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he T rapid increase in speed and capacity 
of computers and networks has 
allowed the inclusion of audio as a data 
type in many modern computer appli- 

cations. However, the audio is usually treated as an 
opaque collection of bytes with only the most prim- 
itive fields attached: name, file format, sampling 
rate, and so on. Users accustomed to searching, 
scanning, and retrieving text data can be frustrated 
by the inability to look inside the audio objects. 

Multimedia databases or file systems, for exam- 
ple, can easily have thousands of audio record- 
ings. These could be anything from a library of 
sound effects to the soundtrack portion of a news 
footage archive. Such libraries are often poorly 
indexed or named to begin with. Even if a previ- 
ous user has assigned keywords or indices to the 
data, these are often highly subjective and may be 
useless to another person. Searching for a partic- 
ular sound or class of sound (such as applause, 
music, or the speech of a particular speaker) can 
be a daunting task. 

How might people want to access sounds? We 
believe there are several useful methods, all of 
which we have attempted to incorporate into our 
system. 

I Simile: saying one sound is like another sound 
or a group of sounds in terms of some charac- 
teristics. For example, “like the sound of a herd 
of elephants.” A simpler example would be to 

say that it belongs to the class of speech sounds 
or the class of applause sounds, where the sys- 
tem has previously been trained on other 
sounds in this class. 

I Acoustical/perceptual features: describing the 
sounds in terms of commonly understood 
physical characteristics such as brightness, 
pitch, and loudness. 

I Subjective features: describing the sounds using 
personal descriptive language. This requires 
training the system (in our case, by example) 
to understand the meaning of these descriptive 
terms. For example, a user might be looking for 
a “shimmering” sound. 

I Onomatopoeia: making a sound similar in some 
quality to the sound you are looking for. For 
example, the user could making a buzzing 
sound to find bees or electrical hum. 

In a retrieval application, all of the above could 
be used in combination with traditional keyword 
and text queries. 

To accomplish any of the above methods, we 
first reduce the sound to a small set of parameters 
using various analysis techniques. Second, we use 
statistical techniques over the parameter space to 
accomplish the classification and retrieval. 

Previous research 
Sounds are traditionally described by their 

pitch, loudness, duration, and timbre. The first 
three of these psychological percepts are well 
understood and can be accurately modeled by 
measurable acoustic features. Timbre, on the other 
hand, is an ill-defined attribute that encompasses 
all the distinctive qualities of a sound other than 
its pitch, loudness, and duration. The effort to dis- 
cover the components of timbre underlies much 
of the previous psychoacoustic research that is rel- 
evant to content-based audio retrieval.* 

Salient components of timbre include the 
amplitude envelope, harmonicity, and spectral 
envelope. The attack portions of a tone are often 
essential for identifying the timbre. Timbres with 
similar spectral energy distributions (as measured 
by the centroid of the spectrum) tend to be judged 
as perceptually similar. However, research has 
shown that the time-varying spectrum of a single 
musical instrument tone cannot generally be 
treated as a “fingerprint” identifying the instru- 
ment, because there is too much variation across 
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the instrument’s range of pitches and across its 
range of dynamic levels. 

Various researchers have discussed or proto- 
typed algorithms capable of extracting audio 
structure from a sound.z The goal was to allow 
queries such as “find the first occurrence of the 
note G-sharp.” These algorithms were tuned to 
specific musical constructs and were not appro- 
priate for all sounds. 

Other researchers have focused on indexing 
audio databases using neural nets.3 Although they 
have had some success with their method, there 
are several problems from our point of view. For 
example, while the neural nets report similarities 
between sounds, it is very hard to “look inside” a 
net after it is trained or while it is in operation to 
determine how well the training worked or what 
aspects of the sounds are similar to each other. 
This makes it difficult for the user to specify which 
features of the sound are important and which to 
ignore. 

Analysis and retrieval engine 
Here we present a general paradigm and spe- 

cific techniques for analyzing audio signals in a 
way that facilitates content-based retrieval. 
Content-based retrieval of audio can mean a vari- 
ety of things. At the lowest level, a user could 
retrieve a sound by specifying the exact numbers 
in an excerpt of the sound’s sampled data. This is 
analogous to an exact text search and is just as 
simple to implement in the audio domain. 

At the next higher level of abstraction, the 
retrieval would match any sound containing the 
given excerpt, regardless of the data’s sample rate, 
quantization, compression, and so on. This is 
analogous to a fuzzy text search and can be imple- 
mented using correlation techniques. At the next 
level, the query might involve acoustic features 
that can be directly measured and perceptual (sub- 
jective) properties of the sound.+5 Above this, one 
can ask for speech content .or musical content. 

It is the “sound” level-acoustic and perceptu- 
al properties-with which we are most concerned 
here. Some of the aural (perceptual) properties of 
a sound, such as pitch, loudness, and brightness, 
correspond closely to measurable features of the 
audio signal, making it logical to provide fields for 
these properties in the audio database record. 
However, other aural properties (“scratchiness,” 
for instance) are more indirectly related to easily 
measured acoustical features of the sound. Some 
of these properties may even have different mean- 
ings for different users. 

We first measure a variety of acoustical features 
of each sound. This set of N features is represented 
as an N-vector. In text databases, the resolution of 
queries typically requires matching and compar- 
ing strings. In an audio database, we would like to 
match and compare the aural properties as 
described above. For example, we would like to 
ask for all the sounds similar to a given sound or 
that have more or less of a given property. To 
guarantee that this is possible, sounds that differ 
in the aural property should map to different 
regions of the N-space. If this were not satisfied, 
the database could not distinguish between 
sounds with different values for this property. 
Note that this approach is similar to the “feature- 
vector” approach currently used in content-based 
retrieval of images, although the actual features 
used are very different.6 

Since we cannot know the complete list of 
aural properties that users might wish to specify, 
it is impossible to guarantee that our choice of 
acoustical features will meet these constraints. 
However, we can make sure that we meet these 
constraints for many useful aural properties. 

Acoustical features 
We can currently analyze the following aspects 

of sound: loudness, pitch, brightness, bandwidth, 
and harmonicity. 

Loudness is approximated by the signal’s root- 
mean-square (RMS) level in decibels, which is cal- 
culated by taking a series of windowed frames of 
the sound and computing the square root of the 
sum of the squares of the windowed sample val- 
ues. (This method does not account for the fre- 
quency response of the human ear; if desired, the 
necessary equalization can be added by applying 
the Fletcher-Munson equal-loudness contours.) 
The human ear can hear over a 120-decibel range. 
Our software produces estimates over a lOO- 
decibel range from 16-bit audio recordings. 

Pitch is estimated by taking a series of short- 
time Fourier spectra. For each of these frames, the 
frequencies and amplitudes of the peaks are mea- 
sured and an approximate greatest common divi- 
sor algorithm is used to calculate an estimate of 
the pitch. We store the pitch as a log frequency. 
The pitch algorithm also returns a pitch confi- 
dence value that can be used to weight the pitch 
in later calculations. A perfect young human ear 
can hear frequencies in the ZO-Hz to ZO-kHz 
range. Our software can measure pitches in the 
range of 50 Hz to about 10 kHz. 

Brightness is computed as the centroid of the 



short-time Fourier magnitude spec- 
tra, again stored as a log frequency. 
It is a measure of the higher fre- 
quency content of the signal. As an 
example, putting your hand over 
your mouth as you speak reduces the 
brightness of the speech sound as 
well as the loudness. This feature 
varies over the same range as the 
pitch, although it can’t be less than the pitch esti- 
mate at any given instant. 

Bandwidth is computed as the magnitude- 
weighted average of the differences between the 
spectral components and the centroid. As exam- 
ples, a single sine wave has a bandwidth of zero 
and ideal white noise has an infinite bandwidth. 

Harmonicity distinguishes between harmonic 
spectra (such as vowels and most musical sounds), 
inharmonic spectra (such as metallic sounds), and 
noise (spectra that vary randomly in frequency 
and time). It is computed by measuring the devl- 
ation of the sound’s line spectrum from a perfect- 
ly harmonic spectrum. This is currently an 
optional feature and is not used in the examples 
that follow. It is normalized to lie in a range from 
zero to one. 

All of these aspects of sound vary over time. 
The trajectory in time is computed during the 
analysis but not stored as such in the database. 
However, for each of these trajectories, several fea- 
tures are computed and stored. These include the 
average value, the variance of the value over the 
trajectory, and the autocorrelation of the trajec- 
tory at a small lag. Autocorrelation is a measure of 
the smoothness of the trajectory. It can distin- 
guish between a pitch glissando and a wildly vary- 
ing pitch (for example), which the simple variance 
measure cannot. 

The average, variance, and autocorrelation 
computations are weighted by the amplitude tra- 
jectory to emphasize the perceptually important 
sections of the sound. In addition to the above 
features, the duration of the sound is stored. The 
feature vector thus consists of the duration plus 
the parameters just mentioned (average, variance, 
and autocorrelation) for each of the aspects of 
sound given above. Figure 1 shows a plot of the 
raw trajectories of loudness, brightness, band- 
width, and pitch for a recording of male laughter. 

After the statistical analyses, the resulting 
analysis record (shown in Table 1) contains the 
computed values. These numbers are the only 
information used in the content-based classifica- 
tion and retrieval of these sounds. It is possible to 

see some of the essential characteris- 
tics of the sound. Most notably, we 
see the rapidly time-varying nature 
of the laughter. 

Training the system 
It is possible to specify a sound 

directly by submitting constraints on 
the values of the N-vector described 
above directly to the system. For 
example, the user can ask for sounds 
in a certain range of pitch or bright- 
ness, However, it is also possible to 
train the system by example. In this 
case, the user selects examples of 
sounds that demonstrate the proper- 
ty the user wishes to train, such as 
“scratchiness.” 

For each sound entered into the 
database, the N-vector, which we 
represent as a, is computed. When 
the user supplies a set of example 
sounds for training, the mean vector 
,U and the covariance matrix R for 
the a vectors in each class are calcu- 
lated. The mean and covariance are 
given by 

0.00 0.50 1.00 0.00 1 so 
X 
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Figure 1. Male laughter. 

where A4 is the number of sounds in the summa- 
tion. In practice, one can ignore the off-diagonal 
elements of R if the feature vector elements are 
reasonably independent of each other. This sim- 
plification can yield significant savings in com- 
putation time. The mean and covariance together 
become the system’s model of the perceptual 
property being trained by the user. 

Classifying sounds 
When a new sound needs to be classified, a dis- 

tance measure is calculated from the new sound’s 
a vector and the model above. We use a weighted 



D = ((a - p)T R1 (a - p))” 

Again, the off-diagonal elements of R can be 
ignored for faster computation. Also, simpler mea- 
sures such as an L, or Manhattan distance can be 
used. The distance is compared to a threshold to 
determine whether the sound is “in” or “out” of 
the class. If there are several mutually exclusive 
classes, the sound is placed in the class to which 
it is closest, that is, for which it has the smallest 
value of D. 

If it is known a priori that some acoustic fea- 
tures .are unimportant for the class, these can be 
ignored or given a lower weight in the computa- 
tion of D. For example, if the class models some 
timbral aspect of the sounds, the duration and 
average pitch of the sounds can usually be 
ignored. 

We also define a likelihood value L based on 
the normal distribution and given by 

L = exp(-D2/2) 

This value can be interpreted as “how much” of the 
defining property for the class the new sound has. 

Retrieving sounds 
It is now possible to select, sort, or classify 

sounds from the database using the distance mea- 
sure. Some example queries are 

I Retrieve the “scratchy” sounds. That is, retrieve 
all the sounds that have a high likelihood of 
being in the “scratchy” class. 

I Retrieve the top 20 “scratchy” sounds. 

I Retrieve all the sounds that are less “scratchy” 
than a given sound. 

I Sort the given set of sounds by how “scratchy” 
they are. 

I Classify a given set of sounds into the follow- 
’ ing set of classes. 

any desired hyper-rectangle of sounds in the data- 
base by requesting all sounds whose feature val- 
ues fall in a set of desired ranges. Requesting such 
hyper-rectangles allows a much more efficient 
search. This technique has the advantage that it 
can be implemented on top of the very efficient 
index-based search algorithms in existing com- 
mercial databases. 

As an example, consider a query to retrieve the 
top M sounds in a class. If the database has MO 
sounds total, we first ask for all the sounds in a 
hyper-rectangle centered around the mean ,U with 
volume V such that 

V/v, = M/n/i, 

For small databases, it is easiest to compute the 
distance measure(s) for all the sounds in the data- 
base and then to choose the sounds that match 
the desired result. For large databases, this can be 
too expensive. To speed up the search, we index 
(sort) the sounds in the database by all the 

and try again. 
Note that the above discussion is a simplifica- 

tion of our current algorithm, which asks for big- 
ger volumes to begin with to correct for two 
factors. First, for, our distance measure, we really 
want a hypersphere of volume V, which means we 
want the hyper-rectangle that circumscribes this 
sphere. Second, the distribution of sounds in the 
feature space is not perfectly regular. If we assume 
some reasonable distribution of the sounds in the 
database, we can easily compute how much larger 
V has to be to achieve some desired confidence 
level that the search will succeed. 

Quality measures 
The magnitude of the covariance matrix R is a 

measure of the compactness of the class. This can 
be reported to the user as a quality measure of the 
classification. For example, if the dimensions of R 
are similar to the dimensions of the database, this 
class would not be useful as a discriminator, since 
all the sounds would fall into it. Similarly, the sys- 
tem can detect other irregularities in the training 
set, such as outliers or bimodality. 

The size of the covariance matrix in each 
dimension is a measure of the particular dimen- 



sion’s importance to the class. From this, the user 
can see if a particular feature is too important or 
not important enough. For example, if all the 
sounds in the training set happen to have a very 
similar duration, the classification process will 
rank this feature highly, even though it may be 
irrelevant. If this is the case, the user can tell the 
system to ignore duration or weight it differently, 
or the user can try to improve the training set. 
Similarly, the system can report to the user the 
components of the computed distance measure. 
Again, this is an indication to the user of possible 
problems in the class description. 

Note that all of these measures would be diffi- 
cult to derive from a non-statistical model such as 
a neural network. 

Segmentation 
The discussion above deals with the case where 

each sound is a single gestalt. Some examples of 
this would be single short sounds, such as a door 
slam, or longer sounds of uniform texture, such as 
a recording of rain on cement. Recordings that 
contain many different events need to be seg- 
mented before using the features above. 
Segmentation is accomplished by applying the 
acoustic analyses discussed to the signal and look- 
ing for transitions (sudden changes in the mea- 
sured features). The transitions define segments of 
the signal, which can then be treated like individ- 
ual sounds. For example, a recording of a concert 
could be scanned automatically for applause 
sounds to determine the boundaries between 
musical pieces. Similarly, after training the system 
to recognize a certain speaker, a recording could 
be segmented and scanned for all the sections 
where that speaker was talking. 

Performance 
We have used the above algorithms at Muscle 

Fish on a test sound database that contains about 
400 sound files. These sound files were culled from 
various sound effects and musical instrument sam- 
ple libraries. A wide variety of sounds are represent- 
ed from animals, machines, musical instruments, 
speech, and nature. The sounds vary in duration 
from less than a second to about 1.5 seconds. 

A number of classes were made by running the 
classification algorithm on some perceptually sim- 
ilar sets of sounds. These classes were then used to 
reorder the sounds in the database by their likeli- 
hood of membership in the class. The following 
discussion shows the results of this process for sev- 
eral sound sets. These examples illustrate the char- 

acter of the process and the fuzzy 
nature of the retrieval. (For more 
information, and to duplicate these 
examples, see the “Interactive Web 
Demo” sidebar.) 

Example 1: Laughter. For this 
example, all the recordings of laugh- 
ter except two were used in creating 
the class. Figure 2 shows a plot of the 
class membership likelihood values 
(the Y-axis) for all of the sound files 
in the test database. Each vertical 
strip along the X-axis is a user- 
defined category (the directory in 
which the sound resides). See the 
“Class Model” sidebar on p. 32 for 
details on how our system comput- 
ed this model. 

The highest returned likelihoods 
are for the laughing sounds, includ- 
ing the two that were not included 
in the original training set, as well as 
one of the animal recordings. This animal record- 
ing is of a chicken coop and has strong similari- 
ties in sound to the laughter recordings, 
consisting of a number of strong sound bursts. 

Example 2: Female speech. Our test database 
contains a number of very short recordings of a 
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Figure 2. Laughter 
classification. 



Table A. Class model for laughter example. 

Feature 
Duration 

Mean 
2.71982 

Variance 
0.191312 

Importance 
6.21826 

Loudness: Mean -45.0014 18.9212 10.3455 
Variance 200.109 1334.99 5.47681 
Autocorrelation 0.955071 7.71106e-05 108.762 

Brightness: Mean 6.16071 0.0204748 43.0547 
Variance 0.0288125 0.000113187 2.70821 
Autocorrelation 0.715438 O.O,lO8014 6.88386 

Bandwidth: Mean 0.363269 0.000434929 17.4188 
Variance 0.00759914 3.57604e-05 1.27076 
Autocorrelation 0.664325 0.0122108 6.01186 

Pitch: Mean 4.48992 0.39131 7.17758 
Variance 0.207667 0.0443153 0.986485 

5.00 10.00 15.00 
X  

Figure 3. “Teargas” , 
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e------ Mcgill/percussion 
----- Mcgill/tubularbells 
---- Mcgill/violinbowed 
a...-- Mcgill/violinpizz 
c- - Speech/female 
-’ - Speech/male 

matrix R. The highest likelihoods are 
for the other female speech record- 
ings, with the male speech record- 
ings following close behind. 

Example 3: Touchtones. A set of 
telephone touchtones was used to 
generate the class in Figure 4. Again, 
the touchtone likelihoods are clear- 
ly separated from those of other cat- 
egories. One of the touchtone 
recordings that was left out of the 
training set also has a high likeli- 
hood, but notice that the other one, 
as well as one of those included in 
the training set, returned very low 
likelihoods. Upon investigation, we 
found that the two low-likelihood 
touchtone recdrdings were of entire 
seven-digit phone numbers, where- 
as all the high-likelihood touchtone 
recordings were of single-digit tones. 
In this case, the automatic classifica- 
tion detected an aural difference that 
was not represented in the user-sup- 
plied categorization. 

Applications 
The above technology is relevant 

to a number of application areas. 
The examples in this section will 
show the power this capability can 
bring to a user working in these 
areas. 

Audio databases and file systems 
Any audio database or, equiva- 

lently, a file system designed to work 
with large numbers of audio files, 
would benefit from content-based 
capabilities. Both of these require 
that the audio data be represented or 
supplemented by a data record or 
object that points to the sound and 
adds the necessary analysis data. 

When a new sound is added to 
the database, the analyses presented 
in the previous section are run on 
the sound and a hew database record 

similarities. group of female and male speakers. For this exam- or object is formed with this supplemental infor- 
ple, the female-spoken phrase “tear gas” was used. mation. Typically, the database would allow the 
Figure 3 shows a plot of the similarity (likelihood) user to add his or her own information to this 
of each of the sound files in the test database to record. In a multiuser system, users could have 
this sound using a default value for the covariance their own copies of the database records that they 



could modify for their particular requirements. 
Figure 5 shows the record used in our sound 

browser, described in the next section. Fields in 
this record include features such as the sound file’s 
name and properties, the acoustic features as com- 
puted by system analysis routines, and user- 
defined keywords and comments. 

Any user of the database can form an audio 
class by presenting a set of sounds to the classifi- 
cation algorithm of the last section. The object 
returned by the algorithm contains a list of the 
sounds and the resulting statistical information. 
This class can be private to the user or made avail- 
able to all database users. The kinds of classes that 
would be useful depend on the application area. 
For example, a user doing automatic segmenta- 
tion of sports and news footage might develop 
classes that allow the recognition of various audi- 
ence sounds such as applause and cheers, referees’ 
whistles, close-miked speech, and so forth. 

The database should support the queries 
described in the last section as well as more stan- 
dard queries on the keywords, sampling rate, and 
so on. 

An audio database browser 
In this section, we present a front-end database 

application named SoundFisher that lets the user 
search for sounds using queries that can be con- 
tent based. In addition, it permits general main- 
tenance of the database’s entries by adding, 
deleting, and describing sounds. 

Figure 6 shows the graphical user interface 
(GUI) for the application during the formation of 
a query. The upper window is the Query window. 
The Search button initiates a search using the 
query and the results are then displayed in the 
Current Sounds window. Initially, the Results 
window shows a listing of all the sounds in the 
database. 

A query is formed using a combination of con- 
straints on the various fields in the database 
schema and a set of sounds that form a training 
set for a class. The example in Figure 6 is a query 
to find recent high-fidelity sounds in the database 
containing the “animal” or “barn” keywords that 
are similar to goose sounds, ignoring sound dura- 
tion and average loudness. 

The top portion of the Query window consists 
of a set of rows, each of which is a component of 
the total query. Each component includes the 
name of the field, a constraint operator appropri- 
ate for the data type of that field, and the value to 
which the operator is applied. Pressing one of the 

2.80 : j ; 
2.60 .,,..,,,.. .: ..f i... .: 
2.40 ,,,.. ..; . I.. .; 

l-----l 

2.20 ..;... .: 1 I 
2.00 ; . . . . . . . . . . . . . . ..i ;. ..i 
1.33 ,.. ..j . . . . . . . . ..I.. ; 
, .60 ...... .... . .... . .. 

g 1.40 

j.. .......... .j ..... 

....................... ! ......... ........ 
4 3 , JO ........... . ................. ; .A.. ............. j.. .... ... 

1 .o() ................. j.. ...... . ..... ... ; ... . .............. .j. ..... 
0.80 ....... i’. ..... i.. ..... . ..... ~ .. ;. .......... ;...; . ..‘. ..... 

I I 

5.00 10.00 15.00 

- Touchtones not 
training set 

~ ..______. Animals 
-----’ Bells 
_--- Crowds 
- - - k2000 
- - Laughter 
+- - Telephone 
)- - Water 
- Mcgill/altotrombone 
m...------. Mcgill/cellobowed 
-----. Mcgill/oboe 
_--- McgilVpercussion 
(_- - Mcgill/tubularbells 
- - Mcgill/violinbowed 
- - Mcgilllviolinpiu 
-- Speech/female 
- Speech/male 

Figure 4. Touchtone 
classification. 
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buttons in the row pops soun$~,$~~ 
up a menu of possibili- Sample rate 
ties or a slider and entry 
window combination 
for floating-point val- 
ues. In Figure 6, there is 
one component that 
constrains the date to 
be recent, one that con- 
strains the keywords, 
and one that specifies a 
high sampling rate. The 
OR subcomponent on 

Sample size 
Sound file format 
Number of channels 
Creation date 
Analysis date 

User attributes 
Keywords 
Comments 

Analysis feature vector 
Duration 
Pitch [mean, variance, autocorrelation] 
Amplitude [mean, variance, autocorrelation] 
Brightness [mean, variance, autocorrelation] 
Bandwidth [mean, variance, autocorrelation] 

the keyword field is Figure 5. Database 
added through a menu record. 
item. There are also menu items for adding and 
deleting components. All the components are 
ANDed together to form the final query. 

The bottom portion of the Query window con- 
sists of a list of sounds in the training set. In this 
case, the sounds consist of all the goose recordings. 
We have brought up sliders for duration and loud- 
ness and set them to zero so that these features will 
be ignored in the likelihood computation. 

Although not shown in this figure, some of the 
query component operators are fuzzy. For exam- 
ple, the user can constrain the pitch to be approx- 
imately 100 Hz. This constraint will cause the 
system to compute a likelihood for each sound 
equal to the inverse of the distance between that 
sound’s pitch feature and 100 Hz. This likelihood 
is used as a multiplier against the likelihood com- 
puted from the similarity calculation or other 
parts of the query that yield fuzzy results. Note 



Figure 6. SoundFisher 
browser. that ANDing two fuzzy searches is accomplished 

by multiplying the likelihoods and ORing two 
fuzzy searches by adding the likelihoods. 

There are a number of ways to refine searches 
through this interface, and all queries can be 
saved under a name given by the user. These 
queries can be recalled and modified. The 
Navigate menu contains these commands as well 
as a history mechanism that remembers all the 
queries on the current query path. The Back and 
Forward commands allow navigation along this 
path. An entry is made in the path each time the 
Search button is pressed. It is, of course, possible 
to start over from scratch. There is also an option 
to apply the query to the current sounds or to the 
entire database of sounds. 

Any saved query can be used as part of a new 
query. One of the fields available for constructing 
query components is “query,” meaning “saved 
query.” This lets the user perform complex search- 
es that combine previous queries in Boolean 
expressions. It also lets the user train the system 
with a class of sounds embodying a concept such 

as “scratchiness,” save that model under a name, 
then reuse that concept in future queries. 

Audio editors 
Current audio editors operate directly on the 

samples of the audio waveform. The user can spec- 
ify locations and values numerically or graphical- 
ly, but the editor has no knowledge of the audio 
content. The audio content is only accessible by 
auditioning the sound, which is tedious when 
editing long recordings. 

A more useful editor would include knowledge 
of the audio content. Using the techniques pre- 
sented in this article, a variety of sound classes 
appropriate for the particular application domain 
could be developed. For example, editing a con- 
cert recording would be aided by classes for audi- 
ence applause, solo instruments, loud and soft 
ensemble playing, and other typical sound fea- 
tures of concerts. Using the classes, the editor 
could have the entire concert recording initially 
segmented into regions and indexed, allowing 
quick access to each musical piece and subsections 
thereof. During the editing process, all the types 
of queries presented in the preceding sections 
could be used to navigate through the recording. 
For example, the editor could ask the system to 
highlight the first C-sharp in the oboe solo section 
for pitch correction. 

A graphical editor with these capabilities would 
have Search or Find commands that functioned 
like the query command of the SoundFisher audio 
browser. Since it would often be necessary to build 
new classes on the fly, there should be commands 
for classification and analysis or tight integration 
with a database application such as the Sound- 
Fisher audio browser. 

Surveillance 
The application of content-based retrieval in 

surveillance is identical to that of the audio editor 
except that the identification and classification 
would be done in real time. Many offices are 
already equipped with computers that have built- 
in audio input devices. These could be used to lis- 
ten for the sounds of people, glass breaking, and 
so on. There are also a number of police jurisdic- 
tions using microphones and video cameras to 
continuously survey areas having a high inci- 
dence of criminal activity or a low tolerance of 
such activity. Again, such surveillance could be 
made more efficient and easier to monitor with 
the ability to detect sounds associated with crim- 
inal activity. 



Automatic segmentation of audio and video 
In large archives of raw audio and video, it is 

useful to have some automatic indexing and seg- 
mentation of the raw recordings. There has been 
quite a bit of work on the video side of the seg- 
mentation problem using scene changes and cam- 
era movement.7 The audio soundtrack of video as 
well as audio-only recordings can be automatical- 
ly indexed and segmented using the analysis 
methods discussed previously. 

This is accomplished by analyzing the record- 
ing and extracting the trajectories for loudness, 
pitch, brightness, and other features. Some seg- 
mentation can be done at this level by looking at 
transitions and sudden changes in the analysis 
data. We used this technique to develop the 
Audio-to-MIDI conversion system that is part of 
the Studio Vision Pro 3.0 product from Opcode 
Systems. In this product, the raw trajectories are 
segmented by amplitude and pitch and convert- 
ed into musical score information in the form of 
MIDI data. This is a convenient representation for 
understanding and manipulating the musical con- 
tent of the audio recording. This product assumes 
musical instrument recordings, so pitch is very 
important. In a more general context, it might be 
more appropriate to segment the sound by ampli- 
tude or spectral changes. 

You could treat these segments as individual 
sounds that can then be analyzed for their statis- 
tical features, as we have described above. 
Alternately, you could arbitrarily look at overlap- 
ping windows of the raw analysis data as the indi- 
vidual sounds. Once this is done, each of these 
sounds can be classified and thus indexed. 

Future directions 
In our current work, we are focusing on sever- 

al areas to improve and refine the performance of 
our search, analysis, and retrieval engine. 

Additional analytic features 
An analysis engine for content-based audio 

classification and retrieval works by analyzing the 
acoustic features of the audio and reducing these 
to a few statistical values. The analyzed features 
are fairly straightforward but suffice to describe a 
relatively large universe of sounds. More analyses 
could be added to handle specific problem 
domains. 

General phrase-level content-based retrieval 
Our current set of acoustic features is targeted 

toward short or single-gestalt sounds. Matching 

sets of our features as trajectories in time or 
matching segmented sequences of single-gestalt 
sounds would allow phrase-level audio content to 
be stored and retrieved. For example, the Audio- 
to-MIDI system referenced above could be used to 
do matching of musical melodies. As with all 
media search, a fuzzy match is what is desired. 

Source separation 
In our current system, simultaneously sound- 

ing sources are treated as a single ensemble. We 
make no attempt to separate them, as source sep- 
aration is a difficult task. Approaches to separat- 
ing simultaneous sounds typically involve either 
Gestalt psycholo& or non-perceptual signal-pro- 
cessing techniques. g~lo For musical applications, 
polyphonic pitch-tracking has been studied for 
many years, but might well be an intractable prob- 
lem in the general case. 

Sound synthesis 
Sound synthesis could assist a user in making 

content-based queries to an audio database. When 
the user was unsure what values to use, the syn- 
thesis feature would create sound prototypes that 
matched the curremset of values as they were 
manipulated. The user’could then refine the syn- 
thesized example until k bore enough similarity 
to the desired sort of sound. 

Our examples show the efficacy and useful fuzzy 
nature of the search. The results of searches are 
sometimes surprising in that they cross semantic 
boundaries, but aurally the results are reasonable. 
This is work in progress. Further implementation 
and testing of the system will reveal whether the 
chosen acoustical features are sufficient or exces- 
sive for usefully analyzing and classifying most 
sounds. We believe, however, that the basic 
approach presented here works well for a wide vari- 
ety of audio database applications. MM 
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