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Abstract. This study is designed to test the hypothesis of whether writ-
ing and typing can be detected as different patterns within the same cog-
nitive task. We designed this pilot study with five frequently-conducted
learning-related tasks. We used the four electrode Muse Headset. Six-
teen healthy subjects participated in this six-session experiment. In each
session, we instructed them to conduct five different one-minute tasks,
including reading, copying by writing, copying by typing, answering a
question by writing and answering a question by typing. We compared
the performance of classifiers of different categories within the same con-
text, including the same users, the same feature extraction approach,
and the same training and testing split. Most of the machine learning
and deep learning algorithms could correctly classify the five tasks (20%
by chance), the best algorithms achieved an accuracy for individual sub-
jects of up to 70% for within session training and 44% for between session
training.
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1 Introduction

More and more Electroencephalography (EEG) data are available on the web, as
we can search from the newly developed Google Dataset Search [16], reflecting
the increased interest in EEG in both clinical and nonclinical fields, especially
in emotion recognition, motor imagery, event related potential (ERP) detection,
mental workload, seizure or stroke detection, Alzheimer’s classification, depres-
sion, meditation and sleep analysis [8, 13, 20]. In this study we focus more on
passive BCI [28], rather than the EEG controlled applications, like BCI based
games [7].

Previous studies[5, 18] demonstrated that EEG signals could successfully
distinguish several kinds of cognitive tasks. Such as programming in Python
vs. solving Math problems; solving Math problems (GRE) vs. solving Reading
problems(GRE). These experiments focused on distinguishing different cognitive
tasks, but not on whether different communication modes may also have a distin-
guishable impact on EEG patterns. The experiment in this paper was designed
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to test the hypothesis of whether AI based EEG markers could distinguish both
between two modes of communication: typing vs. writing, and between three
cognitive states: reading vs. copying vs. answering.

Read (R) For this task, each subject was asked to read from a PDF file containing
a computer science textbook on Data Structures and Algorithms. During each of
the six sessions the text varied, and all of the reading material consisted mostly of
text with a relatively small amount of computer code or mathematical equations.

Write Copy (WC) Each subject wrote on a blank white paper with a pen, copying
the text from the textbook PDF file display on the monitor. We used the same
textbook as in the ”Read” task, but subjects copied different sections in each
session.

Write Answer (WA) Each subject wrote a short essay using pen and paper answer-
ing the question: ’Why did you choose your major?’ Although one might think
that students would produce the same answer in subsequent sessions, we found
that their answers in each session were substantially different.

Type Copy (TC) Each subject read a section of the same textbook PDF file, and
copied what they read into an Essay Text entry box by typing on the computer
keyboard. They copied different sections in each session.

Type Answer (TA) Subjects typed their answers to the question ’What is your aca-
demic plan for this semester?’ The researcher asked the same question in each
session, the answers varied for each session.

Fig. 1. Tasks in this experiment

In this study, each session has five tasks, we use Task Read as the baseline,
selected additional four multi-label cognitive tasks that produced a text-based
result, and compared the impact of communication mode (typing on a keyboard
or writing with pen on paper) and cognitive task (e.g. reading or copying or
composing) on the EEG signals, as shown in Figure 1, the order of the tasks
are randomly shuttled in the six sessions. Our main result is that even when the
tasks are designed to be similar both in communication mode and in cognitive
mode, the AI based EEG markers can clearly recognize the different patterns up
to a 70% level for within session training and 44% for between session training,
compared with 20% by chance.

Among the frequently used portable and affordable EEG devices, [10, 15],
including the Neurosky Mindwave, the Emotiv Epoc ,the Open BCI Mark IV
headset, and the Muse Headband. We selected Muse headsets developed by
Interaxon[21] for this study.

2 Algorithms

As many studies focus on designing new algorithms, there is also a need to
analyze the existing algorithms and make full use of them. We implemented
several highlighted machine learning and deep learning approaches mentioned
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by [8, 13, 14]. The code mentioned in this paper is available online (the Github
link is hidden for the double blind review).

Linear classifiers: Both Linear Discriminant Analysis (LDA) and Support
Vector Machines (SVM) still performed fairly well after several decades since
they were first implemented in this field. [3, 4, 12].

Non-linear Bayesian classifiers: Hidden Markov Models (HMM) is the
algorithm we implemented. It observes a given sequence of feature vectors and
outputs the probability. HMM is suitable for the classification of time series
data, especially in the field of speech recognition. HMMs have performed well in
several EEG signal classification studies [27].

Nearest Neighbour: k-Nearest Neighbour(kNN) [13, 14]. Usually performed
from adequately to well in our previous research.

Adaboost and Random Forest: Boosting [9], bagging and Random Forest
[6] are types of Ensemble Machine Learning Algorithms which use a group of
weaker learners (e.g. random decision trees) to make a stronger classification.
These have been the gold standard for many EEG classification experiments,
including ours.

Transfer Learning Transfer learning has performed well with EEG data,
as mentioned by [2, 13]. We used the training set with labeled data as the source
domain and the testing set without labels as the target domain. We selected
transductive transfer learning because the source and target tasks are the same,
and the source and target domains are different but related.

CNN: Deep learning, especially Convolutional Neural Network(CNN) per-
formed well in many previous EEG research projects [8, 11]. We implemented it
with two convolution layers and one fully connected layer.

RNN, LSTM: Long Short Term Memory (LSTM), as motioned in previous
research [1, 4, 8, 24], works well with time series data, we implemented it with
two recurrent layers followed by two fully-connected layers.

3 Experiment

All subjects first signed an informed consent form. Then, researchers helped them
to put on the Muse headbands and test the recording. The Subjects then com-
pleted an entrance survey on the computer and became familiar with the online
Qualtrics system used in this experiment, especially the sample task switching
notice. Next, the Official EEG recording began. A survey in Qualtrics kept track
of the time and alerted the subjects to change their tasks after every 60 seconds.
After subjects completed all the five tasks, the Official EEG recording stopped
and subjects completed a short exit survey.

Subjects: Sixteen healthy subjects participated the experiment. Of those,
data from three subjects were excluded from subsequent analysis; one for failing
to participate in one of the required six sessions, and another because of con-
siderable data loss from one of the Muse electrodes, and the third due to a very
high level of noise in the electrode recordings.
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Seven males and six females are included in the final data set. Ten of the
retained subjects were undergraduate students, the other three were graduate
students. Eight subjects were computer science majors. The average age of the
subjects was 20.9.

Feature Extraction: We used the absolute Band Powers (BP) feature of
the Muse headset, it is the logarithm of the power spectral density of EEG
signals summed over that frequency range. [13]. The Muse headsets, are using
four dry input electrodes, locations corresponded to sites TP9, AF7, AF8, and
T10 [23]. The Muse EEG recording application automatically filtered out muscle
artifacts, such as eye blinking. Spectral analysis was performed on-board the
Muse device and then transmitted at 10 Hz to the EEG recording application
on the researcher’s computer. Each of these spectral snapshots consists of 20
numeric values – five spectral values for each of the four electrodes.

Data cleaning: During the EEG recording, some electrodes may have tem-
porarily lost contact with the subjects’ scalp. The result was that multiple se-
quential spectral snapshots from one or more electrodes had exactly the same
value. When we detected this anomaly, we set that entire spectral snapshot of
20 values to 0, while keeping the time-stamped value, even if the anomaly was
only detected on one of the four electrodes. Such data cleaning action resulted
in a loss of 27% of the entire data.

Cross Validation: EEG data point samples, if randomly selected, could be
near to each other chronologically in both the training set and the testing set.
This may cause over-fitting because EEG signals changes slowly. To lessen this
possible effect, we first adopted the time-wise cross validation [19, 22].

For each five minute session there are five tasks, we divided each tasks to 10
parts, evenly and contiguously, each part has 10% of the data.

Then we did a 10 fold cross validation first and realized that the first 30%
of the data were predicted with low accuracy due to a task transition effect. We
then cut off these transition times and only used the rest (70%) of the data.
In each fold, We trained on six of the remaining seven subsets and tested on
the left-out subset. Figure 2 showed a graphical representation of this seven-fold
time-wise cross validation approach. The results reflect some general patterns,
as shown in Figure 9.

Based on that We also did a session-wise cross validation, as shown in Fig-
ure 3, to see how the classifiers work with the data from unseen session. The
results are in Figure 10.

4 Results

As shown in Figure 4, most (nine of the ten) machine learning and deep learning
classifiers correctly classified the data into five classes with probability far above
chance (20%). Deep learning (LSTM and CNN) and ensemble methods (Random
Forest and Adaboost) outperformed other algorithms.

We first implemented the within-session approach, to investigate the general
trends. Different individual algorithms generated different accuracies for each
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Fig. 2. Time-wise Cross Validation

Fig. 3. Session-wise Cross Validation

Fig. 4. Compare Algorithms, within session
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Fig. 5. Within Session, By Subject, for RF Fig. 6. Within Session, By Task, for RF

subject, such as subject 9 and subject 14, their order is different using LSTM
(see Figure 4) and Random Forest (see Figure 5), but the general trends for most
subjects are still similar to each other, in that some subjects data are more easily
classified than others. Also we noticed a significant transition effect, as shown in
Figure 9, even though the subjects physically switched to the next task quickly,
the EEG signals changed slowly, in general it took 12 to 18 seconds to switch to
the stable states of the next task, which corresponds to the first 20 to 30 percent
of the data for that task. We then cut this first 30 percent off before running the
classification algorithms again.

Fig. 7. Between Session, By Subject, for
RF

Fig. 8. Between Session, By Task, for RF

When we averaged the results by task, as shown in Figure 6, compared with
20 percent by chance, all of the five tasks are classified well with these classifiers,
(here we only put RF, the other figures are available on Github).

Previous research [8, 13] has demonstrated there can be significant variations
between sessions. We implemented a between session analysis, to see how well the
algorithms performed when facing unseen data for the same user but on different
sessions The analysis showed that even with just six sessions, the classifiers still
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classify with accuracies significantly above random, as show in Figure 7, and
Figure 8. Task Read and Task Write Answer are still the highest, Task 2 Write
Copy is still the most confusing task, which is similar to pattern in the within
session approach shown in Figure 5 and Figure 6.

5 Conclusion and Discussion

Our immediate goal was to study the effectiveness of machine learning classifi-
cation algorithms in distinguishing among different basic communication tasks
(write vs. type) and investigate whether the method of communication (write
vs. type) and the different cognitive tasks (copy or answer) could be identified.
We confirmed previous findings [13, 19] that machine learning with EEG signals
could discriminate two cognitive activities (copy and answer).

Fig. 9. Transition Within Session

We also hypothesized that this approach could reliably distinguish the two
modes of communication (write and type) from one another even when the cogni-
tive task remained the same. The confirmation of that hypothesis is a suggestion
that future studies should control the communication mode variable, also this
can be used for multi-label tasks in the experiment design. It is possible that the
write and type tasks were distinguished by signals from the motor cortex which
is located between the frontal and parietal regions of the brain.

Although these basic tasks may seem similar at the level of cortical activity,
we have shown that AI classifiers can successfully capture subtle differences
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Fig. 10. Transition Between Session

between such tasks. Such result could be used in the online or offline classroom to
get better understanding about teaching and learning [17, 25]. Transition effect
(Figure 9) and Session variation (Figure 10) can also be sensitively detected and
integrated to the future experimental design.

The main contributions of this paper are the demonstration that AI classifiers
support effective approaches for classifying sets of tasks based on either copying
text or answering questions using either handwriting or typing. Random forest is
a fast and low-cost solution which works on most mainstream personal computers
and smart phones; while LSTM is a slow and expensive solution which currently
requires high-end GPUs, or the training time will jump from minutes to hours
on the same personal computer compared with other classifiers like RF.

Such passive BCI approaches, as [8, 13, 28] mentioned, could be helpful for a
better understanding about real-time brain signals for healthy subjects beyond
medical applications[26]. More such non-clinical data sets from healthy users
could in the future contribute back to the clinical research with new patterns
being recognized or discovered, as well as with more effective AI classification
algorithms.
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