A SUPERVISED APPROACH FOR DETECTING BOUNDARIES IN MUSIC
USING DIFFERENCE FEATURES AND BOOSTING
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ABSTRACT

A musical boundary is a transition between two musical
segments such as a verse and a chorus. Our goal is to au-
tomatically detect musical boundaries using temporally-
local audio features. We develop a set of difference fea-
tures that indicate when there are changes in perceptual as-
pects (e.g., timbre, harmony, melody, rhythm) of the mu-
sic. We show that many individual difference features are
useful for detecting boundaries. By combining these fea-
tures and formulating the problem as a supervised learning
problem, we can further improve performance. This is an
alternative to previous work on music segmentation which
has focused on unsupervised approaches based on notions
of self-similarity computed over an entire song. We evalu-
ate performance using a publicly available data set of 100
copyright-cleared pop/rock songs, each of which has been
segmented by a human expert.

1 INTRODUCTION

Most pop/rock songs have a standard structure: an intro-
duction followed by alternating verses, choruses, and so-
los/bridges segments, and concluding with an outro. We
define a musical boundary as the point in time where
a song transitions between two of these segments. A
boundary is often associated with one or more perceptual
cues such as the introduction of a new instrument, a key
change, or a drum fill. Our goal is to first design low-level
features that encode information related to such cues, and
second, use these features to develop a system that can au-
tomatically detect musical boundaries. Automatic bound-
ary detection is useful for generating music thumbnails
[10], efficient music browsing [9], music information re-
trieval [16], and as a front-end for semantic music analysis
systems [14, 11].

There are three main contributions of our work. First,
we describe a set of local difference features each of which
is a time series that is designed to indicate (e.g., ‘peak’)
when some aspect of the music changes. Each feature is
calculated by sliding a difference window across the audio
signal and comparing the information extracted from the
first half of the window with the second half of the win-
dow. Each low-level feature is loosely related to a high-
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level musical concept such as timbre, harmony, melody,
and rhythm. We individually evaluate each difference fea-
ture and report how well each feature can be used to detect
musical boundaries.

Second, we combine these features and propose a su-
pervised learning approach based on the AdaBoost algo-
rithm [3, 15, 5]. For each of our features, we create a large
number of additional features by first smoothing the fea-
ture and then calculating the instantaneous derivatives of
the smoothed versions of the feature. We then simultane-
ously sample each feature in this enlarged set of features
to create a high-dimensional (~ 800 dimensions) vector
of feature values for each sample ' . The samples that cor-
respond to musical boundaries are labeled as belonging
to the ‘boundary’ class while all others are labeled as be-
longing to the ‘non-boundary’ class. We learn a boosted
decision stump (BDS) classifier using training data and
report performance on test data. Viola and Jones [15] pi-
oneered this technique and Dollar et al. [3] applied this to
image boundary detection.

Third, we propose two evaluation metrics, Median
Time Difference and Boundary Hit Rate, in order to quan-
titatively evaluate musical boundary detection. We quan-
titatively evaluate both individual difference features and
BDS classifiers using the RWC music database of 100 pop
songs [6]. This data set now includes human annotated
segmentations and can serve as a common test bed for fu-
ture research [8].

Although we are unaware of previous work that ex-
plicitly addresses musical boundary detection, there has
been a significant amount of work on music segmentation
[9, 13,10, 1, 11, 2, 4]. These two closely related problems
are different in that musical boundary detection involves
finding musical boundaries from temporally-local features
whereas segmentation involves finding coherent segments
within a song using notions of self-similarity (e.g. finding
repetitive structures [9, 2, 4] or identifying similar spectral
characteristics [13, 10, 1]). Our features are designed to
indicate dissimilarity in the audio signal. In addition, our
supervised approach has the benefit of allowing the user to
explicitly specify their definition of a ‘boundary’ through
the labels that they provide for the training data.

! Throughout this paper, we will consider a sample to be a ‘feature
sample’ rather than a ‘audio sample’ that is calculated 10 per second.



2 MUSICAL BOUNDARY FEATURES

In this section, we describe various features that are useful
for detecting musical boundaries. We loosely relate each
to a high-level music concept for clarity, though these fea-
tures are largely derived from a low-level spectral repre-
sentation (e.g., short-time Fourier transforms) and often
can be related to more than one high-level concept.

Each feature is time series that is sampled at a given
feature sampling rate (e.g., 10 samples/sec). We create the
time series by sliding a window (5-10 seconds in length)
across the audio signal with a hopsize equal to the feature
sampling rate. The audio signal in the window is sum-
marized with a statistic. The statistic may be a scalar, a
vector, a matrix, a set of scalars/vectors, or a time series
of scalars/vectors. A difference feature is time series of
scalar values that is derived by sliding a window over an
audio signal. A difference feature is computed by compar-
ing the statistic calculated in the first half of the window
with the statistic calculated in the second half of the win-
dow. When our statistic is a scalar, vector, or matrix, we
will compute the Euclidean norm of the difference. When
our statistic is a set or times series, we first estimate one
Gaussian distribution (with full covariance) from values
in the first half of the window and a second Gaussian dis-
tribution from the values in the second half of the window.
We then compute the symmetric Kullback-Leibler (sKL)
divergence between the two Gaussian distributions (See
Section 2.2.3.4 of [12] for details). The sKL is a non-
negative scalar value that is large when the two estimated
distributions greatly differ. One should note that by es-
timating Gaussians, we discards all temporal information
when our statistic is a time series.

We normalize each feature so that, over an entire song,
the mean of the samples is equal to O and variance of the
samples equal to 1. Normalization is needed for general-
ization of features across the different songs in our corpus.
In addition, we find empirically that ‘smoothing’ a feature
by passing a Gaussian window over the time series im-
proves performance.

2.1 Timbre-related features

Timbre describes sound qualities not related to melody or
rhythm. For example, the instrumentation of a piece has a
strong impact on the perception of timbre. We use a set of
six scalar low-level audio statistics to describe the timbre
of the audio contents within a window. (Section 2.2.5 of
[12] for details.) These features are related to loudness,
noisiness, brightness, and percussiveness of the signal.
We compute six corresponding features, denoted Spec, by
sliding a window over the musical signal. We also com-
pute six spectral difference features, denoted Spec-Diff,
by sliding a difference window over a musical signal and
computing the difference between the values calculated in
each window.

We also use Mel-frequency cepstral coefficients to de-
scribe timbre. An MFCC vector encodes the spectral
shape of a short-time (e.g., 20 msec) audio frame. Given a
difference window, we generate two time series of MFCC
vectors (one for each half of the difference window) us-
ing the frames that are within the window. We esti-

mate a Gaussian distribution using these time series of
MFCC vectors and calculate one sKL value per window.
A MFCC difference feature is then created by sliding the
difference over the song. We generate a set of four MFCC
difference features, denoted MFCC-diff, by using differ-
ent subsets of the MFCCs: the first 5 MFCCs, the first
20 MFCCs, the 2nd to 5th MFCCs, and the 2th to 20th
MFCCs. In addition, we will compute four MFCCDelta-
Diff and four MFCCDelta2-Diff features using the instan-
taneous first and second derivatives from the series of
MEFCC vectors.

2.2 Harmony- and Melody-related features

Chromagrams are often used to encode information about
key and major/minor tonality. For each short-time frame,
We first computing a chroma vector [8] that measures
the relative amount of energy in each pitch class (e.g.
A,....G#). Similar to the computation of the MFCC-
diff features, we estimate Gaussian distributions from the
chroma vectors that are extracted from each half of a
difference windows and compute one sKL per window.
We generate a Chromagram difference feature, denoted
Chroma-diff, by sliding the difference window over the
song. We use 12-, 24-, and 36-dimensional chroma vec-
tors where each element represents 1, 1/2, and 1/3 of a
pitch class, respectively. We also compute ChromaDelta-
Diff and ChromaDelta2-Diff features using the first and
second derivatives from the time series of chroma vectors.
In an attempt to model changes in the melody, we es-
timate the fundamental frequency (FO) and the cumula-
tive power (FOPower) in the harmonics of the estimated
FO for each short-time frame[7]. For both the time series
of FO values and FOPower values, we calculate FO-Diff
and FOPower-Diff features using the same technique we
used to create MFCC-Diff and Chroma-Diff features.

2.3 Rhythm-related features

To model rhythm, we use the fluctuation patterns (FPs)
which describe modulations in the loudness for a set of
frequency bands (see [12] for details). For each Mel-scale
frequency band, an FFT is used to compute modulation
frequencies of the loudness in dB within that band. Mod-
ulations around 4Hz are emphasized using a model of per-
ceived fluctuation strength. The FP is a matrix where the
rows correspond to the Mel-bands and the columns corre-
spond to modulation frequencies. The values of a cell in
the matrix describe strength of the specific modulation for
a specific frequency band.

From an FP computed on each window, we calculate
seven statistics denoted by Flux (see Section 2.2.5.4 of
[12] for details). These statistics are related to the per-
ceived tempo, strength of bass beats, overall strength of
beats, etc. To calculate difference features, we compute
one FP for the first half of the difference window and one
FP for the second half of the difference window. Similar
to the Spec-Diff features, we compute the seven Flux-Diff
features by measuring the difference in values from the
first half to the second half of the window. In addition,
we compute an eighth Flux-diff feature by calculating the
Frobenius norm between the two FPs.



Set Feature # | Comments
Spec 6 | Spectral features
_E Spec-Diff 6 | Differences between Spec Features
] MEFCC-Dift 4 | MFCCs 1-5,1-20,2-5,2-20
= MFCCDelta-Diff 4 | 1st Derivatives of MFCCs
MEFCCDelta2-Diff 4 2nd Derivatives of MFCCs
2 Chroma-Diff 3 Chroma Vectors - 12, 24, 36 Pitch Classes
g ChromaDelta-Diff 3 Ist Derivatives of chroma Vectors
E ChromaDelta2-Diff | 3 2nd Derivatives of chroma Vectors
z FO 2 | FO and FOPower
% FO-diff 2 Differences between F0 Features
=
£E Flux 7 | Fluctuation Pattern (FP) features
=, Flux-Diff 8 Difference of FP features,
§ Frobenius norm of difference between FPs

Table 1. Summary of features: For each song, we extract
37 difference features and 15 non-difference features.

3 PEAK PICKING FOR BOUNDARY DETECTION

Our various difference features are designed to peak when
one or more timbral, harmonic, melodic or rthythmic cues
occurs in a song. Since these cues are often associated
with musical boundaries, we estimate the location of mu-
sical boundaries by ‘picking the local peaks’ of a differ-
ence feature. The quality of the local peaks can be evalu-
ated by comparing them with a human-generated ‘ground-
truth’ segmentation of the music. Since difference fea-
tures are often noisy and simple peak picking results in
estimating too many boundaries, we propose a technique
called local-peak-local-neighborhood (LPLN). First, we
smooth the feature (see Section 2) and then pick local
peaks. For each local peak, we examine at a local neigh-
borhood (e.g., +/- 0.5 seconds) and find the sample with
the largest unsmoothed feature value. For each song,
we rank all of these LPLN samples according to the un-
smoothed feature value. Finally, we output the times cor-
responding to the top N LPLN samples, where NN is a
user-specified number. Empirically, we find that this tech-
nique does (slightly) improve performance over simple
peak picking.

Peak picking can be considered ‘unsupervised’ since
we assume, rather than learn, a relationship between peaks
and boundaries. The two main drawbacks of this approach
are that it is not obvious how to combine multiple features
and that we estimate boundaries only at the peaks of our
difference features. In the next section, we will propose a
‘supervised’ approach that uses the ‘ground truth’ bound-
aries from human segmentations to learn models which in-
corporate a large number of difference and non-difference
features. This approach is flexible in that it does not de-
pend on the assumption that the boundaries occur at the
local peaks of an individual feature.

4 SUPERVISED BOUNDARY DETECTION USING
BOOSTING

We can frame our musical boundary detection problem as
a supervised learning problem. The label for a sample is
1 if a boundary occurs at that sample, and O otherwise.
(Given a feature sample rate of 10 samples/second, there
will be between 7-15 ‘boundary’ samples and about 2000
total samples for each song.) We create a 832-dimensional
vector of feature values for each sample by calculating ad-
ditional features from the 52 features that are described in

Section 2. We smooth each of these features three times
using different smoothing window widths (e.g., 1.6 sec-
onds, 6.4 seconds and 25.6 seconds) to encode different
time resolutions. For each of the resulting 156 smoothed
features, we calculate the first and second instantaneous
derivatives and the absolute values of the first and second
instantaneous derivatives. The derivative features are in-
tended to encode information about the local optima (e.g.,
peaks) of the features. We also include their absolute val-
ues since decision stumps are linear classifiers and de-
tection of local optima depends on the magnitude of the
derivatives. For example, a peak occurs when the magni-
tude of the first derivative is close to zero. We then simul-
taneously sample each of these 52 + 156 4 156 « 4 = 832
features in order to generate a series of 832-dimensional
vectors of feature values. Our training data is the set of
labeled samples from a corpus of songs, however, in prac-
tice we will use only a small random subset of the non-
boundary samples.

We learn a boosted decision stumps (BDS) classifier
from the training data [3, 15]. A decision stump is a
‘weak’ classifier that operates on one feature by setting a
threshold for that feature. For each sample, if the value of
the feature is greater than the threshold, then it is classified
as one class, otherwise it is classified as the other class. At
each iteration of our boosted learning algorithm, we pick
one decision stump with an associated weight and add it to
our existing ensemble of decision stumps and weights. We
use the AdaBoost algorithm to determine the weights [5]
for each decision stump. When classifying a novel vector,
we evaluate each of the stumps and combine their ‘votes’
using the learned weights.

Given a novel song, we extract features, generate the
time series of vectors for feature values, and classify each
vector using our BDS classifier. The classifier outputs
both a binary decision and a confidence score of each sam-
ple belonging to the ‘boundary’ class. Often the classi-
fier will predict many ‘boundary’ samples near one true
boundary. We create a smoothed time series from the se-
ries of confidence scores and pick peaks using the LPLN
technique.

5 EXPERIMENTAL SETUP

We evaluate both unsupervised (picking the peaks of
individual difference features) and supervised (combin-
ing multiple features and learning a BDS classifier) ap-
proaches for detecting musical boundaries. Our data set
is 100 pop songs from the RWC music database (RWC-
MDB-P-2001) [6]. Each song has been manually seg-
mented by a music graduate student [8]. We define a true
musical boundary as a transition between ‘intro’, ‘verse’,
‘chorus’, ‘bridge/solo’, and ‘outro’ segments. There are
between 7-15 boundaries per song and each song is be-
tween 2 and 6 minutes long.

We compare 260 unsupervised (52 features x 5 smooth-
ing window widths) and 4 supervised BDS models. For
each model, we estimate the location of the top 10 musi-
cal boundaries per song using the LPLN technique. We
explicitly fix the number of boundaries since some (less
smoothed) models tend to over segment songs. To eval-
uate a model, we use two sets of metrics: median times



Model Median Time (seconds) Boundary Hit Rates (ranges between 0.0 and 1.0)
guess-to-true  true-to-guess precision recall Hit-F
Baselines
Deterministic 8.85(0.39) 6.40 (0.46) 0.039 (0.006)  0.052 (0.008)  0.043 (0.007)
Stochastic 9.67 (0.42) 8.80 (0.38) 0.043 (0.007)  0.056 (0.009)  0.048 (0.007)
Unsupervised Approaches: Picking the peaks of individual difference features
MFCCDelta-Dift(1-20), 3.2 sec 5.14 (0.49) 3.72 (0.56) 0.258 (0.015)  0.358 (0.022)  0.295(0.017)
fO-Diff(Power), 1.6 sec 8.07 (0.84) 6.36 (0.59) 0.140 (0.012)  0.195(0.017)  0.160 (0.013)
Chroma-Diff(36), 1.6 sec 8.19 (0.71) 9.91 (0.92) 0.120 (0.010)  0.163 (0.014)  0.136 (0.011)
Spec-Diff(Harm), 0.8 sec 7.11 (0.73) 15.87(1.53) 0.109 (0.011)  0.143(0.017)  0.121 (0.012)
Flux-Diff(Norm), 12.8 sec 6.87 (0.52) 3.71 (0.29) 0.096 (0.011)  0.131(0.015)  0.109 (0.012)
Supervised Approaches: training a boosted decision stump (BDS) classifier
BDS 200 4.29 (0.47) 1.82 (0.30) 0.327 (0.016)  0.462 (0.022)  0.378 (0.017)
BDS 100 4.63 (0.46) 1.58 (0.24) 0.320 (0.014)  0.452 (0.020)  0.370 (0.016)
BDS 50 5.06 (0.50) 2.19(0.33) 0.300 (0.016)  0.424 (0.022)  0.346 (0.018)
BDS 20 5.35(0.53) 2.49 (0.37) 0.295 (0.016)  0.422(0.023)  0.342(0.018)

Table 2. Results: The reported value is the average of the metric over the 100 songs. The standard error is reported in
parenthesis. For unsupervised models, we only report the best individual model (feature and smoothing width) from each

of the five sets of difference features.

between estimated and true boundaries, and boundary hit
rates. Two median time metrics, true-to-guess and guess-
to-true, respectively measure the median time between
each true boundary to the closest estimate, and the median
time between each estimate to the closed true boundary.
For the boundary hit rate, we consider an estimate a ‘hit’
when it is within half a second of a true boundary. We cal-
culate the precision (the percentage of estimates that hit
a true estimate), the recall (the percentage of true bound-
aries that are hit), and Hit-F (the harmonic average of pre-
cision and recall). Note that each true boundary can be
hit by at most one estimate since we explicitly prevent es-
timates from being close to one another using the LPLN
technique.

For all metrics, performance is averaged over the 100
songs in the data set. For each supervised model, we use
10-fold cross validation. In addition to providing results
for both our unsupervised and supervised approaches, we
also report the performance of two baselines for compari-
son. The deterministic baseline uniformly spaces 10 esti-
mates over the course of the song. The stochastic baseline
involves picking 10 samples randomly from each song to
use as our estimates for the boundaries. All results are
given in Table 2.

6 RESULTS

For the unsupervised approach, we compare 520 individ-
ual models by smoothing each of the 52 features pre-
sented in Section 2 with one of ten smoothing window
with widths ranging from 0.1 seconds (no smoothing) to
51.2 seconds. We rank (by Hit-F) the best performing in-
dividual feature (and associated smoothing width) in each
set of difference features. If we consider Hit-F metric, the
best model for each difference feature set performs signif-
icantly better than the random baselines. All 12 MFCC-
based difference features outperform all other difference
features with respect to the hit rate metrics.

For the supervised approach, we produce results for
BDS classifiers with 20, 50, 100, or 200 decision stumps.
All BDS classifiers significantly out perform all unsuper-
vised model. By examining the first 20 features selected
during boosting, we find that MFCC, F0O, Spec, Chroma
and Flux difference features are all represented. This sug-
gests that these features are encoding different cues and

that, when combined, can produce superior performance.
Another interesting finding is that the three smoothing
widths and four derivatives are all represented in the first
20 features that are selected. This suggests that it is impor-
tant to consider multiple time resolutions and to encode
‘peaks’ when designing a supervised framework that uses

difference features.
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