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Abstract

In the last ten years, computer-based systems have been developed to automatically classify music
according to a high-level musical concept such as genre or instrumentation. Theseautomatic music anno-
tationsystems are useful for the storage and retrieval of music from a large database of musical content. In
general, a system begins by extracting features for each song. The labels and features for a set of labeled
songs are used by a supervised learning algorithm to produce a classifier. This classifier can then be used
to provide labels for unlabeled songs. In this paper, we examine commercial and academic approaches
to musical annotation involving genre, instrumentation, rhythmic style, and emotion. We also describe
various musical feature extraction techniques that have been developed for musical genre classification
systems. Lastly, we suggest the use of latent variable models as an alternative to the supervised learning
approach for music annotation. We describe the correspondence latent Dirichlet allocation (Corr-LDA)
model, which has been used for image annotation, and discuss how this model might be adapted for music
annotation.

1 Introduction

When a listener scans the radio in search of an agreeable station, a decision about whether to settle or
to keep searching is made based on a small clip of audio. Immediately the listener can determine if the
radio station is broadcasting human speech, music, or silence. In the case of music, he or she can usually
understand some notion of genre, instrumentation, and tempo. In some cases, the listener can identify the
artist and title of the song if it is similar (or identical) to songs previously heard.

The question is whether automatic methods can also be employed to deduce high-level information
from audio content. Recently, a number of automatic annotation systems have been developed that attempt
to classify samples of low-level audio into categories based on high-level concepts. We consider low-level
audio to be any bitstream that represents sound. High-level musical concepts include genre, instrumentation,
emotion, and tempo.

We will specifically discuss the analysis of audio in the context of music, though many of the techniques
also apply to other audio domains such as human speech, animal vocalizations, environmental sounds and
sound effects. The music domain is interesting in that the audio content is rich with information associated
with both frequency (pitch, timbre) and time (note onset, tempo). In addition, there has been a long legacy of
academic study of music by theoreticians, musicologists, and more recently, by members of the fast-growing
music information retrieval (MIR) community1. The growth of the MIR community can be attributed to
the proliferation of digital multimedia content that has been made available though the Internet. The goal
of the community has been to find novel ways to store musical content in a large database so that it can
be retrieved in an efficient and useful manner ([Foo99],[FD02],[Pac03]). Some of the main research topics
include novel query methods such as query-by-humming [DBT03], segmentation algorithms, similarity
metrics, and automatic annotation systems.

1For more information, see the proceedings of the International Symposium on Music Information Retrieval (www.ismir.net).
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In this paper, we will compare a number of existing annotation systems. The term annotation includes
both class labels found by classifying music and real-valued musical measurements found using regres-
sion. Classification tasks include systems which classify music based on objective concepts such as artist
recognition [Kau01] or the instrumentation [HPD03] as well as subjective concepts such as genre [TC02] or
emotional content [LOL03]. Regression tasks include perception-based measures such as musical energy
[PZ04] and emotional intensity [YL04]. The term annotation is more general in that we do not limit a system
to a preestablished set of class labeled or dependent variables. That is, an annotation can be any type of data
that represents another type of data and is often referred to asmeta-data. For music annotation, we might
consider a set of words, such as a song review, as the annotation of a low-level representation of a song.
(For example, reviews for thousands of songs can be found at AMG Allmusic. See www.allmusic.com.)

Annotation is generally broken into two subproblems: feature design and learning/modeling. Feature
design involves developing a useful representation of a song from the low-level audio signal. The result is a
low-dimensional feature vectorx. Feature design usually includes the extraction of features, the integration
of the features over time, and reducing the dimensionality of the final feature vector. Extraction involves
applying digital signal processing (DSP) techniques to short-time (∼25ms) segments of low-level audio
to produce short-time feature vectors. A series of short-time feature vectors is combined using a feature
integration scheme. Often, this results in a high-dimensional representation of the song. In this case,
either feature selection and/or standard dimensionality reduction techniques, such as Principal Components
Analysis (PCA), can be used to reduce the dimension of the final feature vector.
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Figure 1: Abstract learning problem for music annotation.

Existing systems approach annotation as a supervised learning problem. That is, a data set of{x,y}
pairs, wherex is a feature vector andy is an annotation vector is presented to a learning algorithm which
outputs a model. (An annotation vector is often just a single class label.) During annotation, features for
a novel piece of music,xnew, are extracted and presented to the model which outputs an annotation vector
ŷnew. A number of models, such as k-nearest neighbor (KNN) classifiers, mixture models, support vector
machines (SVM), and artificial neural networks (NN), have been applied to music annotation.

One idea not found in the music annotation literature is the use of latent variable models. In a latent
variable model, latent (i.e. hidden) variables are introduced which encode hidden states. Each state is used
to model the joint distribution the content and the annotation. In Section 4, we develop this idea and show
how a specific latent variable model, correspondence latent Dirichlet allocation (Corr-LDA), which has
been shown to be a successful model for image annotation, might be adapted for music annotation. (Note
that LDA, the acronym for linear discriminant analysis, is not associated with the Corr-LDA model.)

Although we will discuss human perception of sound and music in the context of feature sets that have
been motivated by psychoacoustic models, we will not be focusing on the topic of how humans annotate
music. While this is a very active area of research in computer music, psychoacoustic, and cognitive
science communities, it is beyond the scope of this research paper. However, we refer the reader to the
work of Lewicki [Lew02] which suggests, based on information theoretic principles, that humans use a
combination of transforms resembling Fourier and wavelet transforms to encode natural sounds that are
encountered in the world. The reader may also wish to refer to [Coo99] if interested in learning more about
the physical nature of sound, the physiology of the human ear, and the field of psychoacoustics.

We begin by summarizing a number of commercial and academic systems that annotate music according
to other high-level musical concepts including emotion, instrumentation, and tempo. We then provide a
detailed review of four existing annotation systems that have been developed to classify music by genre.
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We introduce the general concept of a latent variable model and describe the Corr-LDA model. We suggest
that the Corr-LDA, and similar models based on this model, might be useful for music annotation. Our goal
is to provide potential research directions for the music information retrieval community.

2 Musical annotation tasks

A review of existing commercial systems suggests that users are interested in searching for music by artists,
title, year, genre, mood, instrumentation, tempo, and rhythmic style. In general, the commercial systems
create large databases with human generated meta-data. Researchers have begun to develop systems that
automatically classify music by a variety of high-level concepts. In this section, we will discuss both
commercial and research systems that involve music annotation.

All the popular on-line (ITunes, Amazon, AMG AllMusic, MoodLogic) and off-line (ITunes, Music-
Match, Winamp) music management systems allow users to search by title, artist, album, and year. Anno-
tation using these concepts is straight forward in that the information is encoded directly into the audio file
using a tag. For example, an MP3 file will have ID3 tags which stores information about the artist, album,
and year. If the tag is missing or corrupted, we can use automatic annotation to suggest or fill-in missing
labels. While this task is not compelling from a commercial standpoint, it is a task, unlike genre, that has a
ground truth and maybe useful for evaluating the relative performance of annotation systems.

Most music management systems also allow users to search for music according to genre/style. The
termstyleis often used interchangeably with the term genre (i.e. see AMG AllMusic.) Some audio tags do
allocate space for genre information, though neither standard hierarchy nor a method for determining the
genre of a specific song exists. Rather, human determines both the structure of genre hierarchies and how
to label each piece of music using ad hoc methods [PC00]. In Section 3, we review automatic systems that
classifying music by genre.

Searching for music by emotional content has become popular in both commercial and academic sys-
tems. Moodlogic2 uses collaborative filtering to collect high-level music labels from thousands of users for
millions of songs. Users classify songs by genre, determine the predominant instruments, and rate songs
according to both music concepts (energy, beat strength, danceability) and emotional concepts (happy/sad,
mellow/not mellow, romantic/not romantic). Based on the collected content, users can search their personal
music collection according to musical or emotional concepts. AMG AllMusic3 allows a user to search a
database of over five million songs on the basis of 179 moods (‘intense’, ‘lazy’, ‘spooky’) or by 85 themes
(‘autumn’, ‘meditation’, ‘stay-in-bed’). The categories and song labels are determined by a large team of
expert human reviewers. An expert is defined as someone who is professionally trained to annotate music.

Using automatic approaches to determine emotional content for unlabeled audio tracks, much like au-
tomatic genre classification, is an emerging topic. Li and Oghihara [LO03] label a data set of 499 songs
according to sets of adjectives where each set represents a common emotion such as happy, depressing, or
passionate. The features proposed in TC02 (see Section 3.1) are extracted for each of the songs and clas-
sification is performed using SVMs. Yang and Lee [YL04] automatically predict theemotional intensity
of a song by formulating the task regression problem where emotional intensity is the dependent variable
and low-level audio features (similar to the features described in [TC02]) are the independent variables.
Emotional intensity, a real-valued measurement, is calculated based on how human listeners rate songs
according a series ofsingle emotion tests. In a single emotion test, a listener is asked to rate a song as
according to bipolar pair of adjectives such as happy/sad or mellow/excited. More recently, Pachet [PZ04]
uses a similar setup to predictmusic energy, another subjective measure related musical intensity.

Instrumentation is another concept which listeners use to search for music. The presence of an in-
strument or set of instruments (string, woodwinds, percussion) as well as information about the featured
instruments (solo instrument, duration of the solo) is information that is useful to listeners, and especially
musicians. However, relatively few music management systems allow query-by-instrument. One exception
is AMG Allmusic, where a user can search the database by instrument for artists, but does not allow a user
to find a specific song or a segment of a song that contain a solo.

Systems that automatically classifying isolated (monophonic) musical sounds by instrument have been
developed with relatively high accuracy. For a review of a number of these systems, the reader can refer

2http://www.moodlogic.com
3http://www.allmusic.com
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to [HPD03]. However, the problem identifying multiple instruments in polyphonic sound is more difficult.
One approach has been to isolate individual instruments using source separation techniques such as inde-
pendent component analysis (ICA). This approach has only shown limited success for toy data sets (i.e.
duets or trios with instruments that have very different acoustic characteristics) since it requires estimates
for the pitch of each instrument. This approach is not scalable in that when the frequency ranges of the
instruments overlap, performance decreases. A promising alternative is to use supervised learning to detect
the presence of instruments. In [ERD05], Essid et Al, achieve over 90% accuracy when trying to identify a
combination between one and four instruments (drums, double bass, piano, trumpet, and saxophone) on a
large data set of jazz trio/quartet songs.

Lastly, information about beat and rhythm is important for music annotation. A number of techniques,
such as the beat histogram introduced in [TC02], can be used to find beats-per-minute, beat strength, and
other rhythmic information directly from the audio content. Supervised learning can be used to classify a
novel music track into rhythmic categories such as marches, waltzes, etc. In [GD04], a supervised learning
approached is used to classify eight styles of ballroom dance music based on feature vectors containing
71 rhythm and onset features. Onset features involve information about musical notes such as the average
duration of a note or the average time between successive notes.

It should be noted that in this section, we have discussed a number of commercial applications for auto-
matic annotation. While these, and yet-to-be-invented applications do provide some economic motivation
for annotation research, the primary goal is to find new and interesting ways to extract features and model
data. Another goal is to provide general techniques that may be applied to other domains. For example,
techniques from text document classification [BJ03] or images annotation [CV05] have make an impact on
other research areas.

3 Four Genre Classification Systems

Musical genre is perhaps the most common concept used to classify music. It is used by record producers
to target audiences, by musicologists to study musical influences, and by consumers to sort their private
music collections. However, the notion of genre is inherently subjective in that neither the hierarchy of
genres we use, nor the placement of songs into specific genres is universally agreed upon. For example,
in a comparison of three Internet music providers, Pachet and Cazaly [PC00] found drastic differences in
the number of genres, the words used to describe a genre, and the organizational structure of the genre
hierarchies.

Despite the inconsistencies caused by its subjective nature, the concept of genre has received much
attention from the MIR community. In general, thesubjectivity problemis bracketed so that the researchers
can make progress with the annotation problem. In each of the works we review, the authors make different
assumptions about genre. These assumption are reflected in the number of genres, the names of the genres,
and the criteria for labeling a song belonging to a genre. Furthermore, copyright laws and bandwidth issues
prevent authors from establishing a common database of songs. The reader should be warned that both the
authors’ assumptions about genre and the use of different music databases affect classification performance,
and thus, make it difficult to directly compare results.

In the following subsection, we review four music genre classification systems that were developed
between 2002 and 2005. These systems have been chosen because of their contributions to musical feature
design. Although the authors use the extracted features for the task of classification by genre, the features
reflect general audio characteristics and can be used for other musical annotation tasks [LO03].(For brevity,
we will denote each system by the first letter of each of the authors’ last name and by the last two digits of
the year of the principle publication describing the system.)

A review of existing genre classification systems prior to 2002 is provided by Aucouturier and Pachet in
[pachet02]. The authors explore the features and learning algorithms used by six research-based systems,
including the system developed by Tzanetakis and Cook [TC02] which is the first system we review. This
system, denoted [TC02], incorporates a superset of features previously purposed and, in addition, introduces
a number of novel Fourier-based feature extraction techniques specifically designed for music. The second
system, developed by Li, Ogihara, and Li [LOL03], uses wavelet-based feature extraction techniques and
support vector machines to achieve superior performance using the same data set as in [TC02]. Our third
work by Martin and Breebaart [MB03] introduces new features based on human perception and a new
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feature integration technique using a filterbank transform. Our final work by Meng, Ahrendt, and Larsen
[MAL05] compares the feature integration work of [MB03] to their own scheme based on autoregression.

The following subsections will involve summarizing concepts from digital signal processing and ma-
chine learning. The reader may wish to refer the Appendix for a review of these concepts.

3.1 TC02 - Tzanetakis and Cook (2002)

Prior to [TC02], the majority of audio feature extraction research was focused on extracting features for
speech recognition and music-speech discrimination. By both using these existing techniques and develop-
ing new techniques specifically design for music analysis, Tzanetakis and Cook created a software system,
called MARSYAS, which extracts a comprehensive set of musical features from an audio sample. Their
features are divided into three sets:timbral texture features, rhythm content features, and pitch content
features.

According to American National Standards Institute (ANSI), pitch loudness, and timbre are subjective
measures of sound. Pitch is defined as an attribute of auditory sensation in terms of which sounds may
be ordered on a scale extending from high to low. Loudness is the attribute of auditory sensation in terms
of which sounds may be ordered on a scale extending from soft to loud. Lastly, timbre is defined as
attributes of sound that allows one to distinguish two sounds that are equal in pitch, loudness, and subjective
duration. When analyzing sound, it is common practice to associate these three subjective concepts with
some measurable quantity. Pitch is usually estimated as the fundamental frequency of the audio sample.
Loudness is related to both sound intensity, measured in decibels, and frequency. Timbre is reflected in the
shape of the spectrum in the frequency domain.

To summarize the timbre, a number of spectral shape features are calculated for each short-time window
of audio content using the short-time Fourier transform (STFT). That is, the audio content is broken into
short segments, usually about 25 ms in duration. Each segment is multiplied by a window function and
transformed into the frequency domain using a Fourier transform. In the frequency domain, the segment
is represented by a histogram which plots frequency verses magnitude. This histogram of the segment,
called a spectrum, is summarized by four statistics: Root Mean Squared (RMS) energy, spectral centroid,
spectral rolloff, and spectal flux. Another statistic, the zero-crossing rate, is calculated directly from the
time series rather than from the spectrum. This statistic reflects the number of times the signal alternates
between positive and negative amplitude and is a measure of the noisiness of the audio signal.

The Mel-Frequency Cepstal Coefficients (MFCC) are computed for each segment [RJ93]. (See Ap-
pendix A.3.) Based on experimental results, the authors choose to include only the first five MFCCs.
Feature integration is done by calculating mean and variance of each statistic for a series of the short-time
segments. The last feature, low-energy, is defined as the percentage of short-time segments with less RMS
energy than average. This feature is intended to help discriminate between music that has many silent
segments versus music without silent segments. The resulting 19 dimensional feature vector is given by

Timbral Texture features
[1-8] Mean and variance of centroid, rolloff, flux, and zero-crossing rate
[9] Low-Energy: percentage of windows with less RMS energy than average
[10-19] Mean and variance of the second through sixth MFCCs.

Based on their intuition in designing the low-energy feature, which is related to the skew of the empirical
distribution of RMS energy, it is surprising that the authors did not include more than just the first moments
of the empirical distribution (i.e. skewness and kurtosis). While this would increased the dimension of
the timbral feature vector, dimensionality reduction techniques could be used to retain a low-dimensional
representation.

Therhythm content featurescapture the period and beat strength of music based on abeat histogram.A
beat histogram, which is calculated on 30-second segment of music, is a histogram of beat strength versus
beats per minute (BPM). From the histogram, six features are calculated.

Similarly, thepitch content featuresare based on the analysis of pitch histograms. Anunfoldedpitch
histogram is a plot of pitch strength verses frequency. The frequencies are usually binned so as to corre-
sponded to musical notes. For example, middle A, which has a pitch of 440 Hz, will be the sum of pitch
strengths between 428 Hz and 453 Hz. Afoldedpitch histogram is created by first combining all bins for
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Rhythm Content features
[20] Total Beat Strength: sum of all beat strengths
[21-22] Relative strengths of two highest peaks:

peak strength divided by total beat strength
[23-24] Period of two highest peaks in BPM
[25] Ratio of two peaks strength:

strength of second peak divided by strength of first peak

a musical note (e.g. A at 110 hz, 220 Hz, 440Hz, 880 Hz, etc), and then rearranging the bins so that they
are ordered according to the circle of fifth (e.g. A is adjacent to D and E). Intuitively, the folded histogram
gives a much more concise representation of the tonal qualities of the musical sample than the unfolded
histogram. Using both histogram representations, five features are extracted

Pitch Content features
[26] Amplitude of highest peak in the Folded Pitch Histogram
[27] Period of maximum peak in the Unfolded Pitch Histogram
[28] Period of maximum peak in the Folded Pitch Histogram
[29] Interval of two highest peaks in the Folded Pitch Histogram
[30] Total Pitch Strength: sum of pitch strength over all frequencies

After the 30-dimensional feature vectors are extracted for a large database of labeled songs, the labels
and vectors are used by a supervised learning algorithm to produce a model (i.e. a classifer). In TC02,
the authors use K-nearest neighbor(KNN) classifiers and Gaussian Mixture Models (GMM). Based on a
database containing 100 30-second song samples from each of 10 genres, the authors are able to achieve
61%classification accuracy using GMM with 3 mixtures per genre. This is compared with70% classifi-
cation accuracy by non-expert humans in a forced-choice test4. In later work, using the same features and
database, Li and Tzanetakis [LT03] achieved71%accuracy using linear discriminant analysis (LDA), and
similarly, Turnbull and Elkan [TE05] achieved71%accuracy using radial basis function networks (RBFN).

3.2 LOL03 - Li, Ogihara, and Li (2003)

When we compute the Fourier transform of a music signal, we lose all temporal information, unless we
break the signal up and compute the short-time Fourier transform (STFT). Thus, the temporal information is
limited by the segment length. However, using shorter segments yields poorer frequency resolution. Since
the Fourier transform is a transform that has fixed frequency resolution across all frequencies, temporal
information at high frequencies is poorly represented. The wavelet transform allows for variable resolution
across the frequency range. The result is a time-frequency representation of a signal that has good time
resolution for high frequencies and good frequency resolution at lower frequencies.

In [LOL03], Li, Ogihara and Li apply Daubechies wavelet transforms [Dau92] to music samples. The
specific Daubechies transform decomposes an signal into seven frequency bands using seven filters. The
filters all have the same shape but the differ in length. (i.e. The longer the filter the lower frequency.) Each
filter is repeatedly convolved with the music signal then shifted by the length of the filter. Each convo-
lution produces coefficient are used to make a histogram. The result is seven histograms, each of which
are converted to empirical probability distribution functions. The first three moments (mean, variance, and
skewness) and the average sub-band energy, the mean of the absolute value of thw coefficients, are calcu-
lated. This results in a feature vector of7∗4= 28features. Based on empirical results, the authors find that
the features from 3 bands are not informative and are dropped. Finally, the 19 timbral texture features from
TC02 are added to the feature vector. The resulting feature vector given by

Daubechies Wavelet Coefficient Histogram (DWCH) features
[1-17] Daubechies Wavelet Coefficient Histogram

4 sub-bands * (mean, variance, skewness, energy)
[17-35] Timbral Texture Features from TC02

4A forced-choice test requires that individual pick one genre from the set of 10 given genres.

6



Using the DWCH set of features, the authors compare a number of models: Gaussian mixture mod-
els (GMM), linear discriminant analysis (LDA), k-nearest neighbor (KNN) models, and three variants of
Support Vector Machines (SVM). The most successful model is a one-versus-all SVM, in which one binary
classifier is trained for each class using the examples from that class as positive examples, and the rest of the
data as the negative examples. Each SVM outputs a scores that is mapped to a posterior probabilityP(y|s)
according to a functionf (s) = P(y|s) that is learned from training data [ZE02]. The final predicted class of
an unlabeled data point is given by the classifier that produces the highest posterior probability. Using the
DWCH features with a one-versus-all SVM, the authors report an improvement of6.5% in classification
accuracy over the best results reported by LT03 using LDA for the same data set of music songs.

3.3 MB03 - Martin and Breebaart (2003)

In [MB03], McKinney and Breebaart introduce two sets of audio features based on perceptual models of
the human auditory system. The first set, the psychoacoustic features (PA), models the musical percepts
of roughness, loudness and sharpness. The second set, the auditory filterbank temporal envelopes (AFTE),
involves passing the audio signal through a gammatone filterbank. A gammatone filterbank is a specific
set of basis functions for a wavelet transform that approximates empirical non-linear frequency response
of the cochlea in the human ear. In addition to the PA and AFTE feature sets, the authors consider two
existing features sets: MFCC features, and standard low-level (SLL) [LSDM01]. The nine SLL features
are statistics that characterize the spectrum of the audio spectrum and are similar to the timbral and pitch
features developed in TC02. The four feature sets are

Standard low-level (SLL) features
[1-9] RMS, centroid, bandwidth, zero-crossing,

roll-off, band energy ratio, delta spectrum magnitude,
pitch, pitch strength

Mel-Frequency Cepstral Coefficients (MFCC) features
[1-13] MFCC coefficients

Psychoacoustic (PA) features
[1-2] Roughness (mean and standard deviation)
[3] Loudness
[4] Sharpness

Auditory filterbank temporal envelopes (AFTE) features
[1-18] Gammatone wavelet coefficients

The second contribution of MB03 is a feature integration technique using a filterbank transform to
producedynamicfeatures. In previous systems, the final feature vector is given by the statistical moments
(e.g. mean, variance, skewness, kurtosis) of each feature over a series of the short-time windows. (See
TC02 and LOL03.) One drawback of thisstatistical momentsintegration technique is that the temporal
information for the time series is lost. In MB03, dynamic features are found calculating the power spectrum
for the series of each short-time feature. The power spectrum is broken into four bands: 1) 0 Hz which is
the DC component and is the mean of the feature, 2) 1-2 Hz which is the frequency range for most musical
beats, 3-15 Hz, and 20-43 Hz. The final feature vector then has four times the dimension of a short-time
feature vector.

Using one database of music (188 songs, 7 genres) and one learning algorithm (quadratic discriminant
analysis), the authors compare the four feature sets (SLL, MFCC, PA, AFTE), and for each, compare the
effect of incorporating the dynamic features with the static (means only) features. Since the size of each
feature set is different, the authors use forward stepwise selection to select the nine best features from
each of the eight sets for features. The results show that using dynamic features improves classification
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accuracy and AFTE features produce the best results. An interesting experiment that was not reported
would have been to compare feature sets without using feature selection. Another idea that was not explored
experimentally, though was mentioned by the authors, is to use a combination of features from the each of
the sets features. This would result in a high-dimensional representation that may require the use of PCA
to reduce the dimensionally of the feature vectors before modeling.

3.4 MAL05 - Meng, Ahrendt, and Larsen (2005)

The work of Meng, Ahrendt and Larsen ([MAL05]) focuses on early and lateinformation fusion.Early
information fusion, which includes feature integration, combines short-time (30 ms) features in order to
create medium-time (740 ms) and long-time (9.62 s) features. The authors compare three feature integration
methods: calculating means and variances (MV) of features ([TC02], [LT03], [TE05]), using the dynamic
features proposed in [MB03] and referred to as filterbank coefficients (FC), and a novel method based on
autoregression (AR). The features for the AR model are the linear predictive coding (LPC) coefficients for
a given model order. The model order is determined by minimizing the classification error on a validation
set. When the feature integration method results in a high dimensional feature vector, PCA is used for
dimensionality reduction.

Late information fusion combines the outputs from a classifier computed on each of the shorter time
audio feature vectors. (That is, outputs from short-time classifier are used to make medium-time and long-
time decisions, and outputs from medium-time classifiers are used to make long-time decisions.) The
authors pick the genre of a song according to thesum rule: the genre with the largest sum of posterior
probability is chosen. This late fusion scheme requires that the outputs from the shorter time classifiers
are probabilistic (i.e. output posterior probabilitiesP(y|x.) If the outputs are not probabilistic, either the
outputs can be converted to probabilities using calibration [ZE02], or a different late fusion scheme, such
asmajority votecan be used. In this scheme, each shorter time classifier casts one vote for a single genre
and the genre with the most votes wins.

The authors compare the a number of early and late information fusion schemes for classifying music
by genre. In all cases, the short-time features are the first six Mel-frequency Cepstral Coefficients (MFCC).
Using these six features, they create medium-time and long-time feature vectors using combinations of
MV, FC and AR feature integration techniques. For each set of feature vectors, a probabilistic model is
trained and performance is measure on a test set. The author use two models, neural networks and Gaussian
mixture model, though few details about these models are given. Classification performance is compared
against late information fusion schemes. The best results are found by using a three step fusion scheme: 1)
calculate MFCC features for each short-time series, 2) integrate the short-time MFCC features using AR
to find medium-time feature vectors, and 3) use late fusion according to the sum rule over the series of
medium-time features. On a small data set contain 100 songs and five genres, this fusion scheme produces
a error rate of5%which is compared with a3%error rate by human test subjects. All other fusion schemes
resulted in significantly worse error rates of12%or more. Similar results were found when using a large
data set containing 354 song and six genres.

4 Unsupervised Annotation

Recently there has been a considerable amount of research on automatic image annotation: providing a
caption for a given image. A brief review is given by Carneiro and Vasconcelos [CV05]. Initial work
posed the problem as a supervised learning problem in which features are extracted from the image and a
classifier is trained to recognize individual semantic keywords. Keywords denote holistic concepts, such as
‘indoors’, ‘outdoors’, ‘cityscape’, and ‘landscape’, or objects that appear in images such as trees, buildings,
and horses. This supervised approach is very similar to all the approaches that have been used for music
annotation.

A second general approach to image annotation involves introducing a set of latent variables that encode
hidden states. Each state represents a joint distribution between keywords and image features. During
training, a set of labeled images, each defined by a content-based feature vector and a set of keywords,
is presented to an unsupervised learning algorithm, such as Expectation Maximization (EM), in order to
estimate the joint distribution between image features and keywords. During annotation, keywords for an
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Table 1:Comparison of four music genre classification systems. The major contributions are reflected in the bold font. The brackets
after the feature sets denote the dimension of the final feature vector. For example, LDD (9/36) represents the low-level descriptor set of
9 static or 36 dynamic features. Acronyms: LLD - Low-Level Descriptors (FFT-based), MFCC - Mel-Frequency Cepstral Coefficients,
GMM - Gaussian Mixture Model, KNN - K-Nearest Neighbor, SVM - Support Vector Machine, LDA - Linear Discriminant Analysis,
QDA - Quadratic Discriminant Analysis, RBFN - Radial Basis Function Networks, NN - Neural Network, GC - Gaussian Classifier
with full covariance matrix

System Extraction Integration Selection Model
TC02 Timbral Texture means, all GMM, KNN

(LLD (9) & MFCC (10)) , variances
Rhythmic Content (6),
Pitch Content (5)

LT03 ” ” ” SVM, LDA
TE05 ” ” ” RBFN
LOL03 Daubechies Wavelet means, all SVM, LDA,

Coefficient Histogram (16), variances KNN, GMM
Timbral Texture
(LLD(9) & MFCC(10))

MB03 LLD (9/36), MFCC(13/52), means, stepwise QDA
Psychoacoustic, (3/10) power spectrum selection(9)
Auditory Filterbank (18/62)

MAL05 MFCC(6) means, all NN,
variances, GC
power spectrum,
autoregression,
late fusion

Table 2:Reported Results of music genre classification systems. In general, results are based on each author’s internal database of
songs and assumptions about genre, which greatly effect performance. The exception (denoted by *) is the database created for TC02
which was used in TC02, LT03, TE05, and LOL03. The performance by non-expert human listeners for this data set is reported as
70% in TC02.

System Task (# classes) Database Size Best Results
TC02 Genre(10)* 1000 61%

Classical(4) 400 88%
Jazz(6) 600 68%

LT03 Genre(10)* 1000 72%
TE05 Genre(10)* 1000 71%
LOL03 Genre(10)* 1000 79%

Genre(5) 756 99%
MB03 Audio(5) 310 93%

Genre(7) 188 74%
MAL05 Genre(5) 100 96%

Genre(6) 354 69%

unlabeled image are the set of keywords that maximize this joint distribution. To the author’s knowledge,
little (or no) research has been focused on applying this unsupervised approach for music annotation.

4.1 Correspondence LDA for Music Annotation

One popular generative model for image annotation is correspondence latent Dirichlet allocation (Corr-
LDA) introduced by Blei and Jordan in [BJ03]. The graphical model representation for Corr-LDA is given
in figure 2. Consider an image as being represented by the(r ,w) pair, wherer is a vector ofN region-
specific feature vectors andw is set ofM keywords. TheN regions of the image can be found using block-
based decomposition of the image (i.e. cutting the image up into rectangles) or using image segmentation
techniques such as theN-cut algorithm. The vocabulary of keywords, denoted byW, is selected from a
corpus of image captions.

The generative process for each image(r ,w) under the Corr-LDA model is:
1) A random variableθ is drawn a from Dirichlet distribution with parameterα and defines a distribution

over hidden states.
2) For each image regionrn in the image, a random variablezn representing a hidden state is drawn
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Figure 2: Corr-LDA Graphical Model

from a multinomial distribution with parameterθ. Then the feature vectorrn is drawn from a multivariate
Gaussian distribution with parameters{µn,σn} associated with statezn.

3)For each keywordwm, a random variableym is drawn from uniform distribution with parameters (1,N).
This random variable represents one of the hidden states, denotedzym, that was used to generate an image
regions in the step 2. A keywordwm is drawn from a multinomial distribution with parameterβn associated
with the hidden statezym.

Parameter estimation for the Corr-LDA model is done using variational Expectation Maximization (EM)
[Ble04]. Annotation of an unlabeled imager = {r1, ..., rN} involves finding theM keywords that maximize
the conditional distribution of the keywords givenr and the model parameters. It is not clear in the pa-
per exactly how annotation is performed, but we assume that theM keywords are theM keywords that
individually maximize the conditional distribution. The equation for picking theM words is

argmaxw∈W

L

∏
i=0

N

∏
n=1

p(rn|µi ,σi)p(w|βi) (1)

whereL is the number of latent states,W is the vocabulary, andw represents the M.

[β]Ln=1

θα z

M
D

r

Keyword Plate

w

[µn,σn]Ln=1

Figure 3: Corr-LDA Graphical Model for Music Annotation where each song is represented by one seg-
ments.

When applying applying the Corr-LDA model to music annotation, the observable feature vectorx will
be composed of musical features such as the features described in Section 3. The keywordsy will come
from a musical vocabulary and can be any word that is used to describe music, such as words related to
genre, instrumentation, emotion, etc. If we consider each song as being composed as one segment, the
Corr-LDA model is simplified. That is, only one random variablez1 representing one hidden state will be
used to generate the entire song and all of the keywords for the song. This graphical model is shown in
Figure??. However, audio segmentation can be done by taking fixed length segments of audio or by using
automatic music segmentation techniques [PE04]. If we allow for audio segmentation, the Corr-LDA model
is the same as the model given in Figure 2. It is interesting to note that this model simultaneously relates
information about a number of music concepts. This is a major advantage over existing systems which only
classify based on one music concept.
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One drawback of the Corr-LDA model is that annotation is not guaranteed to return words related to
all of the various musical concepts. For example, the annotation of a song might produce many words
related to genre but no words related to instrumentation. A simple technique to resolve this problem is,
for each task, output the topM′ words associated with that concept according to Equation 1. A second
technique is to modify the graphic model to account for a hierarchial vocabulary. (See Figure 4.) This new
graphical model, called hierarchical Corr-LDA, that can incorporate a hierarchical vocabulary is given in
Figure 5. By breaking the vocabulary into smaller (possibly disjoint) sets, parameter estimation might be
improved. Comparing these two techniques both in terms of performance and scalability is an interesting
future research direction.

‘World’

Emotion Instrumentation Genre. . .

‘Happy’ ‘Sad’ . . . ‘Romantic’ ‘Strings’ ‘Guitar’ . . . ‘Congo Drum’ ‘Bluegrass’‘Afro-cuban jazz’ . . .

Figure 4: Hierarchical Music Vocabulary
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Figure 5: Hierarchical Corr-LDA Graphical Model for Music Annotation

5 Discussion

In this review of automatic music annotation research, we have observed that most systems pose the anno-
tation problem as a supervised learning problem. One drawback of supervised learning is that it requires a
classifier be trained for each individual musical concept (genre, instrumentation, emotion). By introducing
latent variables, we can create a general model, which allows for a more flexible labeling scheme. Latent
variable models have been successfully used for image annotation. We have suggested three variants of the
Corr-LDA model that might be useful for music annotation.

Our second observation is that the majority of research has focused on musical feature design: extrac-
tion, selection, and integration of musical features. While this is important and will continue to be a hot
research topic, it is hard to compare results since researchers do not use a standard data set. In computer
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vision, the Optical Character Recognition (OCR) data set of handwritten digits is one example of a standard
data set that has allowed comparison of competing image feature sets. Though standard music data sets
exist, such as the RWC data set5, they are usually small or expensive. Instead, researchers use a homemade
data set created from the their personal collections of music. Unfortunately, these homemade data sets
cannot be shared due to copyright laws.

Another general problem is that there is no standard labeling scheme for music. In our examination of
genre classification research, we note that the different assumptions about genre lead to inconsistent genre
taxonomies. In all cases, the flat taxonomies are inadequate for describing the hierarchical taxonomies
found used by the commercial music distributors (Amazon, ITunes, Allmusic). One benefit of using an
unsupervised model is that it makes few assumptions about the musical concepts. When considering genre
under the hierarchical Corr-LDA model, a song can be annotated with one of more of the keywords from
the genre vocabulary.

Despite the fact that automatic segmentation of sound has been developed by computer music re-
searchers, few studies have attempted to use song segments to improve classification. Supervised annotation
approaches could use late information fusion (according the sum rule, median rule, or majority voting) to
incorporate the extra information provide by each of the segments. The unsupervised approaches discussed
in Section 4 do make use segments for annotation. In the Corr-LDA, the probability that a specific music
keyword, such as ”guitar” or ”blues”, is used to annotated a song increases with the number of segments
that exhibit similar characteristics. In addition, the model can be adapted to search-by-keyword for specific
segments that have such characteristics. This will be useful if, for example, a user is interested in finding
”saxophone” solos in a large database of music.

Future research will involve applying unsupervised probabilistic models to the task of music annota-
tion. A difficult first step will be to find a labeled data set. Once found (or created), we will use existing
music segmentation algorithms to segment the music track. We will then use feature extraction and inte-
gration techniques to find feature vectors for each segment. Using the labeled data, we will train and test
unsupervised model such as the Hierarchical Corr-LDA model presented in this work.
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A APPENDIX A: Digital Signal Processing Background

The material covered in this appendix is intended to give the reader some background on digital signal
processing concepts that were introduced in this paper. The reader may wish to refer to [OSB99] and
[RJ93] for a more detailed review of these concepts.
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A.1 Digital Audio Signals

When music is recorded, the pressure from the acoustic wave is measured using a microphone. These
measurements are taken at regular time interval and each measurement is quantized. (See Figure?? The
result is a bitstream that can be analyzed using digital signal processing techniques. For example, CD audio
is sampled 44,100 times per second where each sample is represented as a 2 8-bit (2-channel stereo) values
in the range[2−7,27]. A sound represented as a time series of pressure measurements is representation in
thetime domain.
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Figure 6: Music is a continuous signal (left) that is sampled (center) and quantized (right) so that it can be
represented as a bitstream.

Sound can also be represented as the sum of sinusoids (i.e. a set of sine and cosine waves oscillating at
different frequencies.) That is, a signal ofN samples can be written as

x =
N/2

∑
k=0

a(r)
k cos(2π(

k
N

))+a(i)
k sin(2π(

k
N

)). (2)

We can represent the signal in thefrequency domainusing the coefficients{(a(r)
1 ,a(i)

1 ), ...,(a(r)
N/2,a

(i)
N/2)}.

Themagnitudeandphaseof thek-th frequency component are given by

XM[k] =
√

(a(r)
k )2 +(a(i)

k )2 (3)

XP[k] = arctan(
a(i)

k

a(r)
k

) (4)

In general, magnitude information is used during feature extraction while the phase information is ignored.
The argument from ignoring phase information is based on the results of perceptual studies of human
hearing that show phase information to be relatively unimportant when compared to magnitude information
[Log00].

For example, consider the waveformx shown on the left panel of Figure 7. Each sample ofx is found
according to

x[i] = 0.55sin(2π f1i)+0.4cos(2π f2i)+0.15sin(2π f3i)

wheref1, f2, and f3 are 687 Hz, 2.28 kHz, and 6.46 kHz, respectively. The frequency domain representation
(right panel), called thespectrumof the signal, shows three distinct peaks, one for each of the three non-
zero frequency components. Note that the relative heights of these peaks correspond to the amplitudes (i.e.
0.55, 0.40, 0.15) of the three sinusoids. (We will discuss how the heights of the peaks (i.e. the coefficients

{(a(r)
k ,a(i)

1 )}) are found in the next subsection when we discuss the discrete Fourier transform.)
A number of spectral-shape feature (TC02, MB03) are extracted from the spectrum. For example,

Spectral Centroidis the center of gravity of the spectrum and is given by

C =
∑N/2

k=1XM[k]∗k

∑N/2
k=1XM[k]

.
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Figure 7: Time and frequency domain representation of an audio signal sampled at 44,100 samples per
second. The audio signal in represented in the time domain (left) can be broken into a sum of sinusoids
(middle), and then represented in the frequency domain (right) using the magnitudes of the frequency
components.

The Spectral Centroid can be though of as a measure of ‘brightness’ since songs are consider brighter when
they have more high frequency components. A full description of other features, such as RMS Energy,
Spectral Rolloff, and Spectral Flux, are described in [Tza02].

A.2 Time-Frequency Domain Transforms

In the previous section, we introduced the concept of time and frequency domain representations of an audio
signal. In this section, we will describe in detail both the real discrete Fourier transform (DFT) and the
real short-time Fourier transfrom (STFT), and introduce the discrete cosine transfrom (DCT), the discrete
wavelet transform (DWT), and the gammatone transform (GT). (We will look atreal transforms, rather than
complex transforms, since music is always a real-valued time series and we are only concerned with positive
frequencies. For more information on complex transforms, see [OSB99].) All of these transforms mapped
a time series of samples into a frequency domain or time-frequency domain representation. They differ in
that they use different sets ofbasis functionsandprojection operatorsto perform the transformation.

Given a signalx with N samples, the basis functions for the DFT will be N/2 sine waves and N/2

cosine waves that correspond to the coefficients{(a(r)
k ,a(i)

k )} introduced in the previous subsection. The
projection operator is correlation, which is a measure of how similar two time series are to one another. The
coefficients are found by

a(r)
k =

2
N

N−1

∑
i=0

x[i]cos(2π
k
N

i) (5)

a(i)
k = − 2

N

N−1

∑
i=0

x[i]sin(2π
k
N

i) (6)

. (7)

In practice, the DFT is implemented by the fast Fourier transform (FFT), which can computes the ex-
act coefficients in computationally efficient manner. The inverse DFT (iDFT) transform, which maps the
spectrum to a time series, is given by equation 2. Another commonly used transform, the discrete cosine
transform (DCT), is a transform like the DFT, but uses a basis of cosine function that differ in frequency
by multiples ofπ. Note that the DFT uses a basis of sine and cosine function that differ in frequency by
multiples of2π.

One drawback of both the time series representation and the spectrum representation is that neither si-
multaneously represents both time and frequency information. A time-frequency representation is found
using the short-time Fourier transform (STFT). First, the audio signal is broken up into a series of (overlap-
ping) segments. Each segment is multiplied by awindow function, which is usually a bell shaped curve that
is non-zero over the segment and zero otherwise. The length of the window is called thewindow sizeand
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Figure 8: STFT Example: An audio signal (far left) in the time domain is broken into windowed seg-
ments (middle). Each segment is transformed to the frequency domain using the DFT (right). The final
representation, called a spectrogram, contain both time and frequency information.

the amount of overlap is called thehop size. The real DFT is defined as

a(r)
n,k =

2
N

N−1

∑
i=0

x[n+ i]w[i]cos(2π
k
N

i) (8)

a(i)
n,k = − 2

N

N−1

∑
i=0

x[n+ i]w[i]sin(2π
k
N

i) (9)

. (10)

wherew[i] is the window function. In this representation, the coefficients{(a(r)
n,k,a

(i)
n,k)} are indexed by both

time and frequency.
There are two important ideas involved with the STFT: the more samples in a windowed segment,

the better the frequency resolution, and the shorter the window length, the better the time resolution. This
creates a trade-off between time and frequency resolution. The STFT is know as afixed resolutiontransform
since the frequency and time resolution is the same for each frequency band. (A frequency band is a range
of frequencies.)

An alternative to the STFT are transforms from the family of wavelet transforms, all of which have
the property ofvariable resolution. That is, the signal is broken up into different frequency bands, and
each band is analyzed using basis functions that match the scale of the band. High frequency bands are
correlated with with shorter waves giving good time resolution. Low frequency bands are correlated with
longer waves giving better frequency resolution. This idea is illustrated in Figure 9. While a complete
mathematical description of the wavelet transform is beyond the scope of this Appendix, the reader may
wish to refer to [LLZO02] which provides an introduction to wavelet analysis for data mining applications.
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Figure 9: Trade-off between time and frequency resolution: The best time resolution is found in the time
series representation, while the best frequency resolution is found using one Fourier transform on the entire
signal. Using STFT and Wavelet transforms result is different time-frequency representations.

Lastly, the family of Gammatone transforms provides variable resolution time-frequency representa-
tions of an acoustic signal that are designed to model the human auditory system. More information on
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Gammatone filters can be found in Chapter 10 of [Har98].

A.3 Mel-frequency Cepstral Coefficients (MFCC)

The most common set of features used in speech recognition and music annotation systems are the Mel-
frequency cepstral coefficients (MFCC). MFCC are short-time features that characterize the magnitude
spectrum of an audio signal. For each short-time (25 ms) segment, the feature vector is found using the five
step algorithm given in Algorithm 1. The first step is to obtain the magnitude of each frequency component
in the frequency domain using the DCT. We then take the log of the magnitude since perceptual loudness has
been shown to be approximately logarithmic. The frequency components are then merged into 40 bins that
have been space according the Mel-scale. The Mel-scale is mapping between true frequency and a model
of perceived frequency that is approximately logarithmic. Since a time-series of these 40-dimensional Mel-
frequency vectors will have highly redundant, we could reduce dimension using PCA. Instead, the speech
community has adopted the discrete cosine transform (DCT), which approximates PCA but does not require
training data, to reduce the dimensionality to a vector of 13 MFCCs.

A more complete treatment of MFCC feature extraction, including theoretical and empirical justification
for music modeling, can be found in [Log00].

Algorithm 1 Calculating MFCC Feature Vector
1: Calculate the spectrum using the DFT
2: Take the log of the spectrum
3: Apply Mel-scaling and smoothing
4: Decorrelate using the DCT.

A.4 The Autoregressive (AR) Model

An autoregressive model of orderP assumes that a samplex[n] at timen can be predicted using past samples
according to the model

x[n] = (
P

∑
i=1

aix[n− i])+ ε[n]

where theai ’s are called the linear predictive coding (LPC) coefficients andε[n] is a random variable with
mean 0 and varianceσ2. The LPC coefficients are found by minimizing variance ofε[n] on a training
time series and can be calculated using the Levinson-Durbin algorithm [Mak75]. The intuition behind the
autoregressive model is that the time series have been generated by passing white noise through an all-
pole filter that ‘colors’ the signal. The LPC coefficients{a1, ...,aP} are informative features since they
characterize the spectrum of the coloring filter.
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Future Thesis Committee Members

Potential future committee members is included Charles Elkan, Shlomo Dubnov, Sanjoy Dasgupta, Gary
Cottrell, Serge Belongie, Nuno Vasconcelos, Alon Orlitsky, and Bhaskar Rao.

Future Work

• Feature Design

– Short-Time Extraction

∗ Wavelets

· Read Li’s Wavelet Tutorial - wavelet.org

· Compare with STFT with multiple time resolutions (Serra CCRMA) - similar to Ull-
man’s Intermediate Complexity Feature for Vision

∗ Gammatone Filters (MB03) - read HartmannSignals, sound, and sensation).

∗ Marsyas Features (TC02) - use filterbank transform(MB03) and Autoregression (MAL05)
on Marsyas features

• Modeling

– Using Music Segments

∗ Compare block-based and automatic segmentation

∗ Read automatic segmentation literature - self-similarity, changes in short-time features

∗ Vision - Apply Nuno’s Weibull and Erlang priors to model time since last segment.

– Latent Models

∗ Implement Blei’s Unsupervised Corr-LDA - parameter estimation with variational EM

∗ Implement Nuno’s Supervised M-ary - parameter estimation with Mixture Hierarchy.

∗ Review other image annotation literature on latent models

• Data Sets

– Amazon Free Downloads - Artist, Album, Song Title, Genre (3 level hierarchy).

– RWC Database - small and expensive

– Homemade Database - hand labels for instrumentation, genre, emotion, etc.

– Cross reference AMG Allmusic, Moodlogic, etc to text mine for emotion, instrumentation,
similar songs, etc.
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