* ANTs for practice exam context questions
* Subtyping, esp. functions
* Mutual recursion

Practice Exan Q1 ASts

b.

C.

$$
\begin{aligned}
& (1+2)+3 \\
& (f g) h \\
& f \Delta x \diamond y
\end{aligned}
$$

d.

$$
\begin{aligned}
& \text { (} \text { Function } f \rightarrow \text { Function } x \rightarrow f(f x)) \text { (Function } n \rightarrow n+1)) 3
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\left(F_{n \rightarrow n+1}\right) \Rightarrow\left(F_{n \rightarrow n+1}\right) & \begin{array}{l}
\left(F_{n \rightarrow n+1}\right) 3_{e} \Rightarrow 4
\end{array} \quad A \frac{1+1 \Rightarrow 5}{4+1} \Rightarrow 5
\end{array} \\
& \underbrace{\left(F_{n \rightarrow n+1}\right)}_{e_{1}} \underbrace{\left(\left(F_{n \rightarrow n+1}\right) 3\right)}_{e_{2}} \bumpeq
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{((F f \rightarrow F x \rightarrow f(f x))(F n \rightarrow n+1))}_{e_{1}} \underset{e_{2}}{\substack{e_{2}}} 3 \Rightarrow 5
\end{aligned}
$$

Classes encoded in FbSR
class Counter:
Make An Object

def next (self):
Function this \rightarrow

$$
\begin{aligned}
& \begin{array}{l}
m=\operatorname{self.n} \\
\text { self.nt } \\
\text { return } m
\end{array} \\
& z=4 \\
& c=\operatorname{Caunter}()
\end{aligned}
$$

$$
z=4
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
n=\text { Ref } O ; \\
n \text { next }=\text { Function this } \rightarrow \\
\\
\quad \text { Let } m=\text { ! this.n } I_{n} \\
\quad \begin{array}{l}
\text { Let junk }=(\text { this. } n:=!\text { this.n }+1)
\end{array}
\end{array} \quad I_{n}\right.
\end{aligned}
$$

$3 ;$
C. next ()

In
Let $c=$ counter. --init.- counter In
c.next c

Private Fields

$$
\text { Let constr }=\{\text { _-init_- }=
$$

Function this \rightarrow
Let private $=\{n=\operatorname{Ref} O\} \quad I_{n}$
ξ

$$
\text { next }=\text { Function this } \rightarrow \text {. }
$$

Let $m=$! primate I_{n}

$$
\}^{3}
$$

$3 ;$

$$
z^{z=\operatorname{Ref} 4}
$$

In
Let $c=$ counter..-init_- counter In

Cells are values
Na concrete syntax
directly creates a particular cell
$\}$
public int next () \{

class Counter ? private int n; public Counter () ?

$$
\text { this.n }=0 ;
$$

publ...

$$
\begin{aligned}
& \text { Let fresh }= \\
& e_{1}\left[\begin{array}{l}
I_{n} \\
\text { Left ctr }_{\text {Unction }}^{\text {ctr }}=\operatorname{Rof}=\operatorname{lonk} \rightarrow I_{n}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Poodle<Dog- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { oof } \rightarrow \text {... <. woolen ... } \\
& \left\{a: I_{n t} ; b: I_{n t}\right\}<:\left\{a: I_{n+}\right\} \\
& \text { Poodle <: Dog } \\
& \text { "Dogsitter": Dog } \rightarrow \text {. } \\
& \text { STFDR } \\
& \begin{array}{l}
\begin{array}{l}
\vdash e: \tau \\
\tau<: \tau
\end{array} \quad \frac{\Gamma \vdash e: \tau_{1} \tau_{1}<: \tau_{2}}{\Gamma \vdash e: \tau_{2}}
\end{array} \\
& \left.\operatorname{Dog}^{*} d=\text { new Poodle (}\right) ;
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{3}<\tau_{3}^{\prime} \\
& \tau_{2} \ll \tau_{2}^{\prime} \\
& \text { General deep subryping for functions: } \\
& \left(\tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime}\right) \rightarrow\left(\tau_{3}^{\prime} \rightarrow \tau_{4}^{\prime}\right)<:\left(\tau_{1} \rightarrow \tau_{2}\right) \rightarrow\left(\tau_{3} \rightarrow \tau_{4}\right) \\
& \left(\left\{a: I_{n}+\right\} \rightarrow\left\{c: I_{n t}\right\}\right) \rightarrow\left\{e: I_{n+}\right\} \quad\left(\left\} \longrightarrow\left\{b: I_{n t} ; c: I_{n t}\right\}\right) \rightarrow\}\right.
\end{aligned}
$$

Int Int

$$
\begin{aligned}
& \text { Refl }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left\{a: I_{n}+\right\} \rightarrow\left\{c: I_{n}+\right\}\right) \rightarrow\left\{e: I_{n}+\right\}<:\left(\{ \} \rightarrow\left\{b: I_{n t} ; c: I_{n t}\right\}\right) \rightarrow\{ \} \\
& S R \frac{\tau_{1}<: \tau_{1}^{\prime}}{\left\{\ell_{1}: \tau_{1}, \ldots, \ell_{n}: \tau_{n}, \ldots \ell_{m}: \tau_{m}\right\}<:\left\{\ell_{1}: \tau_{1}^{\prime}, \ldots, \ell_{n}: \tau_{n}^{\prime}\right\}} \quad \text { Refl } \quad \frac{\tau<: \tau}{\tau}
\end{aligned}
$$

Let countdown' ${ }^{\prime}=$ Function $^{\text {self }} \rightarrow$ Function $n \rightarrow$

Let $f_{o o^{\prime}}=$ Function self \rightarrow Function other \rightarrow Function $x \rightarrow$ If $x=0$ Then 0 Else other other self $(x-1)$
I_{n}
Let \quad bar $^{\prime}=$ Function self \rightarrow Function other \rightarrow Function $x \rightarrow$
If $x=0$ Then O Else
If $x=1$ Then 1 Else
other other self $(x-2)$
I_{n}
f_{00} foo bar' 5
(Function $f_{1} \rightarrow$ Function $f_{2} \rightarrow$
Let call f $1^{\prime}=$ Function self \rightarrow Function ala \rightarrow Function $n \rightarrow$
f_{1} (self self other) (other other self) n
In
Let call fa' = Function self \rightarrow Function other \rightarrow Function $n \rightarrow$ f_{2} (self self other) (other other self) n
I_{n}
Let call ff $=$ call fl^{\prime} call $f 1^{\prime}$ call $\mathrm{f}^{\prime} \mathrm{I}_{n}$
Let call fa $=$ call $f 2^{\prime}$ call $f 2^{\prime}$ call $f 1^{\prime} I_{n}$
f_{1} callf1 callf2
)
(Function q -> q (Function r->r(Function s-> s 4))) ${ }^{\text {e }}$

Operational Equivalence: $e_{1} \cong e_{2}$ iff $\forall C . C\left[\begin{array}{c}\left.e_{1}\right] \\ \text { of }\end{array}\right] \Rightarrow v_{1}$

$$
C\left[e_{2}\right] \Rightarrow v_{2}
$$

$$
C^{\prime}=\text { If } C[\cdot]=v_{1} \text { then } O \quad E l \text { se } 00
$$

To pave $e_{1} \nRightarrow e_{2}$, find one counfercsapple.
To prove $e_{1} \cong e_{2}$, foll formal proof.

FbI

$$
\begin{aligned}
& e::=\cdots \mid \text { Some e } \mid \text { Default } e / x \rightarrow e / e \\
& v:=\cdots \mid \text { Some } v \mid \text { None }
\end{aligned}
$$

Some a
Some ($1+2$)
Some b
Sone ($f \mathrm{x}$)
None

$$
\begin{aligned}
& 1+2+3
\end{aligned}
$$

$$
\begin{aligned}
& e=c+d \\
& \frac{e_{1} \Rightarrow \text { Ste }}{} v^{\prime} e_{a}\left[v^{\prime} / x\right] \Rightarrow v \\
& \left(\text { Function } a \rightarrow D_{\text {default }} / n \rightarrow n / 0\right) \text { (Some 5) } \\
& \text { Math e Wto } \\
& \begin{array}{l}
\text { Sone } x \rightarrow e \\
1 \text { None } \rightarrow e
\end{array}
\end{aligned}
$$

