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1 Introduction

Previous research in Computer Science, Neuroscience, and Medical fields has
implemented EEG-based Brain-Computer Interfaces (BCI) in several ways, [1, 13,
14, 19, 21, 23, 25, 33, 34, 35], such as diagnosis of Alzheimer’s, emotion recognition,
mental workload, motor imagery tasks [3, 4, 5, 15, 22, 26]. Machine learning, deep
learning, and transfer learning algorithms have demonstrated the great potential
in such biomarker data analysis [2, 6, 7, 16, 17, 20, 24, 27, 28, 31, 37, 38, 39, 40, 41].

However, EEG datasets’ size is still relatively small compared with peers in
Computer Vision and Natural Language Processing [13, 23, 36].

Our research questions are: 1. Can we develop a larger dataset with data
from a larger audience? for example, college students? 2. Can we design easy-to-
use BCI experiments to collect EEG data with consumer-grade devices for college
students? 3. Can we develop a step-by-step guide for such a data collection and
machine learning analysis process?

2 Methods

As [11, 18, 30, 32] mentioned, several affordable (less than three hundred dollars)
non-invasive consumer-grade EEG headsets are commercially available. As shown
in Figure 1, we have pilot-tested several clinical and non-clinical EEG devices
with college students. The Top left cell in Figure 1 showed an example of the
wearing of a clinical device while others demonstrated the consumer-grade devices.
Muse Headset were used as an example for demonstration, followed by more
details in the 6-page full-length page.

As shown in Figure 2, first, we installed the data collection software or
application. The following method section was formulated based on the example
of using Muse Headset. We have used this device since 2016. First, the end user’s
OS version must match the version of the EEG recording application. If the
end-user had a newer Macbook or the latest version of Muse headset, they ought
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Fig. 1. College Students using EEG Devices

to use the Mind Monitor Application to record EEG signals. Otherwise, the
end-user may still use the Muselab application for EEG recording.

Two individuals, the EEG coach, and the end-user, were usually required to
complete the data acquisition of such non-invasive EEG signals via Muse headset
and Muse Recording software, As shown in Figure 3. First, the EEG Coach
introduced the Muse Headset and Muse recording application to the end-user.
Then the EEG coach explained the details of a specific experiment. Next, the
EEG coach and the end-user started the experiment to collect the data. The
data was saved as a MUSE file. The end-user then summarized the experimental
feedback to the EEG coach. Together with the research team, the EEG coach
generated visual feedback to the End-user. Such feedback may contribute to the
development of future experiments.

If the end-user was interested, they could learn the data analysis themselves,
which took two hours on average for students who major in computer science.

Most EEG recording applications came with a toolset to convert the recording
files to TXT or CSV files. Afterward, we could pick the subset of data we planned
to use for further analysis; we recommended starting with the absolute value of
the EEG signals.
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Fig. 2. Data Collection App Selection

We implemented several machine learning algorithms commonly used in the
field [8, 9, 10, 12] from the scikit-learn [29]. For example, Linear Classifiers,
Nearest Neighbors, Decision Tree, and Ensemble Methods.

As shown in the Figure 4, once we had six TXT files for all six sessions of
data, we first executed a Matlab program - preprocess.m - to identify the noises

Fig. 3. Data Collection Flow Chart, User and Coach
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Fig. 4. Data Analysis Flow Chart

and turn all the TXT files into separate CSV files. Then, we ran the Clean.ipynb
to exclude these data in the Pandas Dataframe for further analysis. Next, we
executed the TMV.ipynb to train and cross-validate existing machine learning
algorithms such as the Random Forest, SVM, and KNN. Then we selected the
top two best-performing algorithms and used these two algorithms to perform
Time Majority Voting. In our case, these two algorithms were Random Forest
and RBF SVM. Lastly, the TMV.ipynb would generate a visualization of task
predictions for end-users. Figure 5 and a heatmap for all six sessions (Fig 6).
These two figures are examples of task one’s prediction results for all six sessions
of subject 1 in the TCR Experiment.

3 Results

As shown in Figure 5, sessions designed task were clearly recognized. All six
sessions of subject 1’s task 2 showed consistent patterns. Such visual feedback
was provided to the EEG coach and end-user who collected this set of data.
From the experiment notes, we ran into a signal issue behind the right ear of
the end-user throughout the session, then we recorded this case and potential
solutions to improve future experiments.

As shown in Figure 6, the X-Axis is the designed tasks, the Y-Axis is the
predicted tasks. The diagonal means the designed tasks matched the prediction.
Such visual feedback also helped the research team and the end-users better
understand what task pairs were easy to be confused with each other.
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Fig. 5. Subject 1 Task 2 Prediction for all Six Sessions

4 Discussion

This paper proposed an approach for non-export independent researchers to collect
EEG-based BCI data with affordable non-clinical devices. When performing test
trials with Muse headsets, we provided a general guideline, as shown in figure 2
and 3, which showed promising result in many EEG data collections performed
by naive EEG end-users. This general guideline demonstrated a decision tree
for non-expert researchers to acquire data collection hardware and software. We
also presented our data collection flow, which formed a closed loop between
the researchers and the experimental subjects. In addition, we elaborated our
data-cleaning analysis procedures.

Significant progress has been made in user-training for EEG-based BCI
studies, while the framework proposed in this paper serves as a stepping stone for
further improved training programs in future research. However, some limitations
were identified along the course of our project. Our project spanned from pre-
pandemic to post-pandemic time. We found that in-person data collection trials
were significantly more efficient than trials that took place virtually during the
global pandemic. We ought to explore more strategies and updated methods
that could grant us the efficiency when data collection has to be completed in a
virtual environment.
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Fig. 6. Subject 1’s TMV Heatmap for all Six Sessions

Even though as much detail and trial and error experience we managed to
include in our guideline, there are chances that individual cases develop distinct
issues. Our future work includes research/EEG coach-based student study/work
community, in which they can learn and discuss their experience with non-clinical
devices collecting EEG-based data and possibly establish solutions to various
issues after the encounter.

5 Conclusion

This paper investigated the data collection for EEG-based BCI to develop larger
datasets. We explored the possibility of collecting EEG data from college students
with affordable devices. The results demonstrated that the proposed framework
could simplify the process and contribute to developing a larger EEG dataset.
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