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Abstract. The attention mechanism is one of the most popular deep learning
techniques in recent years and it is arguably able to produce human-interpretable
results. In this research, we developed a classification model combining two
self-attention modules and a convolutional neural network. This model achieved
benchmark or superior performance on two electroencephalography (EEG) record-
ing datasets. Moreover, we demonstrated that the self-attention modules were
able to capture features, including average voltage of signal features and instant
voltage change of the EEG signals, by visualizing the attention maps they pro-
duced.
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1 Introduction

Brain-machine interface (BMI) aims to recover or enhance human abilities. BMI has
benefited from the recent development of machine learning and deep learning [11]. For
example, BMI enabled a paralyzed man to “type” 90 characters per minute in recent
research [28]. BMI can also identify a variety of cognitive tasks in healthy subjects
such as learning programming language [18,19,21]. Most research used the convolu-
tional neural network (CNN), a type of deep neural network (DNN), as the model of
choice [9,15]. Despite its general superior performance, CNN is notorious for its black-
box nature. In other words, researchers are unable to understand the inner mechanism
of the neural network or connect the latent features CNN learns to meaningful and
human-understandable neural patterns [31]. More and more researchers are consider-
ing interpretability as equally, if not more, important than prediction performance in
current BMI research, as it could enable researchers to: 1. verify the reliability of the
neural networks, 2. discuss and improve the neural networks, 3. even gain insight into
complex neurobiological patterns that human experts can not interpret [2,16,31].

Attention has been one of the most impactful machine learning techniques in re-
cent years, and researchers have used it to achieve a number of breakthroughs since
its invention, especially in the field of natural language processing. Self-attention is
one of the attention mechanisms and it gains its name from the analogy to the human
cognitive attention. As its name suggests, self-attention assigns weights (i.e., paying
different levels of attention) to every element within a sequence or collection based on
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their degrees of importance. Therefore, human researchers can easily gain insights into
self-attention models’ inner operations. Moreover, Zhang et al. [31] stated that a general
BMI framework requires the ability to both focus on and capture the most informative
features of input data under different sizes and conditions, and the attention mechanism
and CNN are respectively the ideal deep learning techniques for these two jobs. Based
on this philosophy, we implemented a lightweight model combining two self-attention
modules and a CNN classifier in this work. We experimented with the model on two
electroencephalography (EEG) classification datasets, and it achieved comparable re-
sults to another type of state-of-the-art attention-based CNN model on both datasets.
The two self-attention modules work on the temporal and spectral dimensions, respec-
tively. We visualized the outputs from the two self-attention modules and demonstrated
that they were able to capture global statistics and local changes of the EEG signals.

2 Related Work

The attention-like mechanism was first proposed in the 1960s [4], yet it was not until
2014 that this concept was successfully implemented as a machine learning module
that reached meaningful results on real-world problems [1]. Since then, researchers
have created different variations of the attention mechanism and incorporated them into
traditionally powerful models. The self-attention mechanism was introduced in 2016 as
a way to learn semantic correlations between words in a sentence [6]. Shortly after that,
Vaswani et al. [26] created the Transformer model that is solely built on the attention
mechanism.

Regarding the attention-based CNN (i.e., combination models of the attention mech-
anism and CNN) that this work focuses on, researchers have devised various configura-
tions of them, and they excelled in performance on different tasks, including computer
vision [29], natural language processing [30], and so on [5].

Within the scope of BMI research, researchers have recently used the attention
modules or Transformer models to achieve high performance as well, on the grounds
that there are correlations between time steps and signal sources of EEG recordings
[13,25]. There were also a few studies that combined the attention mechanism with
CNN and achieved state-of-the-art level prediction accuracy on EEG classification tasks
[7,14,25]. However, to the best of the authors’ knowledge, the incorporation of the at-
tention mechanism into CNN in previous research can be categorized in two ways: 1.
attention modules operate within the convolution layers and help capture latent fea-
tures [7,14], 2. Transformer models receive inputs from CNN and generate predictions
[25]. Different from these two approaches, we used the self-attention modules to learn
important features and used the CNN to capture them. In other words, we used the self-
attention modules to generate attention maps and fed them into the CNN as a classifier
to make the classification predictions.

Regarding the work that wrestled with the interpretability problem in BMI, there
were two teams of researchers who combined the interpretable Layer-wise Relevance
Propagation modules with the powerful but black-box DNNs to enhance the model in-
terpretability [2,24]. We incorporated the self-attention mechanism and CNN in a sim-
ilar fashion, that the two parts of the model worked complementarily and were respec-
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tively designated to achieve high accuracy and enhance interpretability. Besides, there
were other research groups who used the attention mechanism to visualize the correla-
tion maps of subjects’ brain activities on different motor imagery tasks (i.e., imagining
in head but not performing a movement or task) [7,14,25]. Different from their work,
we managed to interpret the model operation and distinguish distinct neurobiological
features the model learned in our work.

Previous researches have used the attention-mechanism to capture features from the
temporal, spectral, and spatial dimensions [13]. Based on the condition of the datasets
we used, we employed two self-attention modules to capture features on the temporal
and spectral dimensions [14,25]. We will call them Temporal Attention and Spectral
Attention in this paper.

3 Experiment

Dataset We experimented with our proposed model on two EEG datasets that differed
in various conditions to show the validity and generalization power of our model.

The first dataset consists of 14 subjects’ EEG recordings. Each subject performed
five cognitive tasks during the recording in random order — reading, copying, an-
swering, writing, and typing. Subjects were recorded using the Muse headbands with
four data acquisition nodes, and the signal transmission rate was 10Hz. Each recording
node’s signal was decomposed into the five classic bands of brainwaves (i.e., α, β, γ,
δ, and θ), thus producing 20 channels. The absolute Band Powers (BP) features were
computed and used as our model inputs. We used non-overlapping 500-millisecond-
long EEG recordings to feed into the model. In other words, the model inputs were 5
by 20 matrices. For more detail about the dataset, please refer to the original work that
collected and analyzed the dataset [20].

The second dataset we used was the publicly available BCI competition III dataset
V [3]. During recording, subjects performed three different motor imagery tasks —
left-hand movement, right-hand movement, and word generation. The dataset contained
three subjects’ recordings, but we only used the first subject’s. We used the power spec-
tral density (PSD) features, and each PSD sample was a vector of 96 values (8 channels
× 12 frequency components). Similarly, we used non-overlapping 500-millisecond-
long recordings to feed into the model. The model inputs were 8 by 96 matrices.

We will refer to the first dataset as RWT in this paper. We used 90% randomly-split
data to train the model and the remaining 10% to test it. We will refer to the second
dataset using the abbreviation of BCI III, and we used 75% of the data for training and
25% for testing. A summary and comparison of the two datasets can be found in Table
1. Please refer to the original papers for more details.

Model and Training Fig. 1 A depicts the model’s architecture. The EEG inputs will
first be fed in parallel into the two self-attention modules, which operate on the tempo-
ral and spectral dimensions, respectively. Within each self-attention module, a position
encoding is first concatenated to the inputs, then the dot-product computation is per-
formed, as: Output = Softmax(Q ·KT ) · V [17]. Both of the self-attention modules
produce outputs of the same size as the input. Each of the original inputs is added to
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Table 1: Summary of Datasets
RWT BCI III

Recording Signal EEG EEG
Category Of Task Cognitive Motor imagery

Number of Subjects 14 1
Recording Device Muse Headband Biosemi System
Artifact Removal Muscle Movement None

Signal Feature BP PSD
Data Size For Each Subject 10528× 96 2022× 20

Recording Length for each Input 500 ms 500ms

Fig. 1: Model architecture. Every EEG input is fed into the Temporal and Spectral At-
tention modules. The two outputs of the self-attention modules are added to the original
input with weights and produce an attention map, which is then sent into the three-
layers CNN. Two fully connected layers form the end of the CNN and make the task
prediction (one of three classes for the BCI III dataset or one of five classes for the RWT
dataset).
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its corresponding two attention outputs with weights to produce an attention maps as a
residual connection [12]. The attention maps are then fed into the CNN. The CNN has
three convolution layers; each layer contains a convolution kernel sequentially followed
by a ReLU activation function, a Dropout layer, a Batchnorm layer, and a pooling layer.
Two fully connected layers are appended to the end of the convolution layers and form
the classifier, where the final predictions are generated. We used the Adam optimizer
and Cross-entropy loss for all training and testing. The model structure and training
method were the same for both datasets, except for necessary adjustment on the convo-
lution kernel size to accommodate the input sizes. We varied the learning rates between
5e-4 and 5e-5 based on the model sizes. More hyperparameters and training processing
can be found in our publicly available code 1.

4 Result

Performance We used prediction accuracy as our performance evaluation metric, as
both datasets were well-balanced over classes of tasks. On the BCI III dataset, the
chance of randomly guessing the true class was 33%, and our proposed model reached
79% prediction accuracy, which was comparable to the benchmark result (79%) [3]. On
the RWT dataset, the random guessing chance was 20%, and our model reached 46%.
The difference between the two performances was presumably caused by the different
baseline random guessing accuracy as well as the non-stationarity of EEG signals suf-
fered in the cross-subject setting [9]. The original paper collected RWT did not report a
benchmark performance on the cross-subject setting. Therefore, we propose the perfor-
mance we obtained as a benchmark for future comparison. To verify the effectiveness
of the self-attention modules, we did ablation experiments on both datasets, where we
compared the performance of our full model (i.e., CNN + Temporal Attention + Spec-
tral Attention) to those of CNN alone, Temporal Attention alone, Spectral Attention
alone, Temporal Attention combining CNN, and lastly Spectral Attention combining
CNN. Note that the self-attention modules in the original model generated outputs of
the same size as the inputs. For the purpose of this experiment, we appended two fully
connected layers to both of them to make them full classification models.

Table 2 summarizes the results of the ablation experiment. It shows that every com-
ponent of the model helped boost the performance. Moreover, we can observe sev-
eral general patterns on both datasets: 1. CNN alone performed better than either self-
attention modules alone (except for the Spectral Attention on RWT), despite that the
CNN had fewer parameters than either of the self-attention modules alone, proving the
power of CNN; 2. the Spectral Attention performed better than the Temporal Attention,
given the inputs from both datasets carried more information on the spectral dimension;
3. both self-attention modules and CNN gained in performance when being concate-
nated to each other. The combination of CNN with either self-attention module beat
CNN alone or self-attention modules alone. The performance was further boosted in
the full model.

Furthermore, we also compared the performance of our model to that of a three-
layers CNN built on the state-of-the-art Convolutional Block Attention Module (CBAM)

1 https://github.com/longyi1207/Attention Based CNN/blob/main/Attention Based CNN.py

https://github.com/longyi1207/Attention_Based_CNN/blob/main/Attention_Based_CNN.py
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Table 2: Ablation Experiment
Accuracy on RWT (%) Accuracy on BCI III (%)

Full Model 46 79
CNN 36 73

Temporal Attention 33 69
Spectral Attention 38 70

Temporal Attention + CNN 39 75
Spectral Attention + CNN 41 77

[29]. Our proposed model had slightly more parameters, but the two models achieved
comparable accuracy. Refer to Table 3 for the concrete values.

Table 3: Comparison with CBAM CNN
Our Model CBAM-based CNN

Performance on RWT (%) 46 46
Number of Parameters on RWT 5155 2532

Performance on BCI III (%) 79 78
Number of Parameters on BCI III 63011 53658

In sum, the two experiments above demonstrate the effectiveness and power of our
model. We provided a lightweight implementation of this model structure, and it can be
incorporated or upgraded with other techniques to achieve higher performance.

Interpretability In this section, we extracted the two self-attention modules from the
original model, visualized their outputs on instance data, and offered insights into their
model operation.

Fig. 2A is a visualization of an instance input from RWT whose size is 5 by 20.
The twenty colored lines represent the 20 features, and the x-axis indicates the five time
steps. For visual clarity, the concrete values of the 20 features are not provided, and the
20 lines are partitioned into five subplots and plotted in four colors corresponding to the
five brainwaves and four data acquisition nodes. Panel B shows the attention map for
this instance input. We illustrated it as a heatmap and we used a blue and white color
palette with blue indicating a larger value. The attention map has the same size as the
input. We located where the most and least attention were paid to by the self-attention
modules, mapped them on the input, and attempted to interpret the model behavior.
Visually inspecting Panel B, there is a horizontal blue band on feature 15 across the
five time steps (indicated by the red arrow), indicating that it was assigned the largest
weight, while feature 3 (indicated by the blue arrow) was assigned the least. In other
words, the model determined that feature 15 provided the most reliable information
for class prediction, while feature 3 provided the least. The ground truth label for this
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Fig. 2: A. An input from RWT whose label is task V. B. The corresponding attention
map. Features 3 and 15 are assigned the largest and least weights, indicated by the blue
and red arrows. C. All tasks’ feature 15. Task V has a negative value; it does not overlap
the 95% confidence interval (CI) of the four other tasks. D. Task V’s all features. Feature
3 has the largest CI; it overlaps the CI of most of the other features.

instance input was the fifth task. We compared value of feature 15 of the fifth task with
those of the four other tasks, on the premise that the self-attention modules learned to
classify tasks by focusing on features that differentiated the five tasks. We will denote
the fifth task as Task V in Roman numerals later, likewise for the other four tasks.
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Panel C shows the average values as well as 95% confidence intervals (CI) of the five
tasks in the RWT training set. We state that the reliance on feature 15 was reasonable
since it was negative only for Task V and was non-negative for every other task (circled
in red); the CI of task V does not overlap those of the other tasks.

To justify the least weight given to feature 3, we computed the average voltage and
CI for all 20 features of Task V. We can observe in Panel D that feature 3 has the largest
confidence interval among all the 20 features and therefore the least indicative power
(circled in blue), explaining the least reliance given by the model.

Moreover, we observed that despite most inputs were temporally steady, the Tem-
poral Attention module was able to catch distinguishable local voltage changes. Fig.3
shows another instance data from RWT (Panel A) and its corresponding attention map
(Panel B). Pinpointed by the two red arrows on the input and attention map, we can see
that time steps 2 and 3 were assigned the heaviest weight by the self-attention modules,
when the EEG signal fluctuated distinctly. Summarizing the two cases above, we state
that the model behavior can be plausibly justified in hindsight. Specifically, the Spec-
tral and Temporal Attention modules were able to learn the average voltage and distinct
temporal variations, respectively.

Fig. 3: A. An input from RWT. Voltage fluctuates distinctly at time steps 2 and 3. B.
The corresponding attention map. Time steps 2 and 3 are assigned the largest weights.
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5 Discussion

In this work, we implemented a lightweight attention-based CNN model and we exper-
imented with the model on two datasets of different conditions. The model performed
well on both datasets. Experiments on more datasets of other settings can be done in
the future to test the robustness of this model. For example, both datasets we used are
EEG recordings, which have low signal-to-noise ratios (SNR) and also limited dimen-
sionality; CNN is generally powerful at handling data with these qualities. We would
expect a larger advantage of the self-attention modules in our model on other types of
recordings that have larger SNR and higher dimensionality, such as functional mag-
netic resonance imaging recordings. Incidentally, we aligned with previous study and
used 500-milliseconds-recordings as model inputs[3], but long-range temporal correla-
tions have been found in EEG recordings of MI tasks [27]. CNN is structurally enforced
to extract local features and thus weak in capturing long-distance dependency, whereas
the attention mechanism was invented to solve this problem. Therefore, we would also
expect an advantage in performance if we lengthen the data inputs.

In addition to achieving satisfactory performance, we visualized our self-attention
modules’ outputs and gained insight into distinguishable neural characteristics under-
lying different cognitive tasks by interpreting the operation inside the two modules.
However, we could only identify simple features such as average voltage of features
and instant temporal oscillation and we were unable to recognize more complex neuro-
biological patterns. Moreover, we did not have prior knowledge of the neural patterns
underlying the different MI and cognitive tasks in the datasets we used, namely what
really differs in the EEG signals of different tasks, and thus we do not have an objective
metric to evaluate how well the self-attention modules perform. One solution to this
conundrum is to apply this model on types of EEG recordings that are well-studied and
more recognizable by human experts (such as on epilepsy with its characteristic wave
discharge [23]) and inspect model operation based on human knowledge.

Zhang et al. [31] proposed that CNN can work in complement with the atten-
tion mechanism and this model architecture would conceptually suffice a general BMI
framework. However, there is currently no experimental framework that assesses the
degree of compatibility of two model structures. Moreover, after researchers used atten-
tion models to achieve competitive performance on computer vision tasks, there were
questions on the necessity of CNN or even arguments that CNN can be replaced by
attention models based on experimental and theoretical evidence [8,10]. The nature of
various model structures are yet to be determined, and deeper understandings into the
model operation are required.

As the last word, BMI has benefited greatly from machine learning techniques, and
researchers have developed advanced BMI applications in an engineering approach in
recent years, such as the one described at the beginning of this paper. However, the
future development of BMI is indispensable of and also currently hindered by the in-
sufficiency of knowledge and understanding in neuroscience. In fact, the invention of
CNN, the attention mechanism, and even the neural network are inspired by under-
standing of human organism or behavior. Fortunately, researchers can also and have
been using computational models as a tool to gain more understanding in various neu-
robiological subjects, by interpreting the structure and parameters of models that fit well
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on recording data. For example, neuroscientists proved the existence of nonlinear com-
putation in retinal bipolar cells in a recent study by using a linear-nonlinear model to
prove that the previously assumed linear integration can not accurately define the intra-
cellular recordings [22]. Equipped with stronger and stronger deep learning techniques
and neural networks, we would like to encourage researchers to pursue interpretable as
well as high-performance results in the future.

6 Conclusion

In this research, we developed a model combining two self-attention modules with a
CNN, where the self-attention modules focus on the important features and the CNN
captures them. This model achieves satisfactory prediction accuracy on two EEG datasets.
We verified the effectiveness of our model structure by an ablation experiment; more-
over, our model’s performance is comparable with that of a CBAM-based CNN. Lastly,
we visualized the self-attention modules’ outputs as well as the attention maps and
made attempts to interpret them. We demonstrated that the self-attention modules were
able to learn meaningful features of the EEG signal, and this helped us to gain insight
into the data, such as the relative importance of the features and time steps. This model
can be future experimented on epilepsy EEG recordings and more datasets to assess its
generalizing ability and practical values.
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