not recurse within f but then call g and recurse there. Then C3 would
describe any situation in which we do or do not recurse in those functions in that order.

Let α′i = 〈αi, C1〉, let α′′i = 〈αi, C2〉, and let α′′′i = 〈αi, C3〉 for 1 ≤ i ≤ 3 (presuming
the existence of the three root type variables representing program positions). With this
in mind, consider the constraint set C = {() <: α′1, α′′1 <: α′′2} (recalling Notation 3.27 for
legibility). This constraint set describes a value appearing at α1 in the first contour; it also
describes the value in α1 moving to α2 in the second contour. Since there is a case (e.g.
we call f and then g but won’t recurse either time) in which we could be in both contours,
we’d expect to see the empty onion type reach the program point described by α2 at least
in that case.

Constraint closure begins by using the merging function. Given these variables, it
would allow e.g. replacing α′1 with α′′′1 . Using that, we can learn () <: α′′′1 , but this does not
provide additional options. Merging at this point also allows replacing α′′1 with α′′′1 , which
allows us to learn α′′′1 <: α′′2. Using these two previous facts, we can conclude () <: α′′2.
Further, merging allows us to replace α′′2 with α′′′2 . This allows us to learn () <: α′′′2 . We
note that this is a weaker statement than we might desire – it overapproximates the call
stacks under which the empty onion can reach that point in the program – but to reach
perfect precision here is a problem with necessarily exponential complexity.

Following the above reasoning, the complete transitive closure of C = {() <:
α′1, α

′′
1 <: α′′2} is:

147

CHAPTER 9. IMPLEMENTATION


() <: α′1, α′′1 <: α′′2,
() <: α′′′1 , α′′′1 <: α′′2,
() <: α′′2, α′′1 <: α′′′2 ,
() <: α′′′2 , α′′′1 <: α′′′2


We observe, however, that it would have been sufficient to mutate instances of e.g.

α′1 with α′′′1 rather than simply extending the constraint set with the new replacements.
This is true for a few reasons. First, the overlap of regular expressions is monotonically
increasing with union; for instance, if any contour C′ overlaps with C1, it will also overlap
with C3. Second, merging and commutes with other constraint closure sequences: there will
be numerous situations in which we can learn a constraint either by performing replacement
on other constraints and then closing on them or by closing on the original constraints and
then performing replacement on the result. Because of these properties, any inconsistency
which can be discovered on the pre-replacement variables (e.g. α′1) can be discovered on
the post-replacement variables (α′′′1) after replacement occurs. If we replace variables rather
than extending the set, our completed closure above becomes {() <: α′′′1 , α′′′1 <: α′′′2 , () <:
α′′′2 }; this is considerably more manageable.

One way of viewing this property is to use a non-standard model of the constraint
set. We note that, in CR, each type variable is a pair between a program point (which
is isomorphic to some unique variable x in the program) and a regular expression over
such program points. Consider a meaning function JcK which produces the set of pairs
between program points and call strings represented by a given constraint. For instance,
J〈α0, α

′
0〉K would quite simply be {〈α0, α

′
0〉} whereas J〈α0, α

′
0
∗〉K would be the infinite set

{〈α0, ε〉, 〈α0, α
′
0〉, 〈α0, α

′
0α
′
0〉, . . .}. In this non-standard model, the infinite set J() <: α′1K is

a subset of the infinite set J() <: α′′′1 K. As a result, J{() <: α′1, () <: α′′′1 }K = J{() <: α′′′1 }K:
the meaning of the set is the same with or without the constraint on α′1. This meaning
function aligns quite closely with the simulation relation in Chapter 4 in that it essentially
describes the programs which are simulated by a given constraint, so we are intuitively
claiming that any program simulated by the larger set can be simulated by the set without
the unnecessary constraints.

The current implementation of the TinyBang type checker uses this reasoning to
justify the replacement of type variables during closure. We discuss the role this replacement
plays in the next section.

9.3 Current and Future Design

As of the time of this writing, the proof-of-concept TinyBang type checker uses
the complete closure property as well as several standard design techniques (e.g. caching,

148

CHAPTER 9. IMPLEMENTATION

indexed sets) to achieve reasonable performance. The implementation is written in Haskell
and requires about 2,100 lines of code (including a custom NFA library used for contours but
excluding the output of some simple compile-time metaprogramming facilities). Currently,
performance leaves much to be desired: a collection of 30 unit tests on expressions of
between 10 and 50 clauses takes approximately nine seconds to run on a typical developer’s
workstation. That said, the proof-of-concept type checker demonstrates the power of the
type system. All of the examples from Chapter 2 typecheck; further, the typechecker
successfully infers types for implementations of basic data structures [39] such as linked
lists and hash tables, which are of size and complexity similar to that of scripting languages
such as Python.

Presently, typechecking proceeds by computing the initial alignment of an ex-
pression, performing constraint closure until no more constraints can be learned, and then
testing the set for consistency. The closure is computed naïvely by iterating a series of rules
over the set, adding the conclusions of each until a full cycle is completed without finding
additional constraints. This has the effect of re-executing numerous computations and is
a prime candidate for improvement. Caching or a custom forward- and backward-chaining
closure algorithm would considerably accelerate this process.

Presently, the proof-of-concept TinyBang type checker does not perform any merg-
ing; that is, rather than using ΦCR/ΥCR, it uses ΦCR/ΥMono. (As merging was not required
by the soundness proof, this is sound, but it leads to exponential growth of the constraint
set in some cases.) Previous drafts of the typechecker have applied merging, but to little
effect due to how merging operations interfere with naïve indexing structures and caches.
This is not a theoretically challenging problem; it is merely a complex engineering task for
which we have not had the time.

149

Chapter 10

Related Work

This chapter summarizes some of the work related to TinyBang and LittleBang.
We begin with language features and properties and move on to more abstract discussion
of related research topics.

10.1 Onions

TinyBang’s record structure, which we call the onion, is unusual in that it supports
asymmetric record concatenation. The bulk of work on typing record extension addresses
symmetric concatenation only [57, 36]. From a theory perspective, symmetric concatena-
tion initially sounds more elegant and appealing, but enforcing that concatenations are
symmetric requires assertions on the absence of labels; this is contravariant to structural
record subtyping and complicates the theory. Approaches using conditional constraints and
row types [54] are similarly rather involved. Wand typed an asymmetric concatenation
operation [73], but this work is in the context of row types and unification and so requires
absence typing as well.

Also, as shown in Chapter 8, asymmetry is a valuable asset: some language features
are fundamentally asymmetric and so rely on a notion of semantic asymmetry for succinct
encodings. Asymmetry is not strictly necessary for such encodings; previous encodings [12]
avoid this problem by reconstructing records rather than existing them, but this requires a
fixed, static view of the record type and yields larger, more complex encodings. Although
we have found onions to be naturally typable, we have found no subtype constraint-based
typing of asymmetric concatenation in the literature. This is likely due in part to the

150

CHAPTER 10. RELATED WORK

difficulty of modularizing such types; although onions are easily typed in a whole-program
context, it is more difficult to accurately type such operations when the full type of the
onion is not known.

Onions are also unusual in that they are type-indexed; that is, values are labeled
by their types rather than by an explicit name. This variation on typical record types
first appeared in the λTIR calculus [61]. Like much of the record concatenation literature,
that work also uses rows; TinyBang instead uses type constraints and a shallow binary
concatenation operator.

10.2 Dispatch

In addition to concatenating simple data, TinyBang onions can also be used to
create compound functions which support asymmetric dispatch. This dispatch is sensitive
to the types of each of the arguments, much as in a match or case expression in the ML
family of languages. The type of a compound function application is more precise than a
match expression, however, as only the types of the case branches which can be reached
are incorporated into the overall type of the application site; these are the heterogeneous
case types mentioned in Section 2.6.1.2. This is consequence of structural subtyping and
falls naturally out of our use of subtype constraints. Compound functions generalize the
expressiveness of conditional constraints [4, 54] and are related to support for typed first-
class messages a la [48, 54] (as first-class messages are just labeled data in our object
encoding).

To statically type heterogeneous case types in TinyBang, we developed a novel
solution to the well-known union alignment problem. The root of this problem is that there
may not be a consistent view of which branch of a union type was taken in different pattern
match clauses. All standard union type systems must make a compromise union elimination
rule; [22] contains a review of existing approaches. Our solution is to lazily filter the union
type with the pattern it matches; this union elimination technique loses none of the context
the type system has accumulated and permits refined bindings to be available within the
body of the match operation. This filtering approach can be viewed as a (locally) complete
notion of union elimination.

Filtered types initially appear similar to refinement types [30], which often permit
reducing a type from an existing system based on some conditional expression; for instance,
the type x:int | x>0 may express the type of all positive integers. Filtered types in Tiny-
Bang differ from refinement types in two significant ways. First, filtered types’ predicates
are always expressed as patterns (instead of general expressions), considerably limiting the
expressiveness and complexity of the condition. Second, refinement types are designed to

151

CHAPTER 10. RELATED WORK

overlay onto existing, well-typed programs to prove properties about them, in essence form-
ing a second layer of typing. TinyBang’s filtered types are a fundamental part of the system;
they interact with and influence types of the unfiltered form.

To solve the union alignment problem [22], we have structured the compatibility
relation of TinyBang (Section 3.5.3) in such a way that each union appearing at a given
point in a type is eliminated at most once. This is accomplished by using sets of patterns
during compatibility (rather than checking each pattern for compatibility individually). An
alternative (and equally viable) approach involves using selectors [65] to track the union
elimination in a separate position of the relation. We choose to use sets of patterns because
they interact well with filtered types.

Instantiation constraints [37, 28, 32] in previous work also solve the union align-
ment problem by limiting multiple polyinstantiations of a type to match each other in
certain contexts. Instantiation constraints operate by mapping type variables to the con-
crete types at which they are instantiated. In TinyBang, such a mapping is insufficient
given the extremely contextual precision we require for our domain: a recursive type in
TinyBang may be matched against a finite unrolling of that type as a pattern and this
information must be preserved. For instance, given the list type [int ∪ char], a match
against the pattern x * [int , char , . . .] must restrict x such that the first element is an int

and the second element is a char. Because both points in the list type are represented by
the same type variable, a type-variable-to-type mapping is insufficient for our purposes.

Typed multimethods [45] perform a dispatch similar to TinyBang’s compound
functions: in that system, the dispatched multimethod is dependent upon not only the
dynamic type of the object but also the dynamic type of its arguments.1 Typed multimeth-
ods and compound functions are differently expressive: typed multimethods only support
nominal dispatch but are otherwise generally unconstrained whereas TinyBang compound
functions use structural subtyping but only permit dispatch on first-order data (due to
the limited expressiveness of the pattern grammar). A system with function patterns –
patterns which structurally match functions which have a given type – is currently under
development and, if successful, would subsume typed multimethods; that work, however, is
an extension to TinyBang and beyond the scope of this document.

First-class cases [8] allow composition of case branches much in the fashion of
onions of functions. In that work, however, general case concatenation requires case
branches to be written in CPS and requires a phase distinction between case construc-
tion and case application. TinyBang compound functions may be applied or extended in
any order and without any special handling by client code.

1This is in contrast to e.g. Java where, even with overloading, the dispatch of a method is based on the
dynamic type of the object and the static type of the arguments.

152

CHAPTER 10. RELATED WORK

10.3 Polymorphism

Polymorphism in TinyBang uses a call-site model (as opposed to e.g. the more
traditional let-bound models of ML family languages): function types are polyinstantiated
at their invocation sites rather than at the site where they are named. Although this
distinction is unimportant in many cases, this distinction becomes relevant when functions
are passed as arguments. For instance, consider the following LittleBang code:

1 let id = fun (x) -> x in
2 let f = fun (g,a,b) -> ‘Left (g a) & ‘Right (g b) in
3 f(id,4,’z’)

In a let-bound model, the function id is polyinstantiated on line 3; thus, g on
line 2 has a monomorphic type. As a result, the expressions g a and g b must have the
same type – in this case, int ∪ char. Although this is not incorrect, it is imprecise; we
prefer the type of the result should be ‘Left int & ‘Right char. In general, let-bound
polymorphism is too imprecise for scripting languages because it forces functions bound
outside of the current lexical scope to be handled monomorphically; this would prevent e.g.
our object encoding from having polymorphic methods.

Our approach to parametric polymorphism in Chapter 6 is based on flow analysis
[62, 74, 33]. In the aforecited, polymorphic contours are permanently distinct once instan-
tiated. In TinyBang, contours are optimistically generated and then merged when a call
cycle is detected; this allows more expressive polymorphism since call cycles don’t need to
be conservatively approximated up front. Contours are merged by injection into a restricted
space of regular expressions over call strings, an approach that follows program analyses
[43].

10.4 Object-Orientation

Asymmetric concatenation, case-sensitive dispatch with refinement on bindings,
and call-site-based polymorphism are all language features of TinyBang critical to the object
encoding presented in Section 8.6. TinyBang’s treatment of objects is unique in the current
literature due to its ability to encode object extension and resealing without restricting
fundamental subtyping properties.

TinyBang’s object resealing is inspired by the Bono-Fisher object calculus [9],
in which mixins and other higher-order object transformations are written as func-
tions. Objects in this calculus must be “sealed” before they are messaged; unlike our
resealing, sealed objects cannot be extended. Some related works relax this restric-
tion but add others. In [59], for instance, the power to extend a messaged object

153

CHAPTER 10. RELATED WORK

comes at the cost of depth subtyping; that is, the equivalent of the Java statement
Set<? extends Number> s = new HashSet<Integer>(); will not typecheck in that work.
In [7], depth subtyping is admitted but the type system is nominal rather than structural;
this is very similar to the decorator design pattern, in which the decorated object has the
interface properties of the decorator and the decoratee type but not those of the concrete
type which was decorated.

Unlike the above works, TinyBang’s objects are encoded rather than being first-
class members of the calculus. Many different approaches have been developed to accurately
encode and type objects [12], but these approaches have been based on storing fields and
methods as labeled members of a recursively-typed record [18, 34]. Although subtype
constraint systems considerably improve the types of these recursive record encodings [24,
25, 23], the aforecited do not provide post-construction extensibility. TinyBang’s object
encoding makes use of a hybrid object encoding, tracking object fields in the form of a
traditional labeled record but using a variant-based approach to dispatch messages. This
form lends itself to extension as the underlying language supports primitive operations for
extending and invoking onions.

10.5 Static Analysis Techniques

One technical development in this work is the strategy used to prove soundness
in Chapter 4 (which this group first published in [49]). Proofs of type soundness typically
proceed by “progress and preservation”. [75]. Such an approach may be feasible for Tiny-
Bang in theory, but it proves cumbersome at best; given e −→1 e′, it is quite difficult (and
may be impossible [38]) to demonstrate that Je′KE is a subtype of JeKE. There is also no
reasonable regular tree or other form of denotational type model [5, 70, 15] of TinyBang
given the flexibility of pattern matching. For example, polymorphism in TinyBang cannot
be convex in the sense of the CDuce literature [15] since our pattern matching syntax is
expressive enough to distinguish all top-level forms.

Instead, we design the operational semantics and type inference algorithm in tan-
dem, intentionally keeping them quite similar in form (as in Section 3.4.1). By doing so,
we prove soundness directly through simulation: we establish a simulation relation, main-
tain it throughout all program executions, and demonstrate that constraint closure reveals
unsound programs through that relation (as in Chapter 4). This approach – establishing
a direct relationship between the concrete operational semantics and an abstract represen-
tation of it – is quite similar to abstract interpretation; as such, TinyBang’s type system
can be viewed as a hybrid between a flow analysis [62] or abstract interpretation [20] and a
traditional type system.

154

CHAPTER 10. RELATED WORK

In comparison to abstract interpretation, however, our subtype constraint system
is monotonic in nature. While abstract interpretation simulates the transition of abstracted
program states, those transitions may be destructive on some data. This causes the num-
ber of states in naïve abstract interpretations to expand rapidly and much of the work in
applying abstract interpretations is in collapsing those program states. Traditional type
systems, by contrast, expand states by instantiating polymorphic types. This causes a con-
servative reconsideration of the code represented by those types, which leads to a rougher,
less precise, and less expensive analysis.

Again, TinyBang is a hybrid between these two techniques. We accumulate facts
monotonically as in traditional type systems; while abstract interpretations are forced to
justify the merging of individual states, monotonicity gives confluence to the TinyBang type
system, making such justifications trivial. The polymorphism model defined in Chapter 6,
inspired in part by literature in static analysis [43, 44, 42], eagerly polyinstantiates contours
and then relies upon a monotonic, confluent merging function to eliminate unnecessary flows
when possible. Although eager contour creation is more similar to abstract interpretation’s
eager program state generation, we do not require any particular justification for the merging
of polymorphic contours because the soundness proof is independent of the polymorphism
model used.

10.6 Dynamic Analysis

Rubydust [6] is a tool which infers static properties for Ruby programs by tracing
actual program executions using transparent data wrappers. In this way, Rubydust collects
information about how data flows through the program from creation sites to use sites by
example rather than by conservative static approximation. Method parameters are wrapped
as they enter the body of the method under analysis and metadata is collected as uses arise.
This has the advantage of avoiding false positives that arise as a result of conservative
approximation or lack of alignment.

The techniques used by Rubydust are interesting in their own right, but they do
not serve as a replacement for static type systems. Rubydust is sound only for those paths
which were taken by one of the program executions in the provided trace suite; as a result,
it only produces generally sound types if every possible trace is represented. While the
paper notes that it is possible to alert the user in the event that paths exist which are
not represented by the trace suite, that path analysis is subject to the same conservative
approximation flaws that Rubydust originally avoided by relying on execution traces. In
general, dynamic type inference shows promise and has already been demonstrated to yield
a useful and interesting tool, but it does not satisfy the objectives of TinyBang because

155

CHAPTER 10. RELATED WORK

effort beyond that of writing the original program (akin to type signatures) is required to
obtain the benefits of static analysis.

10.7 CDuce

In terms of features and expressiveness goals, TinyBang is very similar to CDuce
[14]: both aim to be flexible languages built around constraint subtyping. Rather than
typed scripting, CDuce’s primary motivation is operating in a type safe way on complex
heterogeneous data types (such as XSD-specified XML documents). These two goals have
considerable intersection and CDuce exhibits much of the type expressiveness captured
by TinyBang: it (locally) infers types for conjoined functions and performs path-sensitive
typing on the dispatch of those functions.

In terms of formalization, however, TinyBang and CDuce are quite different. Tiny-
Bang’s function conjunction expressiveness is driven by the type-indexed onion, which is
fundamentally asymmetric, while CDuce uses intersection and negation types on functions.
The asymmetry of onions is not amenable to denotational type models; because CDuce
is formalized using symmetric set operations, it quite naturally fits a denotational model.
This asymmetry is fundamental to the object encoding presented in Section 8.6 and, as
CDuce’s types require explicit orchestration for asymmetric dispatch, our object encoding
is not possible in the CDuce language.2

10.7.1 Polymorphism

CDuce’s type inference algorithm is limited to local inference only. This is funda-
mentally related to its polymorphism model. To remain modular, CDuce does not assign
polymorphic types to function values; it uses a let-bound model. Although a traditional
let-bound model would prevent TinyBang from expressing enough polymorphism for e.g.
our object encoding, CDuce introduces a novel twist: the polyinstantiated type given to a
function value can have multiple type substitutions, any of which can be used when nec-
essary. In this way, the polymorphism of a function can escape the scope in which the
function itself was named so long as the polyinstantiation routine can anticipate the man-
ner in which the function will eventually be used. This motivates the local limitation to
inference: type signatures on functions give the polyinstantiation process a target to use
when creating these numerous substitutions.

2Strictly speaking, a first-order form of it would be possible. But the object encoding in Section 8.6
allows unusual higher-order expressiveness, such as the ability to create a subclass of a class whose identity
is not statically known. Because CDuce does not have first class asymmetry, it is unable to express that
behavior.

156

CHAPTER 10. RELATED WORK

In a sense, CDuce is creating every polyinstantiation of a given function a priori.
TinyBang, on the other hand, gives each function value a polymorphic type and polyin-
stantiates it on demand. This presents difficulties in modularity, as the type of a function
may not be possible to fully analyze until the type of its higher-order functional arguments
are known. As an example, consider the following LittleBang code:

1 let combine = fun (a,b,f) -> f(a,b) + f(b,a) in . . .

The TinyBang type system does not attempt to determine precisely the type
of f which is necessary to make the above function typecheck; it instead waits until an
invocation occurs and simply determines type soundness for that case. In general, TinyBang
makes several difficult problems easier by finitely enumerating the cases in which universal
quantifiers are used rather than attempting to prove their universal properties. This has
the advantage of allowing quite complex functions and their uses to typecheck successfully
but the disadvantage that the full types of some functions are not completely understood
by the type system. In other words, it is not sufficient to compile and assign a type to
combine; the body of combine must be reanalyzed at each place that it is invoked.3

At the time of this writing, the decidability of the CDuce type inference algorithm
remains open. Chapter 5 demonstrates that the TinyBang type inference algorithm is
decidable. Although our current proof-of-concept implementation requires considerable
tuning and improvement, it appears to be fast enough to be used in small to medium
programs in practice.

10.7.2 Convexity

Key to the model of CDuce is a notion of the convexity of a set theoretic model.
According to [77], for every finite set of types in a convex model, “if every assignment [of
types to type variables] makes some of these types empty, then it is so because there exists
one particular type that is empty for all possible assignments.” In other words, convexity
states that type polyinstantiation and type union are commutative. CDuce uses a convex
set theoretic model; this ensures that empty sets in its model are treated uniformally and
is, as stated by the aforecited, a cornerstone of the CDuce approach.

TinyBang’s type system is not convex and this is key to its expressiveness.4 The
3Our research group is currently pursuing an extension to the pattern matching system of TinyBang

which would allow modular compilation by introducing function pattern matches on module boundaries,
but that work is outside of the scope of this document. See Section 11.1.1 for more information.

4Although TinyBang’s constraint grammar does not have type upper bounds or negation types (e.g.
α ≤ ¬τ from [77]), such forms can be encoded in TinyBang’s type system using application and compound
function types. In particular, the TinyBang expression ((fun int -> () ()) & (fun () -> 0)) x pro-
duces a type error whenever x is an int and yields 0 otherwise; this is, in effect, upper-bounding the type
of x by ¬ int.

157

CHAPTER 10. RELATED WORK

CDuce type system uses convexity to preserve the opaqueness of parametric polymorphism;
by opaqueness, we mean e.g. that only the identity function has type ∀α. α → α (since
α cannot be inspected by the body of the function). TinyBang specifically avoids this
property5: in keeping with the semantics of scripting languages, any value may be type
analyzed at any point in the runtime. CDuce uses convexity to enforce a “uniformity of
behavior”, but the behavior of a scripting function on its argument is often non-uniform by
case analysis. This is a consequence of the difference of domains: CDuce aims to provide
an ML-like type theory for heterogeneously-typed, structured documents while TinyBang
aims to provide a type inference algorithm for a scripting language.

5We do not assign misleading types to functions; in fact, in TinyBang, only the identity function has
type α1\{() <: α1} → α2\{α1 <: α2}. But other identity function types exist with distinct flow properties
and not all functions which are equivalent to the identity function can be identified by their type.

158

Chapter 11

Future Work

Our strategy for developing a typed scripting language relies upon developing a
core calculus onto which the operations of a scripting language can be encoded. Although
TinyBang as presented in Chapter 3 serves as a foundation for several encodings (as seen in
Chapter 8), extensions to or reformulations of the core calculus will make other encodings
available and lead to a more complete and featureful surface language. Here, we discuss
some potential adjustments and augmentations to the theory presented above and describe
the language features which may be possible as a result.

11.1 Pattern Expressiveness

Patterns in TinyBang are fairly simple: with the exception of conjunction patterns,
each pattern precisely matches some type constructor. Conjunction patterns are a fairly
simple addition which essentially just require multiple subproofs of pattern matching. In a
language with types as precise as TinyBang’s, however, much more sophisticated patterns
are possible.

First and foremost, other logical combinations of patterns are trivial to add. Dis-
junction patterns, for instance, are straightforward to introduce. The naïve implementation
of disjunction patterns involves exponential work in the number of disjunctions, but this
work should be reasonable in practice as patterns tend not to be terribly large or complex
in real code. Generalized negation patterns introduce similar complexity problems, but
(due to the constructive nature of pattern matching proofs in TinyBang) top-level negation
patterns are trivial to introduce. Using these patterns, it becomes possible to encode more

159

CHAPTER 11. FUTURE WORK

efficient and manageable versions of e.g. the function encodings from Section 8.5.
More interestingly, the subtype constraint form of TinyBang’s patterns naturally

supports recursive patterns. Recursive patterns are not novel; existing work [27] typechecks
recursive patterns in the context of an ML-style type system where type declarations are
available. TinyBang may be extended to include recursive patterns simply by relaxing the
acyclicity restriction appearing in Section 3.3.2. In doing so, however, the contractiveness of
patterns must be preserved. Much like contractive types [40], contractive patterns are those
which may only recurse after having made progress (e.g. by passing through a meaningful
constructor); thus, the pattern α\{‘Aα <: α} is contractive but the pattern α\{α *α <: α}
is not. Further, the formalization of pattern matching in the type system must then include
an occurrence check to ensure the existence of finite proofs of recursive patterns matching
recursive data; the soundness proof must make use of a pumping lemma to argue that this
occurrence check is safe. In a structurally subtyped language such as TinyBang, recursive
patterns make it possible to e.g. verify the recursive structure of a list by pattern matching.
This allows more sophisticated interface specification where it is desired.

11.1.1 Function Patterns

As is true in almost any language with pattern matching, patterns in TinyBang
only match first-order data. We believe that considerable expressiveness may be gained by
including function patterns: patterns which match the behavior of functions. For instance,
one may imagine a function pattern int ~> char matching only those functions which,
when given a value containing an int, will return a char; any other arguments will fail
to match that pattern. Our previous explorations into this problem have revealed it to be
subtle and complex: with such patterns, for instance, it is possible to create paradoxical
pattern matches (e.g. “this function is the identity function only if it is not”) which must
be identified and reported by the type system. Our most recent work in that area [41]
demonstrates that these corner cases can be identified and rejected and, in general, that
function patterns are a viable and untapped form of expressiveness in the programming
languages literature.

Function patterns make an entire range of sophisticated encodings possible. Type
signatures in the form of function patterns become possible: for instance, the pseudocode
expression (f * (int ~> int) -> f) describes a restricted form of the identity function
which only accepts int → int functions. To verify that a function g has that type, one
merely needs to pass it through that restricted identity function when it is defined. If g does
not have that type, it fails to match the function pattern and, as there are no alternative
patterns, a type error would result.

160

CHAPTER 11. FUTURE WORK

Function patterns also suggest the possibility of a structural multimethod dispatch.
As mentioned in Section 10.2, existing work on multimethods only covers nominal types.
By conditionally matching on the dispatches of a compound function, one can analyze a
variant-encoded object to determine the types of its methods without invoking them. In
essence, this would allow a form of instanceof (to use Java terminology) on structurally
subtyped objects.

11.2 Separate Compilation

The TinyBang type system, as presently defined, produces extremely precise
types that capture much of the flow of the program. The functions fun x -> x + 1 and
fun x -> 1 + x, for instance, have distinct types (although they are operationally equiva-
lent in practice). Further, the types of functions are open in a sense: it is not immediately
evident from the TinyBang type of fun f -> f 3 that its argument must be a function
accepting an integer. As a result, small changes to some code may dramatically influence
the types of code elsewhere in the program. This means both that quite subtle bugs are
admitted by the language and that typechecking is a whole-program effort. We view this
as an effect of accurately typing a scripting language: a common criticism of dynamic lan-
guages is that they admit subtle bugs with far reaching effects and TinyBang’s type system
is simply discovering this bug statically (as a type system is meant to do). We still, however,
wish to improve upon this result.

Typechecking in the system presented here is whole-program for the same reason
that inference is only local in CDuce: both systems must know all of the ways in which a
function may be used in order to polyinstantiate it correctly. In a sense, there is a dimension
of opaqueness which is missing from the polymorphism of TinyBang: since the caller’s
behavior may always type analyze its argument, TinyBang (as presented in Chapter 3) has
no way of ensuring that a different argument type (even a subtype of one already being
used) would not produce a different output type altogether. In a sense, this problem is
fundamental to the domain. The TinyBang type system is designed to infer subtle, unstated
invariants about the behavior of a script and, in theory, there is no boundary at which we
can say for any program that the information is no longer relevant. In Python, for instance,
one may create an object with only a write method and pass it to the constructor of a
GzipFile. This is sound as long as one only uses the GzipFile in a writing fashion; calling
the read method of GzipFile would be an error. Inferring the exact boundary at which
this invariant is no longer relevant is, generally speaking, impossible because the GzipFile

may be stored on the heap and be subject to aliasing.
With the addition of top-level type signatures, however, separate compilation may

161

CHAPTER 11. FUTURE WORK

be recovered. Although our intent is never to require top-level type signatures in our typed
scripting language, providing them for the purpose of improving compilation performance
and isolating bugs is not contrary to that objective. Of course, the constraint types which
are used in TinyBang are both far too complex to be used in signatures (users would be at
a loss to write the correct constraint set for a function) and far too fragile (tiny changes to
the code make the type signature incorrect). That said, the function patterns mentioned
above may provide ML-like type signatures which can be checked by the pattern matching
logic. Once a function is confirmed to conform to a given function pattern, a type equivalent
to that function pattern can be used in lieu of the function’s actual constraint type. This
allows total separation of the implementation from the client as long as the function pattern
remains the same; thus, decorating each exposed member of a module with an appropriate
pattern would allow that module to be typechecked separately from the code that uses it.

11.3 Performance

One challenge to producing a scalable typechecker for TinyBang is creating an
efficient constraint closure algorithm. A considerable body of work has been developed
around constraint simplification ([55, 23] among numerous others) and some of that work
may be applied to this theory. The nature of polymorphism in TinyBang, however, presents
additional challenges.

In TinyBang’s type system, we eagerly create new polymorphic contours when
applications occur; we later merge those contours which we deem unnecessarily precise.
Between instantiation and merging, however, a considerable amount of work may be done
and, unfortunately, we may discover at merge time that this work has been redundant. To
prevent this, an algorithm must endeavor to discover contour merges as quickly as possible.
How this may be done is an open question, although the quality of a strategy is clearly
dependent upon the polymorphism model in question (which defines the merging function
Υ). In CR, for instance, merging happens during recursion. By pursuing constraint closure
over variables with longer contours first, we can improve our chances of discovering recursion
before replicating work. In a sense, we suggest that a sort of “depth-first” closure using
CR may yield the best results. Performance may also be improved by e.g. tracking which
functions in the source have participated in recursive calls and prioritizing their expansion.

In terms of the constraint closure algorithm itself, some questions remain regarding
efficient implementation. Typically, a constraint closure algorithm is improved by adding a
number of indexing data structures to the constraint set, making it easier to find e.g. lower
bounds for a given type variable. Due to the effects of contour merging (as discussed in
Section 9.2), TinyBang does not lend itself as readily to such optimizations: when a merge

162

CHAPTER 11. FUTURE WORK

is performed, the indexes of the data structure must be updated to ensure that they reflect
the new equivalence between type variables. We suspect that some benefits may be realized
through a union-find-like indexing structure, but the performance benefits of this versus
other approaches is not yet clear.

11.4 Type Errors

Subtype constraint systems produce incredibly precise types. As a result, type
errors are often bafflingly complex: even the simplest programs are expressed using hundreds
of constraints, most of which are involved in a given error. Constraint simplification (as
mentioned above) has the advantage of mitigating this problem slightly, but even simplified
constraint sets are unreadable in practice. Tools have been developed to display the program
flow more directly on the code [29], but this approach met with limited success due to the
sheer amount of information each type error conveys. For TinyBang’s type system to be
usable in practice, we must develop a presentation mechanism which relays type errors in
a usable fashion.

When a type error arises in the TinyBang type system, the type checker has already
constructed a proof of inconsistency. Simply providing the proof of the error (as compilers
do today) is ungainly: the programmer must then read through the information (most of
which he or she already knows) in order to understand the problem. We believe that an
interactive type error debugging tool is necessary; such a tool would assist the programmer
in navigating the erroneous flow. As an example, consider the following LittleBang code:

1 let repeat = fun(f,x,n) ->
2 if n == 0 then x
3 else let y = f(x) in repeat(f,y,n-1)
4 in
5 let foo = (x:char) -> 4 in
6 repeat(foo,’a’,5)

Here, the repeat function applies a function to an argument some number of
times. In this use of that function, type error occurs on line 3: after one invocation of foo,
the argument becomes an int (rather than a char) and the function can no longer be called
with the argument. There are several possible causes of this problem:
• The output on line 5 may be incorrect; perhaps foo should return a char.
• The input on line 6 and the pattern on line 5 may be incorrect; perhaps foo should

receive an int.
• The logic on line 3 may be incorrect; perhaps the programmer did not intend repeat

to do what it currently appears to do.

163

CHAPTER 11. FUTURE WORK

• Perhaps none of the above are incorrect but (for some reason) the programmer wanted
to use repeat for a simple application; in that case, the argument 4 on line 6 should
instead be a 1. (TinyBang’s type system is powerful enough to infer a correct type
for this.)

Determining which of the above (if any) are the actual problem requires us to
understand the programmer’s intentions. We can start with the inconsistency on line 3
where an int is passed to foo and ask the programmer what about the current situation
seems wrong. Supposing for a moment that the first problem above is the issue at hand – foo

should return a char – the programmer can indicate that the argument at this point should
never have been an int. Using the proof of inconsistency, the tool can then demonstrate
how that int reached that point in the program: as the argument to repeat, which was
received as the output of f having the type of foo (which then leads the programmer to the
output of foo on line 5). If the second problem above is the issue, the programmer instead
indicates that the argument is fine but the function is in error; in that case, the tool can
indicate the manner in which the function f arrived at that point in the program, tracing
back to the call on line 6.

While we believe an interactive tool such as the above would make type errors
manageable in a subtype constraint system such as TinyBang’s, there are further problems
to solve. The strategy described above may lose precision in some cases of recursion. Ad-
ditional tooling is necessary to ensure that LittleBang type errors are properly represented
by the tool. To properly develop a broader strategy for addressing these errors, it may also
help to classify the kinds of mistakes which appear in LittleBang programs and determine
if blaming individual flows is sufficient to diagnose problems.

11.5 Flow Sensitivity

As stated in Section 10.5, there are strong connections between the TinyBang type
system and static analysis literature. In that literature, analyses are described to be “sensi-
tive” to certain runtime properties. An analysis which is aware of conditional branching is
said to be path-sensitive. An analysis that reconsiders code when it is invoked at different
points is said to be context-sensitive. An analysis which is aware of the chronological ability
of data to reach certain program points (e.g. is aware of the passage of time) is said to be
flow-sensitive.

Considered as an abstract interpretation, the TinyBang type system is path-
sensitive (due to compound function dispatch) and context-sensitive (due to call-site poly-
morphism) but not flow-sensitive. If TinyBang is extended with reference cells as in Sec-
tion 7.4, for instance, the type of the reference cell is merely a union of all types which could

164

CHAPTER 11. FUTURE WORK

appear within it. As a result, the following LittleBang code would produce a false positive
type error:

1 let r = ref ’z’ in
2 (r := 4; !r + 1)

In the above, the contents of r are given the type int ∪ char, so the addition on
the second line produces a type error even though, at runtime, there is no way for r to
contain a char at that point.

Previous flow-sensitive type inference systems exist; the FT calculus [52], for in-
stance, incorporates program flow and acts as a foundation for the Whiley programming
language, a hybrid object-oriented and functional language with an emphasis on sophisti-
cated static contract checking. That system is neither context- nor path-sensitive, however,
and a naïve application of the concepts of FT to the TinyBang calculus is not possible due
to fundamental differences in the theories.

Nonetheless, we believe it to be possible to extend TinyBang to include flow-
sensitive reasoning by adding chronological constraints. In such a system, the transitivity
rule is replaced by a lazy lower-bound lookup; that is, when attempting to determine the
type of !r in the above example, we move backward chronologically until we find either the
definition of r or (in this case) an assignment to r. This chronological model cannot be per-
fect, of course: as with the polymorphism model, we expect to lose information on recursion.
Extending TinyBang with flow-sensitivity would more precisely model the behavior of some
scripting language phenomena and, contrary to intuition, may actually improve the perfor-
mance of the constraint closure algorithm [74] by eliminating some spurious constraints and
their respective conclusions.

165

Chapter 12

Conclusions

Scripting languages have gained widespread acceptance in recent decades because
they allow programmers to work faster and more efficiently. By and large, scripting lan-
guages provide that efficiency by eliminating any static notion of types (or significantly
weakening it as in the case of more recent languages such as TypeScript). Without the
benefits of static typing, scripting languages are less scalable than traditional languages:
their runtime performance suffers and debugging is more difficult.

We have presented here a strategy for designing a language which has much of the
expressiveness and terseness of scripting languages but which is supported by a static type
system and type inference engine. Our strategy is founded in subtype constraint theory
but is deeply related to abstract interpretation: we observe that, in A-normalized forms of
both the evaluation system and the type system, the process of typechecking becomes quite
similar to abstractly executing the program. We have shown how to combine this type-
checking strategy with an expressive data conjoiner called the onion, an asymmetrically-
concatenated, type-indexed record, to capture common scripting language functionality such
as default arguments, operator overloading, and extensible object orientation. This expres-
siveness is supported by a novel call-site (as opposed to let-bound) polymorphism model
which aggressively polyinstantiates contexts and then unifies them later if their separation
is judged to be unnecessary. We also used the connection between our type system and
abstract interpretation to prove the system’s soundness by simulation, a strategy common
in abstract interpretation literature but novel in the realm of type theory.

In order to keep the formalization simple, we developed an operational semantics
and type system for the minimal core language TinyBang; we then demonstrated the en-

166

CHAPTER 12. CONCLUSIONS

coding of LittleBang, a scripting language which includes common and non-trivial scripting
language features not found in TinyBang. In particular, the encoding of LittleBang’s ob-
ject system constitutes the first fully type-inferred variant-based object model. This object
model also has extensibility properties beyond that of extensible typed object encodings
found in the literature.

The expressiveness of LittleBang suggests that it (or another language with sim-
ilar core operations) may be usable in practice in the domain of scripting. Considerable
engineering effort is needed to build an efficient and useable toolchain for the language,
but the theory presented here has shown the type system to be sound and decidable. The
language development strategy presented in this text has therefore shown it possible to
develop a typed scripting language: a programming language with the key flexibility of
modern scripting languages but with the benefits of static typing.

167

Bibliography

[1] O. Agesen. The cartesian product algorithm. In ECOOP, volume 952 of Lecture Notes

in Computer Science, 1995.

[2] G. Agha. Actors: a model of concurrent computation in distributed systems. MIT

Press, 1985.

[3] A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. In FPCA,

pages 31–41, 1993.

[4] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with conditional types.

In POPL 21, pages 163–173, 1994.

[5] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Trans. Program. Lang.

Syst., pages 575–631, Sept. 1993.

[6] J.-h. D. An, A. Chaudhuri, J. S. Foster, and M. Hicks. Dynamic inference of static types

for Ruby. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’11, pages 459–472, New York, NY, USA,

2011. ACM.

168

BIBLIOGRAPHY

[7] L. Bettini, V. Bono, and B. Venneri. Delegation by object composition. Science of

Computer Programming, 76:992–1014, 2011.

[8] M. Blume, U. A. Acar, and W. Chae. Extensible programming with first-class cases.

In ICFP, pages 239–250, 2006.

[9] V. Bono and K. Fisher. An imperative, first-order calculus with object extension. In

ECOOP, pages 462–497. Springer Verlag, 1998.

[10] G. Bracha and W. Cook. Mixin-based inheritance. In Proceedings of the European

Conference on Object-oriented Programming on Object-oriented Programming Systems,

Languages, and Applications, OOPSLA/ECOOP ’90, pages 303–311, New York, NY,

USA, 1990. ACM.

[11] G. Bracha and D. Griswold. Strongtalk: typechecking Smalltalk in a production envi-

ronment. In OOPSLA. ACM, 1993.

[12] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. Information

and Computation, 155(1-2):108–133, 1999.

[13] G. Castagna, G. Ghelli, , and G. Longo. A calculus for overloaded functions with

subtyping. Information and Computation, 117(1):115–135, 1995.

[14] G. Castagna, K. Nguyen, Z. Xu, H. Im, S. Lenglet, and L. Padovani. Polymorphic

functions with set-theoretic types. part 1: Syntax, semantics, and evaluation. In POPL,

2014.

169

BIBLIOGRAPHY

[15] G. Castagna and Z. Xu. Set-theoretic foundation of parametric polymorphism and

subtyping. In ICFP, 2011.

[16] M. M. T. Chakravarty, G. Keller, S. P. Jones, and S. Marlow. Associated types with

class. POPL ’05. ACM.

[17] R. Chugh, P. M. Rondon, and R. Jhala. Nested refinements: A logic for duck typing.

In POPL, 2012.

[18] W. R. Cook, W. Hill, and P. S. Canning. Inheritance is not subtyping. In POPL, 1990.

[19] M. Corporation. TypeScript Language Specification v1.4, October 2014.

[20] P. Cousot. Types as abstract interpretations, invited paper. In POPL, Jan. 1997.

[21] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proceedings

of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-

guages, POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM.

[22] J. Dunfield. Elaborating intersection and union types. In ICFP, 2012.

[23] J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference for objects. In

OOPSLA Conference Proceedings, 1995.

[24] J. Eifrig, S. F. Smith, and V. Trifonov. Type inference for recursively constrained

types and its application to OOP. In MFPS, Electronic Notes in Theoretical Computer

Science. Elsevier, 1995.

170

BIBLIOGRAPHY

[25] J. Eifrig, S. F. Smith, V. Trifonov, and A. Zwarico. Application of OOP type theory:

State, decidability, integration. In OOPSLA Conference Proceedings, pages 16–30,

1994.

[26] J. Estep. Encoding classes and modules in TinyBang. Master’s thesis, The Johns

Hopkins University, 2014.

[27] M. Fähndrich and J. Boyland. Statically checkable pattern abstractions. In ICFP,

pages 75–84. ACM Press, 1997.

[28] M. Fähndrich, J. Rehof, and M. Das. From polymorphic subtyping to CFL reachabil-

ity: Context-sensitive flow analysis using instantiation constraints. Technical report,

Microsoft Research, March 2000.

[29] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and M. Felleisen. Catching bugs

in the web of program invariants. In PLDI, 1996.

[30] T. Freeman and F. Pfenning. Refinement types for ML. In PLDI, 1991.

[31] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks. Static type inference for Ruby. In

SAC, 2009.

[32] M. Furr and J. S. Foster. Polymorphic type inference for the JNI. In Proceedings of the

15th European Conference on Programming Languages and Systems, ESOP’06, pages

309–324, Berlin, Heidelberg, 2006. Springer-Verlag.

[33] T. Gilray and M. Might. A survey of polyvariance in abstract interpretations. In

Trends in Functional Programming. 2014.

171

BIBLIOGRAPHY

[34] N. Glew. An efficient class and object encoding. In Proceedings of the 15th ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and appli-

cations, OOPSLA, pages 311–324, New York, NY, USA, 2000. ACM.

[35] J. O. Graver and R. E. Johnson. A type system for Smalltalk. In In Seventeenth Sym-

posium on Principles of Programming Languages, pages 136–150. ACM Press, 1990.

[36] R. Harper and B. Pierce. A record calculus based on symmetric concatenation. In

Conference Record of the 18th Annual ACM Symposium on Principles of Programming

Languages (POPL), pages 131–142, Orlando, Florida, Jan. 1991. ACM Press.

[37] F. Henglein. Type inference with polymorphic recursion. ACM Trans. Program. Lang.

Syst., Apr. 1993.

[38] F. Henglein and J. Rehof. Constraint automata and the complexity of recursive subtype

entailment. In ICALP, volume 1443 of Lecture Notes in Computer Science, 1998.

[39] N. Jimenez. LittleBang data structure encodings, 2014.

[40] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymorphic

types. In POPL, 1984.

[41] P. H. Menon, Z. Palmer, A. Rozenshteyn, and S. F. Smith. What is your function?:

Static pattern matching on function behavior. Submitted (ICFP 2015).

[42] M. Might and P. Manolios. A posteriori soundness for non-deterministic abstract

interpretations. In In VMCAI ’09: Proceedings of the 10th International Conference

172

BIBLIOGRAPHY

on Verification, Model Checking, and Abstract Interpretation, pages 260–274. Springer-

Verlag.

[43] M. Might and O. Shivers. Environment analysis via ∆CFA. In POPL, 2006.

[44] M. Might and O. Shivers. Improving flow analyses via ΓCFA: Abstract garbage collec-

tion and counting. In ICFP, Portland, Oregon, 2006.

[45] T. D. Millstein and C. Chambers. Modular statically typed multimethods. In ECOOP,

pages 279–303. Springer-Verlag, 1999.

[46] W. B. Mugridge, J. Hamer, and J. G. Hosking. Multi-methods in a statically-typed

programming language. In ECOOP, 1991.

[47] M. H. A. Newman. On theories with a combinatorial definition of equivalence. Annals

of Mathematics, 43(2), 1942.

[48] S. Nishimura. Static typing for dynamic messages. In POPL, 1998.

[49] Z. Palmer, P. Menon, A. Rozenshteyn, and S. Smith. Types for flexible objects. In

Programming Languages and Systems. 2014.

[50] J. Palsberg and S. F. Smith. Constrained types and their expressiveness. TOPLAS,

18(5):519–527, September 1996.

[51] J. Palsberg and T. Zhao. Type inference for record concatenation and subtyping.

Information and Computation, 189(1):54–86, 2004.

[52] D. J. Pearce. A calculus for constraint-based flow typing. In Proceedings of the 15th

173

BIBLIOGRAPHY

Workshop on Formal Techniques for Java-like Programs, FTfJP ’13, pages 7:1–7:7,

New York, NY, USA, 2013. ACM.

[53] F. Pottier. A 3-part type inference engine. In ESOP, pages 320–335. Springer Verlag,

2000.

[54] F. Pottier. A versatile constraint-based type inference system. Nordic J. of Computing,

7(4):312–347, 2000.

[55] F. Pottier. Simplifying subtyping constraints: a theory. Inf. Comput., 170:153–183,

November 2001.

[56] A. Rastogi, N. Swamy, C. Fournet, G. Bierman, and P. Vekris. Safe & efficient gradual

typing for TypeScript. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’15, pages 167–180, New

York, NY, USA, 2015. ACM.

[57] D. Rémy. Type inference for records in a natural extension of ML. In Theoretical

Aspects Of Object-Oriented Programming. MIT Press, 1994.

[58] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the dynamic behavior

of JavaScript programs. In PLDI, 2010.

[59] J. G. Riecke and C. A. Stone. Privacy via subsumption. Inf. Comput., 172(1):2–28,

Feb. 2002.

[60] Ruby Users Group. About Ruby, February 2015.

[61] M. Shields and E. Meijer. Type-indexed rows. In POPL, pages 261–275, 2001.

174

BIBLIOGRAPHY

[62] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie-

Mellon University, 1991. TR CMU-CS-91-145.

[63] shootout.debian.org. The computer language benchmarks game. http://shootout.

alioth.debian.org/.

[64] J. Siek and W. Taha. Gradual typing for objects. In E. Ernst, editor, ECOOP 2007

– Object-Oriented Programming, volume 4609 of Lecture Notes in Computer Science,

pages 2–27. Springer Berlin / Heidelberg, 2007.

[65] S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped languages. In Proceed-

ings of the 15th ACM SIGPLAN international conference on Functional programming,

ICFP, pages 117–128, New York, NY, USA, 2010. ACM.

[66] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and M. Felleisen. Languages

as libraries. In Proceedings of the 32nd ACM SIGPLAN conference on Programming

language design and implementation, PLDI, pages 132–141, New York, NY, USA, 2011.

ACM.

[67] V. Trifonov and S. F. Smith. Subtyping constrained types. In Proceedings of the Third

International Static Analysis Symposium, volume 1145 of LNCS, pages 349–365, Sept.

1996.

[68] D. Van Horn and H. G. Mairson. Deciding kCFA is complete for EXPTIME. In

Proceedings of the 13th ACM SIGPLAN International Conference on Functional Pro-

gramming, ICFP ’08, pages 275–282, New York, NY, USA, 2008. ACM.

175

http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/

BIBLIOGRAPHY

[69] M. M. Vitousek, A. M. Kent, J. G. Siek, and J. Baker. Design and evaluation of

gradual typing for Python. In Proceedings of the 10th ACM Symposium on Dynamic

Languages, DLS ’14, pages 45–56, New York, NY, USA, 2014. ACM.

[70] J. Vouillon. Polymorphic regular tree types and patterns. In POPL, 2006.

[71] M. Wand. Complete type inference for simple objects. In Proc. 2nd IEEE Symposium

on Logic in Computer Science, 1987.

[72] M. Wand. Corrigendum: Complete type inference for simple objects. In LICS. IEEE

Computer Society, 1988.

[73] M. Wand. Type inference for record concatenation and multiple inheritance. Informa-

tion and Computation, 93(1):1–15, July 1991.

[74] T. Wang and S. F. Smith. Precise constraint-based type inference for Java. In ECOOP,

pages 99–117, 2001.

[75] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information

and Computation, 115:38–94, 1992.

[76] A. K. Wright and S. Jagannathan. Polymorphic splitting: An effective polyvariant

flow analysis. ACM Transactions on Programming Languages and Systems, 20:166–

207, 1998.

[77] Z. Xu. Parametric Polymorphism for XML Processing Languages. PhD thesis, Uni-

versité Paris-Diderot-Paris VII, 2013.

176

Cirriculum Vitae

EDUCATION
The Johns Hopkins University Baltimore, MD
Doctor of Philosophy August 2015
The Johns Hopkins University Baltimore, MD
Master’s of Computer Science May 2010
Indiana University of Pennsylvania Indiana, PA
Bachelor’s of Computer Science, Summa Cum Laude May 2004

TEACHING EXPERIENCE

Lecturer Object-Oriented Software Engineering Fall 2014
Department of Computer Science The Johns Hopkins University

Lecturer Introduction to Programming in Java Summers 2009–2011, 2014
Department of Computer Science The Johns Hopkins University

Teaching
Assistant

Object-Oriented Software Engineering Falls 2008-2013
Department of Computer Science The Johns Hopkins University

Teaching
Assistant

Programming Languages Springs 2010, 2011, 2013
Department of Computer Science The Johns Hopkins University

Teaching
Assistant

Artificial Intelligence Spring 2009
Department of Computer Science The Johns Hopkins University

TEACHING AWARDS
Professor Joel Dean Excellence in Teaching Award May 2015
Whiting School of Engineering Outstanding Teaching Award May 2010

177

BIBLIOGRAPHY

PUBLICATIONS AND WRITINGS

Peer-Reviewed Research

H. Menon, Z. Palmer, A. Rozenshteyn, S. Smith. What is Your Function?. 20th ACM
SIGPLAN Conference on Functional Programming (ICFP) (2015 submitted).

H. Menon, Z. Palmer, A. Rozenshteyn, S. Smith. Types for Flexible Objects. 12th Asian
Symposium on Programming Languages and Systems (APLAS) (2014).

H. Menon, Z. Palmer, A. Rozenshteyn, S. Smith. A Practical, Typed Variant Object
Model. International Workshop on Foundations of Object-Oriented Programming Lan-
guages (FOOL) (2012).

P. Shyamshankar, Z. Palmer, Y. Ahmad. K3: Language Design for Building Multi-
Platform, Domain-Specific Runtimes. International Workshop on Cross-Model Lan-
guage Design and Implementation (XLDI) (2012).

H. Menon, Z. Palmer, A. Rozenshteyn, S. Smith. BigBang: Designing a Statically-Typed
Scripting Language. International Workshop on Scripts to Programs (STOP) (2012).

Z. Palmer, S. Smith.. Backstage Java: Making a Difference in Metaprogramming. 26th
ACM SIGPLAN Conference on Object Oriented Programming: Systems, Languages,
and Applications (OOPSLA) (2011).

Educational Writing

M. Grant, Z. Palmer, S. Smith. Principles of Programming Languages. (2009)

INDUSTRY EXPERIENCE

Software Engineering Consultant July 2007 – July 2008
Amentra, Inc. / Red Hat, Inc.
Independent Developer August 2006 – July 2007
Student Intern Summers 2001 – 2003
Didera, Inc.

178

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Notations
	List of Definitions
	List of Theorems
	Introduction
	What is a ``Scripting Language?''
	Existing Work
	Our Approach: The *Bang Family
	Outline

	Overview
	TinyBang Syntax
	Conditionals: A Simple Exercise in Compound Functions
	Overloading
	Onions as Function Arguments
	Sanitized Strings: Using Labels as Tags
	Dynamic Object-Oriented Semantics

	Formalization
	Notation
	A-Normalized Form
	Well-Formed Expressions
	Operational Semantics
	Compatibility
	Matching
	Small Step Evaluation

	Type System
	Initial Alignment
	Definitions for Alignment
	Compatibility
	Application Matching
	Constraint Closure

	Proof of Soundness
	Proof Strategy
	Simulation
	Initial Alignment
	Compatibility
	Matching
	Polyinstantiation
	Preservation
	Stuck Simulation
	Proof of Soundness

	Proof of Decidability
	Polymorphism
	Decidability Theorem
	Conventions
	Finite Variables
	Finite Types
	Decidable Compatibility
	Decidable Matching
	Decidable Constraint Closure
	Closure Convergence
	Proving Decidability

	Polymorphism in TinyBang
	Motivating CR
	The Definition of CR
	Finite Freshening of CR
	Computability of CR
	The Expressiveness of CR

	Built-Ins
	Environment
	Framework
	Integers and Addition
	State

	LittleBang
	The Encoding Process
	Booleans
	Records
	Lists
	Functions and Application
	Objects
	Classes

	Implementation
	Complete Closure is Sufficient
	Variable Replacement
	Current and Future Design

	Related Work
	Onions
	Dispatch
	Polymorphism
	Object-Orientation
	Static Analysis Techniques
	Dynamic Analysis
	CDuce

	Future Work
	Pattern Expressiveness
	Separate Compilation
	Performance
	Type Errors
	Flow Sensitivity

	Conclusions
	Bibliography
	Cirriculum Vitae

