
1. Circle

Proof. We intend to prove that, ∀e. ∃v. e⇒ v. We proceed by induction on the
height of e and then by case analysis on the form of e. The expression has two
forms: e is either Duck e′ or it is Goose.

In the case that e is Goose, the Goose rule gives us that e⇒ Goose, so v = Goose

and this case is finished.

In the case that e is Duck e′, we note that e′ is of lesser height than e. By the
inductive hypothesis, we have that e′ ⇒ v′ for some v′. The Duck rule gives us
that, as a result, Duck e′ ⇒ v′. Since e = Duck e′, we have e ⇒ v′ and so this
case is finished.

Observe that, in the above proof, we state what we intend to prove. We also
state how we intend to prove it. This allows the reader an understanding of the
strategy going forward.

When proving a universal (∀) of a metavariable (e), it is common to operate on
the metavariable as if it contains a particular but unknown value. If we are able
to prove our point about e without knowing anything about it in advance (other
than what we know from definitions, such as the grammar of e here), then our
reasoning applies to every e and we have satisfied the ∀ part of the proof.

When we encounter a case in which multiple options exist (such as the “form” of
e, which refers to the particular case of the grammar that was used to construct
it), one strategy is to use case analysis. When we state that the expression has two
forms, we are basically writing an match expression into our proof: it’s enough
to prove what we need to prove in each case, even if we have to use different
reasoning for each case.

In the Goose case, the property is trivial: the Goose rule axiomatically says that
Goose evaluates to a value, so we’re finished. We have nothing else to show.

In the Duck case, the only rule we can use is the Duck rule. That requires that
the inner expression of Duck also evaluate to something. We stated, though, that
we would proceed by induction on the height of e; this means that, when dealing
with an e of height n, we are permitted to assume that all e′ of height n − 1 or
less† already have the property we aim to prove. Since we’re trying to show that
every e has some v to which it evaluates, this inductive hypothesis lets us assume
that e′ evaluates to some v′ (since e′ is of height n− 1). We can use that as the
premise for the Duck rule to solve this case.

Once all cases are solved, there is nothing else that needs to be said. If you like,
you can summarize what has been proven or assert that all cases are complete.
The little � in the bottom right of the proof environment, often pronounced as
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the letters “Q.E.D.”‡, indicates that we think the proof is finished.

†Strictly speaking, induction on a parametric proposition P allows you to assume
that P (n − 1) is true while proving P (n); that is to say, we’re only really allowed to
assume that all e′ of height n − 1 evaluate. This form of induction, sometimes called
“weak induction”, is often enough when dealing with simple data structures like trees;
it’s certainly enough here. In some cases, though, you might want this property over all
smaller trees (such as when the expression is a binary operation). In that case, so-called
“strong induction” permits us to assume P (0), P (1), and so on up to P (n − 1) when
proving P (n). This distinction is rarely important; many proofs simply use “induction”
to mean strong induction. However, this tidbit is useful in relating the “P (n−1) implies
P (n)” perspective of induction that is often given in class to the one used in more
intricate proofs.

‡Q.E.D. is an initialism for the Latin phrase “quod erat demonstrandum”: roughly
speaking, “that which was to be demonstrated”.
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2. Robot

Proof. We intend to prove that, ∀e. ∃v. e⇒ v. We proceed by induction on the
height of e and then by case analysis on the form of e. The expression has two
forms: e is either Beep e1 e2 or it is Boop.

In the case that e is Boop, the Boop rule gives us that e⇒ Boop. Thus, v = Boop

and this case is finished.

In the case that e is Beep e1 e2, we note that e1 and e2 are of lesser height than
e. By induction, we have that e1 ⇒ v1 and e2 ⇒ v2. These are the premises of
the Beep rule, so we have that Beep e1 e2 ⇒ v2. Thus, e⇒ v2 and this case is
finished.

This proof is essentially the same as the previous proof. The key difference is
that the language contains a binary operation, Beep, as opposed to the unary
operation in the previous language, Duck. As a consequence, we require strong
induction: we show that, given P (0), P (1), and so on up to P (n−1) that P (n) is
true. This is necessary because it is not always the case that the subexpressions
of Beep have the same height; for instance, in the expression Beep Boop (Beep

Boop Boop), the left subtree has height 0 while the right subtree has height 1.

In this proof, we simply use the term “induction” to refer to the strong induction
technique. This is common in proofs over ASTs and similar trees; the author
is essentially assuming that the reader is able to infer the induction technique
(much like the phrasing “proceed by induction on the height of e” assumes that
the reader can figure out what P is).

3



3. CoinFlip

Proof. We intend to prove that, if e
H⇒ v, then Flip e

T⇒ v. We proceed by
induction on the height of e and then case analysis on the form of e. The
expression has two forms: e is either Stop or Flip e′.

If e is Stop then e
H⇒ Heads by the Stop rule of

H⇒. In this case, Flip e is

Flip Stop. Flip Stop
T⇒ Heads by the following proof:

Flip

Stop
Stop

T⇒ Tails

Flip Stop
T⇒ Heads

We have that e is Stop, e
H⇒ Heads, and Flip e

T⇒ Heads; thus, this case is
finished.

Otherwise, e is Flip e′. By the inductive hypothesis, we have that e′
H⇒ v′ such

that Flip e′
T⇒ v′. We have e = Flip e′, so we know e

T⇒ v′. By e′
H⇒ v′ and

the Flip rule of
H⇒, we have e

H⇒ v where v is the opposite of v′. By e
T⇒ v′ and

the Flip rule of
T⇒, we have Flip e

T⇒ v. In summary, e
H⇒ v and Flip e

T⇒ v,
so this case is finished.

This case is a little different because two proof systems are involved. One proof

system,
H⇒, evaluates Stop to Heads while the other,

T⇒, evaluates Stop to Tails.
As a consequence of using two proof systems, we must be mindful about which
system’s rule we are discussing at any given point in time.

The other thing that’s a little different here is the form of the proposition to
be proven. The previous propositions have simply started with “for all e”; in
those cases, we know nothing about the e. In this case, we are trying to make an

assertion about an implication: if e
H⇒ v then Flip e

T⇒ v. As a consequence, we

have an additional fact — e
H⇒ v — which we can assume in order to reach our

goal.
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4. Addsolute

Proof. We intend to prove that e ⇒ v and e ⇒ v′ then v = v′. We proceed
by induction on the height of the proof trees and then by case analysis on the
proof rule used in the first proof.

If the Value rule is used in the first proof, then e = v. In that case, the only
rule which applies to v is the Value rule, so the Value rule must have been used
in the second proof. As a result, e = v = v′ and this case is finished.

If the Negate rule is used in the first proof, then e = -e1. By the Negate rule,
we have that e1 ⇒ v1. Since the Negate rule is the only rule which applies to
e, we know that the second proof must use the negate rule and has e1 ⇒ v′1.
Because the proofs of e1 ⇒ v1 and e1 ⇒ v′1 have lesser height than the proofs of
e⇒ v and e⇒ v′, the inductive hypothesis gives us that v1 = v′1. In this case,
v and v′ are both the arithmetic negation of v1 and so this case is finished.

If the Plus rule is used in the first proof, then e = e1 + e2. This case proceeds
much like the Negate case above. We know from the first proof that e1 ⇒ v1
and e2 ⇒ v2; we also know that the only rule which applies to e is the Plus rule,
so it must have been used in the second proof as well. By the Plus rule from
the second proof, we have e1 ⇒ v′1 and e2 ⇒ v′2. By the inductive hypothesis,
we have v1 = v′1 and v2 = v′2, so both v and v′ are the arithmetic sum of v1 and
v2. As a result, this case is finished.

If the Abs Pos rule is used in the first proof, then e = Abs e1. We know from
this rule that e1 ⇒ v and that v ≥ 0. In this case, there are exactly two rules
which match the syntax of e and so be used in the second proof: the Abs Pos
rule or the Abs Neg rule. We will show that the Abs Neg rule cannot be used.

Suppose for contradiction that the second proof uses the Abs Neg rule. Then
we know from its premises that e1 ⇒ v′1, v′1 < 0, and -e′1 ⇒ v′. Because e1 is
a smaller expression, we have by the inductive hypothesis that v1 = v′1. But
then v1 < 0 and v1 ≥ 0, which is a contradiction; as a result, the Abs Neg rule
cannot be used in this case.

So if the Abs Pos rule is used in the first proof, the Abs Pos rule must be used
in the second proof. As a consequence, we have e1 ⇒ v′ and v′ ≥ 0. By the
inductive hypothesis, we have v = v′ and so this case is finished.

Otherwise, the Abs Neg rule is used in the first proof. This case proceeds in the
same fashion as the Abs Pos case, using induction for the final premise of the
Abs Neg rule.
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This problem is similar to the previous problem in that there are two proofs
(although here, those two proofs are from the same operational semantics). A
new challenge, though, is that we can’t prove this by induction on the height
of e†. If we tried to do so, then the Abs Neg rule would present a problem:
for an expression e = Abs e′ of height n, the premise is that the expression -e
evaluates but that expression also has height n and so we cannot use the inductive
hypothesis.

There are a number of ways to address this; one of them is to proceed by induction
on the height of the proof rather than the height of the expression. In this
strategy, we look at each rule in the proof (rather than each node in the AST)
and perform case analysis on the rule which was used. By using this approach,
it doesn’t matter if the expression gets smaller, since the proof always will. In
the Abs Pos case, for instance, we observe that the proof of -e1 ⇒ v is smaller
than the proof of Abs e⇒ v. This is especially important because the expression
-e is not smaller than the expression Abs e and so induction on the height of the
expression would not be sound here.

The other novelty about this proof system is that the rules are not syntactically
unique: there are two rules to handle the Abs e expression. This is much like
the If expression in F[. We can’t know which of those two rules was used in the
second proof, so we have to consider both cases. Here, we start by pretending
that the Abs Neg rule was used. We then follow sound logical steps to prove
something impossible: that v is both negative and non-negative at the same
time! Because everything we did was valid, the original assumption – that the
Abs Neg rule was used – must be false. This is why we can determine that the
second proof also used the Abs Pos rule.

†At least, we can’t prove this by the height of e quite so directly. Strictly speaking,
it’s still possible to do so, but it doesn’t proceed in quite the same fashion and it’s a
little bit messy. Instead, we use the height of the proof tree, both because it solves this
problem and it makes for a good demonstration of technique. (The somewhat peculiar
form of the Abs Neg rule is chosen to motivate this decision as well; most cases in which
induction on a proof tree are natural involve more complex rule sets.)
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