
1. Circle

Consider the following grammar for a language called Circle:

e ::= Duck e | v
v ::= Goose

We give an operational semantics for this language:

Duck
e⇒ v

Duck e⇒ v
Goose

Goose⇒ Goose

We state the following theorem:

Theorem 1. Circle is normalizing; that is, ∀e. ∃v. e⇒ v.

Prove Theorem 1.

1

2. Robot

Consider the following grammar for a language called Robot:

e ::= Beep e e | v
v ::= Boop

We give an operational semantics for this language:

Beep
e1 ⇒ v1 e2 ⇒ v2

Beep e1 e2 ⇒ v2
Boop

Boop⇒ Boop

We state the following theorem:

Theorem 2. Robot is normalizing; that is, ∀e. ∃v. e⇒ v.

Prove Theorem 2.

2

3. CoinFlip

Consider the following grammar for a language called CoinFlip:

e ::= Flip e | Stop
v ::= Heads | Tails

We define the opposite of values v in CoinFlip as follows: the opposite of Heads
is Tails and the opposite of Tails is Heads.

We give the following operational semantics for CoinFlip, which we denote e
H⇒

v:

Stop
Stop

H⇒ Heads
Flip

e
H⇒ v v′ is the opposite of v

Flip e
H⇒ v′

We also give another operational semantics for CoinFlip, this time denoted

e
T⇒ v:

Stop
Stop

T⇒ Tails
Flip

e
T⇒ v v′ is the opposite of v

Flip e
T⇒ v′

Note that these relations give two different ways of evaluating expressions. We
state the following theorem:

Theorem 3. If e
H⇒ v then Flip e

T⇒ v.

Prove Theorem 3.

3

4. Addsolute

Consider the following grammar for a language called Addsolute:

e ::= v | e + e | -e | Abs e
v ::= 0 | 1 | 2 | . . .

We give this language the following operational semantics:

Value
v ⇒ v

Negate
e⇒ v v′ is the arithmetic negation of v

-e⇒ v′

Plus
e1 ⇒ v1 e2 ⇒ v2 v is the arithmetic sum of v1 and v2

e1 + e2 ⇒ v

Abs Pos
e⇒ v v ≥ 0

Abs e⇒ v
Abs Neg

e⇒ v v < 0 -e⇒ v′

Abs e⇒ v′

We state the following theorem:

Theorem 4. Addsolute is deterministic; that is, if e ⇒ v and e ⇒ v′ then
v = v′.

4

