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Abstract. Using Machine Learning and Deep Learning to predict cogni-
tive tasks from electroencephalography (EEG) signals is a rapidly advanc-
ing field in Brain-Computer Interfaces (BCI). In contrast to the fields of
computer vision and natural language processing, the data amount of
these trials is still rather tiny. Developing a PC-based machine learning
technique to increase the participation of non-expert end-users could
help solve this data collection issue. We created a novel algorithm for
machine learning called Time Majority Voting (TMV). In our experiment,
TMV performed better than cutting-edge algorithms. It can operate
efficiently on personal computers for classification tasks involving the
BCI. These interpretable data also assisted end-users and researchers in
comprehending EEG tests better.

Keywords: Brain-Machine Interface - Machine Learning - Ensemble
Methods - Voting - Time Series - Interpretable Al

1 Introduction

Researchers from Computer Science, Neuroscience, and Medical fields have applied
EEG-based Brain-Computer Interaction (BCI) techniques in many different ways
[2, 15, 19, 22, 24, 26, 34], such as diagnosis of abnormal states, evaluating the effect
of the treatments, seizure detection, motor imagery tasks [4, 5, 6, 17, 23, 27], and
developing BCI-based games [14]. Previous studies have demonstrated the great
potential of machine learning, deep learning, and transfer learning algorithms
[1, 3, 7, 8, 12, 16, 18, 20, 21, 25, 28, 29, 37, 38, 39, 40, 41, 42| in such clinical
and non-clinical data analysis.

However, the data size of such experiments is still relatively small compared
to the areas of computer vision or natural language processing. Thus, some deep
learning or big data approaches still struggling with the limitation of small dataset
size. Also, EEG signals have noise issues, partly because of the contact of sensors
and skin for several current non-invasive consumer-grade devices. The outlier
issue is also a concern for the EEG data because of the difficulties subjects have
in concentrating on the experimental tasks during the entire session. Current
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machine learning and deep learning algorithms are more for clinical experiments
and less for the possible experiment for non-expert user to conduct at home.

Our research questions are: Can we develop a PC-based machine learning
algorithm for non-expert end-users to do EEG classification at home? Can we
achieve reasonably high accuracy while keeping the run time in an acceptable
range? Can we make the machine learning classification results explainable to
the end-users? To answer these questions, we proposed a new machine learning
classification algorithm, Time Majority Voting (TMV). We found TMV out-
performed other state-of-the-art classifiers. Also, its run time on a PC is still
acceptable compared to the deep learning algorithms. The classification results
are adequately interpretable to the end-users.

The paper is organized as follows: section two discusses several most frequently
used classification algorithms for BCI research, then present our new algorithm.
Section three presents our experiment conducted to test the new algorithm.
Section four elaborates our result followed by sedition five, which discusses
the limitation and future work. Lastly, section six concludes the study and
summarized our answers to the research questions.

2 Algorithms

All of the code was run on a 2018 Macbook Pro with a 2.2GHz 6-core Intel
Core i7 processor and with 16 GB of memory. The Python version is 3.8. The
scikit-learn [31] version is 0.24.1. The PyTorch [30] version is 1.10. The code
discussed in this paper is available online (https://github.com/GuangyaoDou/
Time_Majority_Voting).

2.1 Existing Algorithms

u We reviewed and implemented several machine learning algorithms commonly
used in the field [9, 10, 11, 13]. For examples, Linear Classifiers, Nearest Neighbors,
Decision Trees, and Ensemble Methods.

Linear Classifiers: The Shrinkage Linear Discriminant Analysis (Shrinkage
LDA) performed adequately on EEG datasets with simple tasks. The Support
Vector Machine (SVM), effective in high dimensional spaces, performed reasonably
well based on the previous research. These algorithms are simple to implement
and are computationally efficient.

Nearest Neighbor: Such a classifier implements the K-Nearest Neigh-
bor(KNN). KNN performs voting to determine an unseen dataset to one of
the k nearest neighbors. The KNN performed pretty well compared to most other
classifiers on the EEG dataset.

Decision Tree: The Decision Trees classifier is easy to understand, implement,
and interpret. The decision tree creates a model that predicts the outcome of a
data point based on decision rules. The computational cost is low and can handle
both numerical and categorical data. However, it might overfit as trees are too
complex.
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Ensemble Methods: We used Random Forest and boosting. These are
Ensemble Machine Learning algorithms that combine the predictions of several
weaker learners and form more robust and more accurate predictions. These have
been widely used in EEG-based experiments, and research [24, 33, 35].

Deep Learning: We implemented CNN with ReLu, and RNN, especially
LSTM, mainly using toolsets from the PyTorch platform. [15, 34, 37]. These DLs
performed very well on EEG datasets. However, we excluded these algorithms in
this paper due to their high runtime.

2.2 Owur New Algorithms

This paper proposed a new voting approach based on the top two individual
classifiers. Ensemble methods, especially boosting, bagging, and voting, have
demonstrated excellent performance in previous research. [15, 24, 34, 36, 37] In
EEG-based BCI classification research, the following voting methods have been
investigated in several experiments [24, 33]: majority voting, weighted voting,
and time continuity voting. Here we considered the advantages of both majority
voting and time continuity voting and developed our new Time Majority Voting
(TMV) algorithm.

| RF || sw || .. | DecisionTree || KNN |
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@ Task2 Select Two Algorithms with Highest
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Fig. 1. Our New Algorithm: Time Majority Voting
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Time Majority Voting (TMV).

Figure 1 demonstrated the concept of the new algorithm. More details are
in the Experiment section and the Result section. There are two phases in
the new algorithm. First, we investigated the state-of-the-art machine learning
algorithms [15, 24, 34, 37] and found the top two performers on average. In our
experiments during phase 1, We tested Random Forest (RF), RBF and linear
SVM, kNN, Decision Tree, and several boosting algorithms. We found Random
Forest performed the best, and RBF SVM performed the second on average. Next,
we entered phase two. For each subject, we picked the majority task predicted by
the best performing classifier, the Random Forest classifier, for each time interval
of each task from each session.

The next step is voting. We used the Random Forest and the RBF SVM
to conduct the voting process. The best algorithm is the Random Forest, and
the second algorithm is RBF SVM. The voting details are shown in the six
examples at the bottom of Figure 1. If both the Random Forest and the RBF
SVM algorithms agree with the results, as shown in the first two rows, the results
reflect both algorithms’ results. For example, as the second row shows, if both
the classifiers predicted the task 2, then the Time Majority Voting will yield
task 2 as the result. If the two algorithms do not agree on the prediction results,
the results will be labeled as the majority of tasks already determined by the
Random Forest classifier, as shown in the last two rows. No matter what the two
algorithms predict out of the five tasks, even if they predicted it as two different
tasks other than the majority task, as the last row shows, Task 2 and Task 3,
the TMV result is still set to be Task one. This concept is based on the temporal
dependence time-series features in the previous research [25, 36].

3 Experiments

Several EEG experiments focus on the high-level cognitive tasks that college
students frequently conduct, as mentioned in Table 1. In this experiment, we
used the dataset from the Think-Count-Recall (TCR) paper [33]. Scalp-EEG
signals were recorded from seventeen subjects. Each one was tested in six sessions.
Each session is five minutes long, with five tasks, each task is one minute. Tasks
were selected by the subjects together with the researchers based on frequent
tasks in study environments for students in their everyday lives. Each subject
completed six sessions over several weeks. The five tasks are Think(T), Count(C),
Recall(R), Breathe(B), and Draw(D).

3.1 Data Preprocess

Data cleaning: As mentioned in [33, 35], for each task during each session,
the first 30% of the data, which is the first 18 seconds of each task and during
the transition phase, will be removed. Thus, each one-minute task only had 42
seconds left. This has been proved reasonable during the data cleaning phase.
Some electrodes may have temporarily lost contact with the subjects’ scalp during
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E) T 1 2 3 1 5
[32] Math Close-eye Relax Read Open-eye Relax None
[36] |Python Passive| Math Passive |Python Active| Math Active None
35 Read Write Copy | Write Answer | Type Copy |Type Answer
33 Think Count Recall Breathe Draw

Table 1. Tasks (T) in Experiments (E)

the EEG recording. The result was that multiple sequential spectral snapshots
from one or more electrodes had the same value. In this paper, we decide to
remove such anomaly when detected for a consecutive 1.4 seconds. Such a cleaning
action caused a different level of loss of the data for each subject.

Subjects: We had a total of seventeen subjects. After the data cleaning
actions, subjects who lost more than 65% of the total data will be excluded from
the subsequent analysis. In the end, there were twelve subjects left to continue
the analysis. Moreover, for the six sessions of each subject, if a session lost more
than 65% of the data, then that session will also be excluded for further analysis.

Time-wise Cross-Validation: We adopted time-wise cross-validation. We
divided each task into seven subsets, meaning each subset had six seconds, evenly
and continuously. Then, we created a total of seven folds. Each fold contained six
seconds of data for each task for each session. We checked any folds that lost more
than 65% of the original data in each fold and discarded these folds for future
analysis. Next, we used one fold for testing and the remaining non-discarded
folds for training, and we cross-validated them.

4 Results

4.1 Existing Algorithms

We reported the average accuracy for all subjects and the runtime of each classifier
for each subject we trained and tested during phase 1 in table 2. As we can

Algorithms Average Accuracy|Average code run-time (s)
Random Forest Phase 1 0.55 42.0
RBF SVM 0.53 30.5
Nearest Neighbors 0.48 1.9
Decision Tree 0.44 0.9
Linear SVM 0.42 23.2
Shrinkage LDA 0.42 0.2
Adaboost Classifier 0.39 47.8
RUSBoost 0.39 28.2
GradientBoost 0.31 24.0

Table 2. State-of-the-art Algorithms with Accuracy and Run-time
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Fig. 2. Accuracy for Different Algorithms

see, Random Forest had the highest accuracy of 0.55 in our experiment, and
the SVM with RBF kernel performed adequately on the TCR dataset with an
average accuracy of 0.53. Though Nearest Neighbors did not perform as well as
the Random Forest and the RBF SVM, it was one of the fastest algorithms on
personal computers. Other ensemble methods such as Adaboost, RusBoost, and
GradientBoosting performed relatively lower than these top three algorithms.

The individual difference may impact the accuracy of each subject. But we
can still recognize a general pattern from Fig 2. We ordered all twelve subjects by
prediction accuracy using Random Forest. Most of the algorithms demonstrated
consistent patterns for the different algorithms. Random Forest and RBF SVM
are above most of the other algorithms. We kept the threshold of maintaining
the subject to 35% of the remaining data, as we believed that when a subject
has little data left, the high accuracy from that subject contributes little to our
research.

4.2 Identify Noisy Sessions

Figure 3 shows what the Random Forest and the RBF SVM in phase 1 predicted
during the 42 seconds of subject 3’s task 1 for all six sessions. As we can see, both
the Random Forest and the RBF SVM mainly produced results with relatively
high accuracy in sessions one, four, and six. On the other hand, session two
and three had much noise, and session five predicted task 3 for the majority of
the time. To minimize the impact of noisy datasets, we calculated the accuracy
compared to the ground truth based on the output of Random Forest for each
session for each task in phase 1.
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Fig. 3. subject 3’s task 1’s RF and SVM in Phase 1

We excluded any sessions that yielded an accuracy of less than 50%. In the
case of Figure 3, we excluded sessions two, three, and five for further machine
learning analysis. We reported to subject three and started discussing what may
have happened in these sessions. With the exclusion of noisy sessions, the new
accuracy for the Random Forest in phase 2 is referred to as "Random Forests
Phase 2" later in the paper. We also performed Time Majority Voting on this
cleaner dataset.

4.3 Time Majority Voting

As shown in Table 3, the Time Majority Voting (TMV) has achieved a higher
accuracy for subject three, all the six sessions. A value of -1 means that we
excluded that session for that task, as we discussed in the previous section. The
Random Forest classifier also reached a higher accuracy after cleaning the noisy
sessions. As Figure 4 and Figure 5 shows, the pattern is consistent across all the
subjects. Figure 5 also shows a clear pattern that not only the Random Forest
but also the RBF SVM also increased accuracy in phase 2 across all subjects.
Table 4 shows the TMV achieved an 80% average accuracy with an average 74.3
seconds run time. The runtime consists of 39.1 seconds of running the Random
Forest and 29.5 seconds of running the RBF SVM. The time for the actual voting
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S/T |t1 RF|t1 T|t2 RF|t2 T|t3 RF|t3 T|t4 RF|t4 T|t5 RF| t5
sl 0.686 |0.745( 0.669 |0.683| -1 -1 |0.569|0.781]0.798 |0.898

s2 -1 -1 -1 -1 -1 -1 |0.693|0.838]0.633 |0.707
s3 -1 -1 -1 -1 -1 -1 |0.731|0.824]0.938|0.969
s4  10.543]0.59 0.743]0.869| 0.74 |0.788/0.521 [0.671| -1 -1

sb -1 -1 |0.645(0.738|0.588 | 0.8 |0.593|0.743|0.662 |0.829

s6 ]0.762|0.871| -1 -1 |0.507(0.714|0.8120.917| 0.681 |0.845
Average| 0.663 |0.736| 0.686 |0.763| 0.612 |0.767| 0.653 |0.796| 0.742 | 0.85

Table 3. TCR, Accuracy of Top 1 (RF) Phase 2, and TMV(T) (subject 3, by Ses-
sion(S)/Task(T))

TMV Accuracy
i RF_Phase_2 Accuracy
—4— Data Remained

o o o
> o ©

Accuracy and Data Remained

00 10 12 13 15 8 17 14 2 3 5 9 1
Subject ID orderd by RandomForest Phase 1
Fig. 4. TMV and RF Phase 2

Algorithms Average Accuracy|Average code run-time (s)

Time Majority Voting 0.80 39.1 +29.5 + 5.7 =743
Random Forest Phase 2 0.7 39.1
RBF SVM Phase 2 0.66 29.5
Random Forest Phase 1 0.55 39.1
RBF SVM Phase 1 0.53 29.5

Table 4. TMV and Random Forest with Accuracy and Run-time

is, on average, 5.7 seconds. The training process is the most time-consuming part
of this analysis.

Figure 6 shows what the Time Majority Voting(TMV) predicted during the
42 seconds of subject 3’s task 1 for all six sessions. As you can see, sessions 2, 3,
and 5 have values of -1, which means that they have been excluded. Sessions 1,
4, and 6 have less noise than sessions 2, 3, and 6, and the accuracy is relatively
high.
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5 Discussion

5.1 Accuracy and Data Remain

The innovation of this method is mainly about temporal dependency. As [15,
24, 34, 36, 37] mentioned, EEG data has a significant temporal dependency.
The signal of the same task takes about 12 to 18 seconds to switch to the next
task. Using majority voting can catch this type of time continuity effect. If both
classifiers recognize the same pattern, it is more likely to assure the results.
If both of the classifiers recognize the same pattern that is different from the
majority result, it is possible that the participants were doing other tasks during
the data collection. If only one classifier detects some unusual behaviors, we label
it as the majority task of the session. Thus we highlight the noise and keep the
remaining data to reflect more on the time continuity nature of the EEG signals.

5.2 Runtime and Training Data

As Figure 7 shows, the run time directly correlated to the training data size.
After the data pre-processing, we cleaned up the noise with a plateau longer than
a threshold, as mentioned in [24, 32, 34]. We first identified more noisy sessions
during the Time Majority Voting process based on the top two classifiers. During
this step, more sessions were excluded for further analysis. The training process
was the most time-consuming step during the coding running process. Thus the
runtime changed together with the size of the training data.

(0]
e
0.60 A
] L
GC) 100
5 0.55
a 80 ,a
S 0.501 ko]
£ L 60 E
©
E 0.45 A
&J 40
o 0.40 -
-E; —— Train Data Remained
= 0.35 Runtime 2.3 L 20

T T T T T T T T T T

10 12 1l3 1I5 8 17 14 2 3 5 9 1
Subject ID orderd by RandomForest Phase 1

Fig. 7. Data Remained for Training and Run-time
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5.3 Interpretability

Figure 3 and Figure 6 shows two examples of the feedback results we present
to the end-users. In this figure 3, the six sessions of subject three, task one is
listed as six horizontal charts. The first chart represents session one. Both the
Random Forest and the RBF SVM identified the majority task as task one. And
for the results of the different predictions, both of the classifiers agreed at some
time spots, but not all of them. Our Time Majority Voting algorithm favorite
the majority voting results.

We started with the sessions with good prediction results when demonstrating
these figures to each subject. For example, in this figure 3, sessions one, four,
and six show pretty consistent patterns. The majority of task prediction results
were the designed task one. That implies that the subject may spend more time
on task one as planned during these sessions. Session two and three had a lot
of different prediction results from both classifiers. Thus we suspected some
unexpected reason might cause this situation. We referred back to the experiment
notes and reached out to subject one. After discussing with the end-user, we
figured out that he had many issues with the sensor signals and was adjusting
the EEG headset most of the time during the sessions 2 and 3. Thus we had
more information to exclude these sessions from further data analysis. Session
five is another situation. The data implied that the subject was doing task three,
but the experiment notes were missing for that session, and the subject did not
remember the details about that session. Thus, we left a question mark for that
session, excluded the session for now, and came up with an improvement plan to
keep better experiment notes. This type of machine learning result is explainable
to the end-user.

Such interpretability could contribute to a better understanding of the results
and better design for future experiments.

6 Conclusion

This paper investigated the state-of-the-art machine learning algorithms that can
run on mainstream personal computers for EEG-based BCI. We then proposed a
new algorithm, Time Majority Voting (TMV). The results demonstrated that
TMYV outperformed other existing classifiers. The run time for TMYV is still within
the acceptable range on a PC. The interpretability of TMV can contribute to a
better understanding of the machine learning analysis and an improved design
for future experiments.
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