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Abstract. Using Machine Learning and Deep Learning to predict cogni-
tive tasks from electroencephalography (EEG) signals has been a fast-
developing area in Brain-Computer Interfaces (BCI). Yet, one funda-
mental challenge is that EEG signals are vulnerable to various noises.
This paper identifies two types of noise: external noise and internal noise.
External noises are caused by subjects’ movement or sensors’ instability,
and internal noises result from the subjects’ random mental activities
due to the subjects’ mind wandering during the experiment. When the
participants conduct other mental activities researchers cannot infer,
it will result in data corresponding to’ unknown’ tasks. We pioneer a
Human-In-The-Loop (HITL) machine learning model, EEG4Home, to
handle both types of noise and increase the accuracy of predicting known
tasks. We introduce a plateau threshold to remove external noise and
an unknown threshold set to detect unknown tasks to remove internal
noise. Both unsupervised (such as K-Means) and supervised (Such as
Random Forests, CNN, and RNN) learning algorithms are implemented
in this HITL approach. We use the Thinking1 BCI experiments dataset
with sixty subjects3. The average prediction accuracy of known tasks has
increased from 56.8 percent to 65.1 percent. Overall, this EEG4Home
model enables researchers or end-users to gain higher prediction accuracy
and more interpretable results.
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1 Introduction

Researchers from both clinical and non-clinical fields have applied EEG-based
Brain Computer Interaction (BCI) techniques in many different ways [13,4], such
as diagnosis of abnormal states, evaluating the effect of the treatments, seizure
detection, motor imagery tasks [5], and developing BCI-based games [3]. Previous
studies have reviewed existing machine learning and deep learning algorithms
[27,14,30,24,15,11] for classifying EEG-based BCI tasks.
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However, EEG-based BCI remains an expensive and time-consuming approach,
more for research or clinical settings than for non-expert users to use at home.
Also, EEG signals have a relatively low signal-to-noise ratio, mainly because of
the contact of sensors and skin for several current consumer-grade devices. The
outlier issue is also a concern for the EEG data. Some participants have had
difficulties generating stable EEG signals for various reasons, such as head shape,
hairstyle, and the EEG headsets electrodes. Current EEG-based BCI algorithms
and frameworks are more for clinical-style devices and less for an affordable
instrument with at-home settings.

Can we develop an easy-to-use machine learning EEG framework for non-
expert end-users to classify their everyday learning tasks better? This paper
proposed a framework, EEG4Home, to eliminate these disturbing artifacts by
utilizing a Human-In-The-Loop (HITP) machine learning approach. We evaluated
this approach on four EEG data sets and presented the main results with increased
prediction accuracy and more interpretable feedback to both researchers and
end-users.

2 Related Work

There are several existing frameworks for analyzing EEG data, such as BCI2000
[27]; OpenVibe [23]; USC Brainstorm [28]; Harvard HAPPE [6]; Stanford EEG-
BIDS [18]; and JHU BCI2000web [16]. These frameworks are more for EEG data
with clinical devices, usually 128 or 64 electrodes.

Since 2015, several consumer-grade EEG-based BCI headsets have been
released, which are more affordable for researchers and non-expert end-users, as
shown in Figure 1.

After comparing different non-invasive, easy-to-use options [10,26], We selected
Muse and (Muse 2) headsets to collect EEG data for our experiments [22,19,21,20].

Fig. 1. EEG Head Sets
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Exp (Task) (1) (2) (3) (4) (5)
[19] Math Close-eye Relax Read Open-eye Relax None
[22] Python Passive Math Passive Python Active Math Active None
[21] Read Write Copy Write Answer Type Copy Type Answer
[20] Think Count Recall Breathe Draw

Table 1. Tasks in Experiments

After getting approval from the IRB, we invited more than a hundred college
students to participate in four EEG recording experiments, mainly asking them
to conduct learning-related cognitive tasks, such as reading, writing, and typing.
Table 1 is a summary of the activities in these experiments. Each row is an
experiment mentioned in a paper. Each of the first two experiments has four
tasks. So the fifth task in the table is labeled as ’None’. Each of the last two
experiments has five tasks. The researchers and end-users co-developed these
tasks. The goal is to make the experimental tasks as similar as possible to the
frequently conducted tasks at home.

3 Methods

Researchers continue to develop new algorithms for EEG-based BCI, such as
[9,12,1,17,8,7,25,29,2]. However, the quality of the results heavily rely on the
quality of the datasets. We proposed a human-centered framework to collect data
faster, with less noise, and provide participants with more interpretable results.

Fig. 2. Experiment and Data analysis Flow Chart.
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3.1 Framework Figure 2 demonstrated our closed-loop framework, EEG4Home.
The starting point is the experimental design on the top left. Here the researchers
from computer science and neuroscience discussed the selection of electrodes.
We talked about what EEG devices we use and which electrodes we care about
the most. For example, we chose the four-electrode Muse headsets in the four
experiments above. And we pay more attention to the AF7 and AF8 electrodes.

Then we collected the raw EEG data. For Muse 2016, we used the research
software provided by the Muse manufacturer, InteraXon. For Muse 2018 and
later, because InteraXon no longer supports the research software, we switched
to Mind Monitor, a third-party application. We used Matlab and Python 3 for
data analysis.

Next, we implemented the Human-In-The-Loop approach. Figure 3 is an
example of a five-minute session from the Read-Write-Type (RWT) experiment.
The plateaus of the EEG signal the noise (5.4%), and researchers decided how
long a meaningful noise threshold should be for this experiment. For example, we
chose 1.4 seconds as the noise threshold in these four experiments. If a plateau
lasts more than that, we marked this time range of signals as the noise.

After removing the noise, we picked algorithms to identify the tasks. First,
we used unsupervised learning to figure out the natural clusters of the tasks.
We tested unsupervised clustering algorithms, such as DBSCAN, K-Means and
GMM. K-Means provided the most interpretable results for our experiments.
When we presented the clustering results from k-means to the end-users, they

Fig. 3. Noise, unknown, and known tasks, experiment RWT: subject one, session one.
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could recall the difference between known and unknown tasks for more than 80%
of the experiment time. Typically, they described a ’mind wandering’ state that
was not the task in the experimental design.

For the unknown tasks, we marked it on the feedback images to the end-user
and started an investigation about what it could be. The ’mind wandering’ state
is the leading reason for such unknown tasks.

For the known tasks, we then picked the supervised learning algorithms. The
Random Forest and LSTM beat most other machine learning and deep learning
algorithms, and combining them using the Time-Continuity-Voting algorithm
outperformed others. After removing the noise and unknown tasks, the prediction
accuracy increased substantially, with increased interpretability to the end-users.

Then the researchers and the end-users reviewed the noise, the unknown
tasks, and known tasks together. Based on this discussion, the researchers and
end-users developed the next version of the experiment. This closed-loop approach
generated less noise and unknown tasks during each iteration.

3.2 Algorithms Figure 4 is an overview of how the pair of cluster number K
in K-means and unknown threshold co-determined the prediction accuracy and
the percentage of data remains for the known tasks. We recognized the pattern
that, both indicators contribute to the results, and there is an intersection line
of the two surfaces of Accuracy, and the Percentage of the Data remains. The
researchers from computer science and neuroscience then discussed the trade-off
between Accuracy and the Percentage of the Data that remains.

One crucial innovation here is the Human-In-The-Loop approach. The pattern
is when the percentage of data remains decreased. We can get a higher prediction
accuracy for the known tasks using this approach. But how to decide the best

Fig. 4. Accuracy and Remain, 3D
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threshold? Is the intersection line necessarily the best? After several rounds of
discussion from computer scientists, neuroscientists, and end-users, we agree that
interpretability is also essential in such an approach. We eventually selected the
threshold to link the end-users reflection best to the machine learning clustering
and prediction results.

4 Results

We found the following machine learning results with this framework.
Figure 5 demonstrated the trade-off between prediction accuracy and the

percentage of data remains. The X-Axis ranks threshold pairs (cluster number
K in K-means and the unknown threshold). We included the top 150 pairs,
corresponding to 0.87 to 0.74 for the known tasks. Compared with the random
of 0.2 (because we predict a task from five possible tasks), this accuracy provides
meaningful feedback to the end-users.

The Y-Axis is the prediction accuracy for the blue line. It also shows the
percentage of data-remaining using the orange line. As we can observe from
this figure, when the accuracy decreased from 0.87 to 0.74, the data-remaining
increased from 0.37 to 0.94.

During our Human-In-The-Loop discussions, the neuroscientists preferred
to keep more data remaining as it represents more experiment time. Computer
scientists prefer high accuracy. The end-users prefer a model that can classify

Fig. 5. Accuracy and Remain, 2D



EEG4Home, Human-In-The-Loop 7

Fig. 6. Pseudo Code

their experience – the noise, unknown tasks, and known tasks. The model is
expected to match the end-users reflection about the experiment. Ideally, when
the results show the end-user was doing an unknown task from 3 minutes and 5
seconds to 3 minutes and 15 seconds, the end-user might remember and agree
with that type of classification.

Although the individual difference is significant, the trade-off pattern between
accuracy and data-remaining is the same for more than 90% of the end-users in
these experiments. Figure 6 is the pseudo code to generate the results in Figure 5
for each end-users. Figure 7 is the results of the noise, unknown tasks, and known
tasks for different participants in the same experiment.

Fig. 7. Experiment RWT: noise, unknown, and known tasks percentage.



8 X. Qu and T. Hickey

The X-axis in Figure 7 is the subject ID of the experiment, ordered by
prediction accuracy, from low to high. The Y-axis is the prediction accuracy for
that accuracy line. And the percentage of the data for the colored bars. As we
can see, subject 5 has about 35% of noise, 10% of unknown tasks, and 55% of
the known tasks. Using this approach, the prediction accuracy for the known
task for this subject 1 is close to 80%. While subject 6 has almost 70% of noise,
that implies the improvement for the recording of this Subject’s EEG could be
more focused on how to avoid such a high noise level.

Figure 8 is the summary of prediction accuracy and data-remaining for
different end-users. The X-axis is the subject ID ordered by the prediction
accuracy of the known task. The Y-axis is the percentage. The blue bar for the
prediction accuracy. After removing the noise and unknown tasks, the orange
bar for the data-remaining is the known tasks. The Yellow bar and purple bar
on the right are the averages of all the participants in this experiment.

Figure 9 is an example of the visual feedback to each end-user. The X-axis is
the predicted task in this experiment. The Y-axis is the actual task. The diagonal
cells represent the accuracy of successfully predicting a certain task. For example,
Task 5, as T5 in this figure, is classified with 89% accuracy and is not confused
with other tasks. While task 2 is 69% successfully predicted, it has an 11% chance
to be misclassified as Task 1 or Task 4.

5 Discussion

This paper presents an EEG4Home framework, which aims to be a fast and more
interpretable solution for non-expert BCI end-users at home. The short-term goal

Fig. 8. Experiment RWT: prediction accuracy.
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Fig. 9. Feedback to End-users

of this EEG4Home algorithm development is to inspire new machine learning
and deep learning approaches for decoding such cognitive tasks from the Human
Brain. The long-term goal of this research is to get more end-users involved in
using EEG-based BCI. Eventually, using EEG-based BCI could be as common
and simple as using a smartphone nowadays.

Based on the research we have reviewed in this paper, we identified some
guidelines on whether to keep the noise and unknown tasks before classifying the
known tasks. We also recognized several open research questions that deserve to
be answered to make EEG-based BCI more user-friendly to non-expert end-users.

The following guidelines could help end-users conduct similar experiments.
The current non-invasive EEG devices still generate a large amount of noise,
but user training can help control this noise. An EEG coach role could be
constructive in this situation. Mind-wandering is an unknown everyday activity
in our experiments. When designing tasks, think about the mind-wandering
activities, and assume at least one more task as unknown or mind-wandering
could appear in the classification results.

Providing visual feedback to end-users and gathering user experience are
the best practices to improve the experimental design. Non-expert end-users
can usually record meaningful EEG signals with two to three training sessions.
But some individuals struggled to get reliable data for the experiments. So this
EEG-based BCI still has limitations before most smartphone users can easily
use it every day. One exciting finding is that many end-users are motivated to
use EEG-based BCI more for fun, game-like activities. That could be a direction
worth more investigation.
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6 Conclusion

In this paper, we presented the EEG4Home model. Four existing experiments
were used in this research. Human-In-The-Loop Machine learning and deep
learning approaches have been implemented in data analysis. The results showed
a reasonable high prediction accuracy and interpretable task types for most end-
users. This framework could be a building block towards the future of everyone
using non-invasive, wireless, and affordable EEG-based BCI systems every day
at home, similar to current smartphone usage.
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