
Combining Audio Content and Social Context
for Semantic Music Discovery

Douglas Turnbull
∗

Computer Science Department
Swarthmore College

Swarthmore, PA, USA
turnbull@cs.swarthmore.edu

Luke Barrington*, Mehrdad Yazdani &
Gert Lanckriet

Electrical & Computer Engineering
University of California, San Diego

La Jolla, CA, USA
lukeinusa@gmail.com,myazdani@ucsd.edu,

gert@ece.ucsd.edu

ABSTRACT
When attempting to annotate music, it is important to con-
sider both acoustic content and social context. This pa-
per explores techniques for collecting and combining multi-
ple sources of such information for the purpose of building
a query-by-text music retrieval system. We consider two
representations of the acoustic content (related to timbre
and harmony) and two social sources (social tags and web
documents). We then compare three algorithms that com-
bine these information sources: calibrated score averaging
(CSA), RankBoost, and kernel combination support vector
machines (KC-SVM). We demonstrate empirically that each
of these algorithms is superior to algorithms that use indi-
vidual information sources.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.2.m [Computing Methodolo-
gies]: Artificial Intelligence; J.5 [Computer Applica-
tions]: Arts and Humanities—Music

General Terms
Algorithms, Design, Experimentation

Keywords
combining data sources, music IR, calibrated score averag-
ing, RankBoost, kernel combination SVM

1. INTRODUCTION
Most academic and commercial music information re-

trieval (IR) systems focus on either content-based analy-
sis of audio signals or context-based analysis of webpages,
user preference information (i.e., collaborative filtering) or

∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGIR ’09 Boston, MA, USA
Copyright 2009 ACM 978-1-60558-483-6/09/07 ...$5.00.

social tagging data. However, it seems natural that we can
improve music IR by combining information related to both
the audio content and social context of music. In this paper,
we compare three techniques that combine multiple source
of audio and social information about music.

We are explicitly interested in improving text-based se-
mantic music annotation and retrieval. For example, one
might say that “Wild Horses” by the Rolling Stones is “a
sad folk-rock tune that features somber strumming on an
acoustic guitar, clean electric slide guitar and plaintive vo-
cals.” Such descriptions are full of semantic information that
is useful for music information retrieval. That is, we can
index (i.e., annotate) music with tags, which are short text-
based tokens, such as “sad”, “folk-rock”, and “electric slide
guitar”. More generally, for a large music corpus and a large
vocabulary of tags, we are interested in representing each
song-tag pair with a (probabilistic) score that reflects the
strength of the semantic association between each song and
each tag. Then, when a user enters a text-based query, we
can extract tags from the query, rank-order the songs using
the relevance scores for those tags, and return a list of the
top scoring (i.e., most relevant) songs (e.g., see Table 1).

Semantic information for music can be obtained from a
variety of sources [32]. For example, tags for music can be
collected from humans using surveys, social tagging websites
or annotation games [35, 21]. In addition, the relevance of
tags to songs can be calculated automatically using content-
based audio analysis [22, 7, 34] or by text-mining associated
web documents [38, 15]. Taken together, these complemen-
tary sources of semantic information provide a description of
the acoustic content and place the music in a social context.

In this paper, we consider three sources of music informa-
tion that may be used to annotate songs for the purpose of
semantic music retrieval: audio content, social tags and web
documents. We analyze the audio signal by using two acous-
tic feature representations, one related to timbre and one
related to harmony. We also use two more socially-situated
sources, one based on social tags and one based on web doc-
uments. For each of these four representations, we describe
algorithms that evaluate the relevance of a song to all tags
from a given vocabulary. Using such algorithms, we can re-
trieve songs from a test corpus, ordered by their relevance
to a given text query. We evaluate the performance of these
algorithms using the CAL-500 human-annotated corpus of
500 songs labeled with 72 tags [33].

We then describe and compare three algorithms that com-
bine the information produced by each music representation:
calibrated score averaging (CSA), RankBoost [10], and the
kernel combination support vector machine (KC-SVM) [18].
CSA and RankBoost are similar in that they combine sets of
rank-orderings, where each rank-ordering comes from a sep-
arate information representation. They differ in how they
deal with missing data and how they combine the rankings.
For the KC-SVM algorithm, we first design a set of ker-
nel matrices, where each is derived from one of the music
representations. We then use convex optimization to learn
the optimal linear combination of these kernel matrices, pro-
ducing a single “combined” kernel which can be used by a
support vector machine (SVM) to rank order test set songs.

The following section describes some of the related work
on annotating music with tags, as well as existing approaches
to combining multiple representations of music information.
Section 3 describes how we annotate music by analyzing
audio signals, collecting tags from social networks, and pro-
cessing text documents that are downloaded from the Inter-
net. Section 4 describes three algorithms that combine these
three sources of music information. Section 5 provides a
comparative analysis of these algorithms and contrasts them
to approaches that use only one source of information. We
conclude in Section 6.

2. RELATED WORK
Early work on content-based audio analysis for text-based

music information retrieval focused (and continues to focus)
on music classification by genre, emotion, and instrumen-
tation (e.g., [36, 20, 8]). These classification systems effec-
tively “tag” music with class labels (e.g., ‘blues’, ‘sad’, ‘gui-
tar’). Recently, autotagging systems have been developed
to annotate music with a larger, more diverse vocabulary of
(non-mutually exclusive) tags [34, 22, 7, 31].

Recently, eleven autotagging systems were compared
head-to-head in the “Audio Tag Classification” task of
the 2008 Music Information Retrieval Evaluation eXchange
(MIREX) [5]. Due to multiple evaluation metrics and lack
of statistical significance, there was no clear “best” system,
but our system was one of the top performing systems for
a number of the evaluation metrics [34]. Our system uses a
generative approach that learns a Gaussian mixture model
(GMM) distribution over an audio feature space for each tag
in the vocabulary. We use this approach for content-based
music annotation (see Section 3.1).

Mandel and Ellis proposed another top performing ap-
proach in which they learn a binary SVM for each tag in the
vocabulary [22]. They use Platt scaling [27] to convert SVM
decision function scores to probabilities so that tag relevance
can be compared across multiple SVMs. We follow a similar
procedure in Section 4.3. Eck et. al. [7] also use a dis-
criminative approach by learning a boosted decision stump
classifier for each tag. Finally, Sordo et. al. [31] present a
non-parametric approach that uses a content-based measure
of music similarity to propagate tags from annotated songs
to similar songs that have not been annotated.

Socially-oriented music information can be mined from
corpora of text documents. Whitman and Ellis [38] repre-
sent album reviews as (TF-IDF) document vectors over tag
vocabularies of n-grams, adjectives and noun phrases. They
use the TF-IDF weights for each tag to train and evaluate a
content-based autotagging system. Knees et al. [15] propose

an alternative approach called rank-based relevance scoring
in which they collect a mapping from songs to a large corpus
of webpages by querying a search engine (e.g., Google) with
song, album and artist names. When a user enters a free-
text query string, the corpus of webpages is ranked using
an IR approach and then the mapping from webpages back
to songs is used to retrieve relevant songs. This approach
improves on the standard vector space model (e.g., TF-IDF)
[15]. In Section 3.2.2, we use a variant of this approach to
extract information from web documents.

A second source of social music information comes directly
from users who “tag” music with free-text tokens. These an-
notations are collected, summarized, and made available by
musically-oriented social networking sites like Last.fm and
MyStrands. While they have become a popular source of
semantic music information [16, 19], Lamere and Pampalk
note that there is a substantial sparse data problem due to a
large numbers of unique songs (150M) and tags (1.2M) [17].
This problem is compounded by both popularity bias (e.g.,
only popular songs are tagged) and the cold-start problem
(e.g., it takes time to annotate new songs).

The goal of our work is to combine multiple representa-
tions of music information from acoustic and social sources
to improve query-by-text music retrieval. While there is rel-
atively little work on this exact problem, there has been sig-
nificant research on the task combining multiple complemen-
tary audio representations for music classification [36, 9, 22].
Tzanetakis and Cook [36] present a number of content-based
feature sets that relate to timbre, harmony and melody.
They concatenate and summarize these feature sets into a
single vector to represent each song. They use these music
feature vectors with standard classifiers (e.g., nearest neigh-
bor, GMM) for the task of genre classification.

Flexer et al.[9] combine information from two audio repre-
sentations related to tempo and timbre (MFCCs). They use
a nearest-neighbor classifier on each feature space to deter-
mine probabilities of dance-music genres. Using the näıve
Bayes assumption of class-conditional independence given
each feature set, they find that the product of these two
probabilities improves 8-way genre classification of dance
music. This approach is akin to how multiple calibrated
scores are combined by our CSA algorithm (Section 4.1).

Beyond the music domain, there has been a good deal
of research on combining multiple sources (or representa-
tions) of information [4, 26, 30]. Approaches can be roughly
divided into early fusion where feature representations are
merged (e.g., stacking feature vectors [36]) before classifi-
cation or ranking and late fusion where outputs of mul-
tiple classifiers or ranking algorithms are combined (e.g.,
[9]). Late fusion approaches, often used in “meta-search”
engines, can be further divided into score-based approaches
that combine the (probabilistic) scores output by the clas-
sifiers, and rank-based approaches that combine multiple
rank-orderings of (text, image, or audio) documents. Rank-
based approaches (also referred to as rank aggregation) are
more general since they can be implemented when scores are
not available.

Manmantha et al. [23] provide an example score-based ap-
proach where they estimate a mixed Gaussian-exponential
distribution over scores for each search engine. Using these
distributions, they map scores to posterior probabilities
(e.g., calibration) and then combine these probabilities by
averaging them. This approach is related to our CSA algo-

rithm, but differs in that we use a non-parametric technique
called isotonic regression [39] to calibrate our scores.

Freund et al. [10] describe the RankBoost algorithm. This
rank-based approach is relatively easy to implement, has a
strong theoretical foundation, and has been shown to per-
form well on many learning tasks [3]. We describe the Rank-
Boost algorithm in more detail in Section 4.2.

Lastly, Lanckriet et al. [18] propose an approach that is
neither early fusion nor late fusion since the multiple repre-
sentations are combined and a decision boundary is learned
simultaneously. They use a kernel matrix to represent each
information source and learn a linear combination of these
kernels that optimizes performance on a discriminative clas-
sification task. It has been shown that, for protein classifi-
cation [18] and music retrieval [2] tasks, an optimal combi-
nation of heterogenous feature kernels performs better than
any individual feature kernel.

3. SOURCES OF MUSIC INFORMATION
In this section, we describe three sources of music informa-

tion and show how we extract four meaningful feature-based
representations from them. For each representation, we de-
rive a relevance score function, r(s; t), that evaluates the
relevance of song s to tag t. The song-tag relevance scores
derived from representations based on the audio content are
dense, while those resulting from social representations are
considered sparse since the strength of association between
some songs and some tags is unknown (i.e., missing). For
example, less-popular songs tend to be more sparsely anno-
tated since fewer humans have listened to these songs (i.e.,
the “cold start” problem). (See [32] for more detail.)

3.1 Representing Audio Content
We use the supervised multiclass labeling (SML) model,

recently proposed by Turnbull et al. [34], to automatically
annotate songs with tags based on audio content analysis.
The SML model is parameterized by one Gaussian mix-
ture model (GMM) distribution over an audio feature space
for each tag in the vocabulary. First, the audio track of
each song, s, is represented as a bag of feature vectors,
X = {x1, ...,xT }, where each xi is a feature vector that
represents a short-time segment of audio, and T depends on
the length of the song. We first use the expectation maxi-
mization algorithm to learn a GMM distribution of the set
of audio feature vectors X that describes each song. Next,
we identify a set of example songs that humans have associ-
ated with a given tag. Finally, the GMMs that model these
example songs are used by the mixture-hiearchies expecta-
tion maximization algorithm [37] to learn the parameters of
GMM distribution that represents the tag.

Given a novel song s, the set of audio features X is ex-
tracted and the likelihood is evaluated using each of the tag
GMMs. The result is a vector of probabilities that, when
normalized, can be interpreted as the parameters of a multi-
nomial distribution over the vocabulary of tags. Under this
probabilistic setup, the relevance of song s to tag t may be
written as:

raudio(s; t) ∝ p(t|X), (1)

given a number of simplifying assumptions (see Section III.b
of [34] for details.) We next describe two different audio
feature representations used to produce two different bags
of feature vectors for each song, XMFCC and XChroma.

3.1.1 MFCCs

Mel frequency cepstral coefficients (MFCCs) are a popular
audio feature representation for a number of music informa-
tion retrieval tasks and were incorporated into all of the top
performing autotagging systems in the most recent MIREX
competition [34, 22, 7]. MFCCs are loosely associated with
the musical notion of timbre (e.g., “color of the music”) since
they are a low-dimensional representation of the spectrum1

of a a short-time audio sample.
For each 22050 Hz-sampled monaural song in the data set,

we compute the first 13 MFCCs for each half-overlapping
short-time (∼23 msec) segment. Over the time series of au-
dio segments, we calculate the first and second instantaneous
derivatives (referred to as deltas) for each MFCC. This re-
sults in about 5,000 39-dimensional MFCC+delta feature
vectors per 30 seconds of audio content. We summarize an
entire song by modeling the distribution of its MFCC+delta
features with an 8-component GMM. We model each tag
with a 16-component GMM.

3.1.2 Chroma
Chroma features [11] attempt to represent the harmonic

content (e.g, keys, chords) of a short-time window of audio
by computing the spectral energy present at frequencies that
correspond to each of the 12 notes in a standard chromatic
scale (e.g., black and white keys within one octave on a
piano). We extract a 12-dimensional chroma feature every
1
4

second and, as with MFCCs, model the song and tag
distributions of chroma features with 8- and 16-component
GMMs, respectively.

3.2 Representing Social Context
We can also summarize each song in our dataset with

an annotation vector over a vocabulary of tags. Each real-
valued element of this vector indicates the relative strength
of association between the song and a tag. We propose two
methods for collecting this semantic information: social tags
and web-mined tags. The annotation vectors are, in general,
sparse as most songs are annotated with only a few tags. A
missing song-tag pair can arise for two reasons: either the
tag is not relevant or the tag is relevant but nobody has an-
notated the song with it. It is also important to note that an-
notation vectors can be considered noisy observations since
they do not always accurately reflect the semantic relation-
ships between songs and tags due to the unstructured and
inconsistent nature of the data collection process.

3.2.1 Social Tags
Last.fm2 is a music discovery website that allows users to

contribute social tags through a text box in their various
audio player interfaces. By September of 2008, their 20 mil-
lion monthly users had annotated 3.8 million items (songs,
artists, albums or record labels) over 50 million times (a rate
of 2.5 million annotations per month) using a vocabulary of
1.2 million unique free-text tags [17]. While this may seem
substantial, given that Last.fm’s database contains over 150
million songs by 16 million artists, these annotations account
for only a small fraction of available music.

1The spectrum of an audio signal represents the various har-
monic and inharmonic elements that combine to produce a
particular acoustic experience.
2www.last.fm

For each song s in our dataset, we attempt to collect two
lists of social tags from Last.fm using their public data shar-
ing AudioScrobbler3 website. The first list relates the song
to a set of tags where each tag has a tag score that ranges
from 0 (low) to 100 (high). This score is a function of both
the number and diversity of users who have annotated that
song with the tag and is a trade secret of Last.fm. The sec-
ond list associates the artist with tags and aggregates the
tag scores for all the songs by that artist.

The relevance score rsocial(s; t) for song s and tag t is the
sum of the tag scores on the artist list and song list plus
the tag score for any synonyms or wildcard matches of t on
either list. For example, a song is considered to be annotated
with ‘down tempo’ if it has instead been annotated with
‘slow beat’. In addition, ‘blues’ matches with the tags ‘delta
electric blues’, ‘blues blues blues’, and ‘rhythm & blues’.

3.2.2 Web-Mined Tags
In order to extract tags from a corpus of web documents,

we adapt the relevance scoring (RS) algorithm that has re-
cently been proposed by Knees et. al. [15]. They have
shown this method to be superior to algorithms based on
vector space representations. To generate relevance scores,
RS works as follows:

1. Collect Document Corpus: For each song in the
music corpus, query a search engine with the song
title, artist name, and album title. Collect the web
documents returned by the search engine. Retain the
(many-to-many) mapping M such that Ms,d = 1 if
document d was found when using song s in the query,
and 0 otherwise.

2. Tag Songs: For each tag, t;

(a) Use t as a query string to find the set of relevant
documents Dt from the text-corpus retrieved in
Step 1. Each document d ∈ Dt will be associated
with a relevance weight, wd,t (defined below).

(b) For each song s, sum the relevance weights for all
the documents d ∈ Dt:

rweb(s; t) =
X
d∈Dt

Ms,d · wd,t.

We modify this algorithm in two ways. First, in [15], the
relevance weight wd,t is inversely proportional to the rank
of the relevant document. In our implementation, the rele-
vance weight is a function of the number of times the tag ap-
pears in the document (tag-frequency), the number of doc-
uments with the tag (document frequency), the number of
total words in the document, the number of words or docu-
ments in the corpus, etc. Specifically, the relevance weights
are determined by the MySQL match function.4

The second modification is that we use site-specific queries
when creating our corpus of web documents (Step 1). That
is, Knees et. al. [15] collect the top 100 documents returned
by Google when given queries of the form:

• “<artist name>” music
• “<artist name>”“<album name>” music review
• “<artist name> ”“<song name>” music review

for each song in the data set. We use site-specific queries
by appending the substring ‘site:<music site url>’ to the
three query templates, where <music site url> is the url

3www.audioscrobbler.net
4http://dev.mysql.com/doc/refman/5.0/en/fulltext-
natural-language.html

for a music website that is known to have high quality in-
formation about songs, albums or artists. These sites in-
clude allmusic.com, amazon.com, bbc.co.uk, billboard.com,
epinions.com, musicomh.com, pandora.com, pitchforkme-
dia.com, rollingstone.com, and wikipedia.org. For these 10
music sites and one non-site-specific query, we collect and
store the top 10 pages returned by the Google search engine.
This results in a maximum of 33 queries and a maximum of
330 pages per song. On average, we are only able to collect
150 webpages per song since some of the less popular songs
are not well represented by these music sites.

4. COMBINING MULTIPLE SOURCES OF
MUSIC INFORMATION

Given a query tag t, our goal is to find a single rank or-
dering of songs based on their relevance to tag t. We present
three algorithms that combine the multiple sources of music
information to produce such a ranking. The first two algo-
rithms, calibrated score averaging (CSA) and RankBoost,
directly combine the individual rank orderings provided by
each of our four music information representations. For the
two audio content representations, we use the SML algo-
rithm presented in Section 3.1 to produce these rank or-
derings. For the two social context sources, the rank or-
derings are constructed by using social tag scores or web
relevance scores as described in Section 3.2.1. The third
algorithm, Kernel Combination SVM (KC-SVM), uses con-
vex optimization to combine a set of kernel matrices derived
from each of the four music representations.

All three algorithms are considered supervised since they
use labeled training data to learn how best to combine music
representations. That is, we have a ground truth of binary
judgement labels for each song-tag pair (e.g., 1 if relevant, 0
otherwise) which we denote as l(s; t) for tag t and song s.

4.1 Calibrated Score Averaging (CSA)
Each representation of a data source produces a relevance

score function, r(s; t), indicating how relevant tag t is for de-
scribing song s. Using training data, we can learn a function
g(·) that calibrates scores such that g(r(s; t)) ≈ P (t|r(s; t)).
This allows us to compare data sources in terms of calibrated
posterior probabilities rather than incomparable scores.

As described by Zadrozny and Elkan [39], we use isotonic
regression [28] to estimate a function g for each represen-
tation. More specifically, we use the pair-adjacent viola-
tors (PAV) algorithm [1, 6] to learn the stepwise-constant
isotonic (i.e., non-decreasing) function that produces the
best fit in terms of minimum mean-squared error. To
learn this function g for tag t, we start with a (low to

high score) rank-ordered training set s(1), s(2), ...s(N) of N

songs where r(s(i−1); t) < r(s(i); t). We initialize g to
be equal to the sequence of binary training labels (e.g.,

g(r(s(i); t)) = l(s(i); t). If the training data is perfectly or-
dered, then g is isotonic and we are done. Otherwise, there
exists an i where there is a pair-adjacent violation such that
g(r(s(i−1); t)) > g(r(s(i); t)). To remedy this violation, we

update g(r(s(i−1); t)) and g(r(s(i); t)) so that they both be-

come [g(r(s(i−1); t))+g(r(s(i); t))]/2. We repeat this process
until we have eliminated every pair-adjacent violation. At
this point, g is isotonic and we combine it with the corre-
sponding scores r(s(i); t) to produce a stepwise function that
maps scores to approximate probabilities.

For example, if we have 7 songs with relevance scores
equal to (1, 2, 4, 5, 6, 7, 9) and ground truth labels equal to
(0, 1, 0, 1, 1, 0, 1), then g(r) = 0 for r < 2, g(r) = 1/2 for
2 ≤ r < 6, g(r) = 2/3 for 6 ≤ r < 9, and g(r) = 1 for 9 ≤ r.
We use Dümbgen’s [6] linear-time O(N) implementation of
the PAV algorithm for our experiments in Section 5.

Recall that the social context data sources are sparse:
many song-tag scores are missing. This may mean that the
tag is actually relevant to the song but that no data is found
to connect them (e.g., no humans bothered to annotate the
song with the tag). The most straightforward approach to
dealing with this problem is to estimate P (t|r(s; t) = ∅) with
the prior probability P (t). However, we find empirically that
a missing song-tag score often suggests that the tag is truly
not relevant. Instead, we use the training data to estimate:

P (t|r(s; t) = ∅) =
#(relevant songs with r(s; t) = ∅)

#(songs with r(s; t) = ∅) . (2)

Once we have learned a calibration function for each rep-
resentation, we convert the vector of scores for a test set song
to a vector of approximate posterior probabilities. We can
combine these posterior probabilities by using the arithmetic
average, geometric average, harmonic average, median, min-
imum, maximum, and other variants [14]. We also consider
variants that ignore missing scores such that we combine
only the non-missing calibrated scores. Of all these vari-
ants, we find that the arithmetic average produces the best
empirical tag-based retrieval results.

4.2 RankBoost
In a framework that is conceptually similar to the Ad-

aboost algorithm, the RankBoost algorithm produces a
strong ranking function H that is a weighted combination of
weak ranking functions ht [10]. Each weak ranking function
is defined by the representation, a threshold, and a default
value for missing data. For a given song, the weak ranking
function is an indicator function that outputs 1 if the score
for the associated representation is greater than the thresh-
old or if the score is missing and the default value is set to
1. Otherwise, it outputs 0. During training, RankBoost it-
eratively builds an ensemble of weak ranking functions and
associated weights. At each iteration, the algorithm selects
the weak learner (and associated weight) that maximally re-
duces the rank loss of a training data set given the current
ensemble. We use the implementation of RankBoost shown
in Figures 2 and 3 of [10].5

4.3 Kernel Combination SVM (KC-SVM)
In contrast to the two previous methods of directly com-

bining the outputs of each individual system, we could com-
bine sources at the feature level and produce a single rank-
ing. Lanckriet et al. [18] propose a linear combination of M
different kernels that each encode different data features:

K =
MX
m=1

µmKm, where µm > 0 and Km � 0 ∀m. (3)

Since each individual kernel matrix, Km, is positive semi-
definite, their positively-weighted sum, K, is also a valid,
positive semi-definite kernel [29].

5We also enforce the positive cumulative weight constraint
for the RankBoost algorithm as suggested at the end of Sec-
tion 4 in [10].

The individual kernel matrices Km represent similarities
between all songs in the data set. One kernel matrix is
derived from each of the data representations described in
Section 3. The kernels are normalized by projection onto
the unit sphere [29].

For the two audio content features (MFCC and Chroma),
we model the set of audio features that represent a song,
X = {x1, ...,xT }, with a GMM distribution, p(x; θ), where
the GMM is specified by parameters θ. We then compute the
entries of a probability product kernel (PPK) [12] by com-
paring the parameters of the GMM distributions that model
each song. We have found experimentally that the PPK per-
forms better than other kernels that attempt to capture sim-
ilarities between distributions (such as the Kullback-Leibler
divergence kernel space [25]) and that the PPK is also eas-
ier and more elegant to compute. The PPK between songs
i and j is computed as:

Kaudio(i, j) =

Z
p(x; θi)

ρp(x; θj)
ρdx, (4)

where ρ > 0. When ρ = 1/2, the PPK corresponds to
the Bhattacharyya distance between two distributions. This
case has a geometric interpretation similar to the inner-
product between two vectors. That is, the PPK measures
the cosine of the “angle” between the two distributions. An-
other advantage of the PPK is that closed-form solutions for
GMMs and other parametric distributions are available [12],
whereas this is not the case for Kullback-Leibler divergence.

For each of the social context features, we compute a ra-
dial basis function (RBF) kernel [29] with entries:

Ksocial(i, j) = exp(−‖xi − xj‖2

2σ2
), (5)

where K(i, j) represents the similarity between xi and xj ,
the annotation vectors for songs i and j, described in Section
3.2. The hyper-parameter σ is estimated using cross valida-
tion. If any element of an annotation vector (i.e., song-tag
pair) is missing, we set that element to zero. If a song has
not been annotated with any tags, we assign that song the
average annotation vector (i.e., the estimated vector of prior
probabilities of each tag in the vocabulary).

For each tag t and corresponding class-label vector, y,
(yi = +1 if l(i; t) = 1 and yi = −1 otherwise), the primal
problem for the single-kernel SVM is to find the decision
boundary with maximum margin separating the two classes.
The optimum value of the dual problem is inversely propor-
tional to the margin separating the classes and is convex
in the kernel, K. The kernel combination SVM problem
requires learning the set of weights, µ, that combine the
feature kernels, Km, into the “optimum” kernel, while also
solving the standard SVM optimization. The optimum K
can be learned by minimizing the function that optimizes
the dual (thereby maximizing the margin) with respect to
the kernel weights, µ:

min
µ


max

0≤α≤C,αT y=0
2αT e− αTdiag(y)Kdiag(y)α

ff
subject to: µT e = 1

µm ≥ 0 ∀m = 1, ...,M,

(6)

where K =

MX
m=1

µmKm and e is an n-vector of ones such

that µT e = 1 constrains the weights µ to sum to one. C is
a hyper-parameter that limits violations of the margin (in

Table 1: Tag-based music search examples for Calibrated Score Averaging (CSA). The top ranked songs for
each of the first 5 folds (during 10-fold cross validation) for 12 representative tags. In each box, the tag is
listed first (in bold). The second row is the the area under the ROC curve (AUC) and the mean average
precision (MAP) for the tag (averaged over 10-fold cross validation). Each artist-song pair is the top ranked
song for the tag and is follow by “(m)” if it is considered misclassified, according to the ground truth. Note
that some of the misclassified songs may actually be representative of the tag.

Synthesized Song Texture Acoustic Song Texture Electric Song Texture
0.80 / 0.71 0.73 / 0.76 0.76 / 0.73

Tricky - Christiansands (m) Robert Johnson - Sweet Home Chicago Portishead - All Mine
Propellerheads - Take California Neil Young - Western Hero Tom Paul - A little part of me (m)
Aphex Twin - Come to Daddy Cat Power - He War (m) Spiritualized - Stop Your Crying (m)
New Order - Blue Monday John Lennon - Imagine Muddy Waters - Mannish Boy
Massive Attack - Risingson Ani DiFranco - Crime for Crime Massive Attack - Risingson (m)

Female Vocals Male Vocals Distorted Electric Guitar
0.95 / 0.90 0.71 / 0.82 0.78 / 0.42

Billie Holiday - God Bless The Child The Who - Bargain The Who - Bargain (m)
Andrews Sisters - Boogie Woogie Bugle Boy Bush - Comedown Bush - Comedown
Alanis Morissette - Thank U AC/DC - Dirty Deeds Done Dirt Cheap The Smithereens - Behind the Wall of Sleep
Shakira - The One Bobby Brown - My Prerogative Adverts - Gary Gilmore’s Eys (m)
Alicia Keys - Fallin’ Nine Inch Nails - Head Like a Hole Sonic Youth - Teen Age Riot

Jazz Blues Soft Rock
0.96 / 0.82 0.84 / 0.45 0.77 / 0.37

Billie Holiday - God Bless The Child B.B. King - Sweet Little Angel Steely Dan - Rikki Don’t Lose That # (m)
Thelonious Monk - Epistrophy Canned Heat - On the Road Again (m) Carpenters - Rainy Days and Mondays (m)
Lambert, Hendricks & Ross-Gimme That Wine Cream - Tales of Brave Ulysses (m) Cat Power - He War (m)
Stan Getz - Corcovado Muddy Waters - Mannish Boy Carly Simon - You’re So Vain
Norah Jones - Don’t Know Why Chuck Berry - Roll Over Beethoven (m) Bread - If

Calming Aggressive Happy
0.81 / 0.66 0.84 / 0.51 0.67 / 0.49

Crosby, Stills & Nash - Guinnevere Pizzle - What’s Wrong with my foot? The Turtles - Elenore
Carpenters - Rainy Days and Mondays Rage Against the Machine-Maggie’s Farm Jane’s Addiction - Been Caught Stealing
Cowboy Junkies - Postcard Blues Aphex Twin - Come to Daddy Stevie Wonder - For Once in My Life
Tim Hardin - Don’t Make Promises Black Flag - Six Pack New Order - Blue Monday (m)
Norah Jones - Don’t Know Why Nine Inch Nails - Head Like a Hole Altered Images-Don’t Talk to Me About Love

practice, we find it necessary to set C independently for both
classes). The non-zero entries of the solution vector α indi-
cate the support vectors that define the decision boundary.

The problem in Equation 6 can be formalized as a
quadratically-constrained quadratic program (for full de-
tails, see [18]). The solution returns a linear decision func-
tion that defines the distance of a new song, sz, from the hy-
perplane boundary between the positive and negative classes
(i.e., the relevance of sz to tag t):

rSVM (sz; t) =

nX
i=1

αiK(i, z) + b, (7)

where b is the offset of the decision boundary from the ori-
gin. SVM classifiers use the sign of the decision function to
indicate on which side of the decision boundary a given data
point lies and thus classify it as belonging to the class or not
(e.g., decides whether tag t applies to the song or not). More
generally, the distance from the decision boundary may be
used to rank data points by their relevance to the class (e.g.,
rank songs by their relevance to tag t) [22].

5. SEMANTIC MUSIC RETRIEVAL EX-
PERIMENTS

In this section, we apply the three algorithms presented in
the previous section to the task of semantic (i.e., tag-based)
music retrieval. We experiment on the CAL-500 data set
[33]: 500 songs by 500 unique artists each annotated by a
minimum of 3 individuals using a 174-tag vocabulary6. A
song is considered to be annotated with a tag if 80% of the

6Supplementary information and data for this paper can be
found at http://cosmal.ucsd.edu/cal/.

human annotators agree that the tag is relevant. For the ex-
periments reported here, we consider a subset of 72 tags by
requiring that each tag be associated with at least 20 songs
and removing some tags that we deemed to be redundant or
overly subjective. These tags represent genres, instruments,
vocal characteristics, song usages, and other musical char-
acteristics. The CAL-500 data is a reasonable ground truth
since it is complete and redundant (i.e., multiple individu-
als explicitly evaluated the relevance of every tag for each
song). However, any such ground truth will be subjective
due to the nature of the music annotation task [17].

Given a tag (e.g., “jazz”), the goal is to rank all songs
by their relevance to the query tag (e.g. jazz songs at the
top). In most cases, we can directly rank songs using the
scores associated with the song-tag pairs for a tag. How-
ever, when using the SVM framework, we learn a decision
boundary for each tag (e.g., a boundary between jazz / not
jazz). We then rank all test songs by their distance (positive
or negative) from the decision boundary, using Equation 7.
The songs which most strongly embody the query tag should
have a large positive distance from the boundary. Reformu-
lations of the single-kernel SVM exist which optimize for
ranking rather than classification [13] but the distance from
the boundary provides a monotonic ranking of the entire
test set which is suitable for this semantic retrieval task.

We compare the direct and SVM ranking results to the
human-annotated labels provided in the CAL-500 dataset
and evaluate the rankings using two metrics: the area under
the receiver operating characteristic (ROC) curve (denoted
AUC) and the mean average precision (MAP) [24]. The
ROC curve compares the rate of correct detections to false
alarms at each point in the ranking. A perfect ranking (i.e.,

Table 2: The number of tags for which each musical
feature representation was the best at predicting tag
relevance.

Representation Direct Ranking SVM Ranking

MFCC 51 42
Chroma 0 0
Social Tags 9 21
Web-Mined Tags 12 9

Table 3: Evaluation of semantic music retrieval. All
reported AUC and MAP values are averages over a
vocabulary of 72 tags, each of which has been aver-
aged over 10-fold cross validation. The top four rows
represent individual data source performance. Sin-
gle Source Oracle (SSO) picks the best single source
for retrieval given a tag, based on test set perfor-
mance. The final three approaches combine infor-
mation from all four data sources using the algo-
rithms described in Section 4. Note the perfor-
mance differences between single source and mul-
tiple source algorithms are significant (one-tailed,
paired t-test over the vocabulary with α = 0.05).
However, the differences between between SSO,
CSA, RB and KC are not statistically significant.

Representation Direct Ranking SVM Ranking

AUC MAP AUC MAP

MFCC 0.731 0.473 0.722 0.467
Chroma 0.527 0.299 0.604 0.359
Social Tags 0.623 0.431 0.708 0.477
Web-Mined Tags 0.625 0.413 0.699 0.477
Single Source Oracle (SSO) 0.756 0.530 0.753 0.534
Calib. Score Avg. (CSA) 0.763 0.538 · ·
RankBoost (RB) 0.760 0.531 · ·
Kernel Combo (KC) · · 0.756 0.529

all the relevant songs at the top) results in an AUC equal to
one. Ranking songs randomly, we expect the AUC to be 0.5.
Mean average precision (MAP) is found by moving down the
ranked list of test songs and averaging the precisions (the
ratio of corlrectly-labeled songs to the length of the list) at
every point where we correctly identify a new song.

5.1 Single Data Source Results
For each representation (MFCC, Chroma, Social Tags,

Web-Mined Tags), we evaluate the direct ranking and the
single-kernel SVM ranking. For SVM ranking, we construct
a kernel and use it to train a one-vs-all SVM classifier for
each tag where the negative examples are all songs not la-
beled with that tag. We train SVMs using 400 songs, find
the optimum regularization parameter, C, using a validation
set of 50 songs and use this final model to report results on
a test set of 50 songs. The performance of each kernel, av-
eraged using 10-fold cross validation for each tag (such that
each song appears in the test set exactly once), and then
averaged over the set of 72 tags, is shown on the rightmost
columns of Table 3. To be consistent with SVM ranking, we
use 10-fold cross validation for direct ranking and average
evaluation metrics over each fold, and then over each tag.
These results appear center columns of Table 3.

Table 3 also shows the results that could be achieved if
the single best data source for each tag were known in ad-

vance and used to rank the songs. This single source oracle
(SSO) can be considered an empirical upper bound since it
selects the best data source for each tag based on test set
performance and should be the minimum target for our com-
bination algorithms. For example, the best representation
for the tag “jazz” is web-mined tags while the best represen-
tation for “hip hop” is MFCC. The number of tags for which
each data source was most useful is shown in Table 2.

Table 3 demonstrates that all four data sources produce
rankings that are significantly better than random, and that
MFCC produces the significantly best individual rankings7.
Table 2 indicates that MFCC is the single best data source
for about 60% of the tags while the social context-based fea-
tures are best for the other 40%. While Chroma produces
the the worst overall performance, the AUC for SVM rank-
ing is 0.6 and is significantly better than random.

5.2 Multiple Data Source Results
Using the three algorithms described in Section 4, we can

combine information from the four data sources to signifi-
cantly enhance our tag-based music retrieval system. These
results are shown in the bottom three rows of Table 3. We
also produce qualitative search results in Table 1 to provide
context for our evaluation metrics. The best performance is
achieved using CSA, though the performance is neither sig-
nificantly better than RankBoost nor KC-SVM. In addition,
CSA is not significantly better than the SSO.

As previously noted, the Chroma representation produces
the worst single source results (AUC of 0.527 for direct rank-
ing is not much better than random). If we omit the Chroma
representation, the AUC for CSA increases to 0.767, a sig-
nificant difference over SSO. RankBoost and KC-SVM also
show slight improvements, but not so much that they are
significantly better than SSO. While this may seem like pos-
itive observation for CSA, it suggests that CSA is less robust
to additional noisy representations.

If we examine the 8 single and 3 multiple data source algo-
rithms when considering each tag individually, 47 of the 72
tags are improved by one of the multiple data source algo-
rithms. Specifically, CSA performs best for 16 tags, Rank-
Boost performs best for 11, and Kernel Combination per-
forms best for 20 tags. This suggests that each algorithm
is individually useful and that combination of their outputs
could further enhance semantic music retrieval.

6. DISCUSSION
In this paper, we have described three sources of music

information and show that they are each individually useful
for semantic music retrieval. Furthermore, we have explored
three algorithms that further improve retrieval performance
by effectively combining these information sources. While
the CSA algorithm produced the best overall results, our
experiments suggest that it is more negatively affected by
noisy information than KC-SVM or RankBoost. CSA and
RankBoost are generally easier to code and take less time
to train than KC-SVM since they do not involve convex
optimization. CSA has the added benefit of being easy to
“tune” if we are interested in designing a user interface in
which the user decides how much relative weight to place on
each data source.

7Unless otherwise noted, all statistical hypothesis tests be-
tween two algorithms are one-tailed, paired t-test over the
vocabulary (sample size = 72) with α = 0.05

Future work will involve incorporating additional audio
representations such as those that relate to melody and
rhythm [36]. In addition, we are currently collecting a larger
music corpus (+10, 000 songs) accompanied by a larger vo-
cabulary containing thousands of tags. While the CAL-500
data set used in the paper may seem small by comparison,
it will continue to be useful for training and evaluation since
it difficult to collect ground truth annotations for even a
modest number of song-tag pairs.

7. REFERENCES
[1] M. Ayer, H.D. Brunk, G.M. Ewing, W.T. Reid, and

E. Silverman. An empirical distribution function for
sampling with incomplete information. Annals of
Mathematical Statistics, 1955.

[2] L. Barrington, M. Yazdani, D. Turnbull, and
G. Lanckriet. Combining feature kernels for semantic
music retrieval. ISMIR, 2008.

[3] C. Cortes and M. Mohri. AUC optimization vs. error
rate minimization. In NIPS. MIT Press, 2004.

[4] W.B. Croft. Combining approaches to information
retrieval. Advances in Information Retrieval, 2000.

[5] S. J. Downie. The music information retrieval
evaluation exchange (2005–2007): A window into
music information retrieval research. Acoustical
Science and Technology, 2008.

[6] Lutz Dümbgen. Isotonic regression software (Matlab),
http://staff.unibe.ch/duembgen/software/#Isotone.

[7] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green.
Automatic generation of social tags for music
recommendation. In NIPS, 2007.

[8] S. Essid, G. Richard, and B. David. Inferring efficient
hierarchical taxonomies for music information retrieval
tasks: Application to music instruments. ISMIR, 2005.

[9] A. Flexer, F. Gouyon, S. Dixon, and G. Widmer.
Probabilistic combination of features for music
classification. ISMIR, 2006.

[10] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
JMLR, 4:933–969, 2003.

[11] M. Goto. A chorus selection detection method for
musical audio singals and its application to a music
listening station. IEEE TASLP, 14-5, 2006.

[12] T. Jebara, R. Kondor, and A. Howard. Probability
product kernels. Journal of Machine Learning
Research, 5:819–844, 2004.

[13] T. Joachims. Optimizing search engines using
clickthrough data. ACM Conference on Knowledge
Discovery and Data Mining, 2002.

[14] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On
combining classifiers. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 20(3):226–239, 1998.

[15] P. Knees, T. Pohle, M. Schedl, D. Schnitzer, and
K. Seyerlehner. A Document-centered Approach to a
Natural Language Music Search Engine. ECIR, 2008.

[16] P. Knees, T. Pohle, M. Schedl, and G. Widmer. A
music search engine built upon audio-based and
web-based similarity measures. In ACM SIGIR, 2007.

[17] P. Lamere and E. Pampalk. Social tags and music
information retrieval. ISMIR Tutorial, 2008.

[18] G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L. El
Ghaoui, and M.I. Jordan. Learning the kernel matrix

with semi-definite programming. Journal of Machine
Learning Research, 5:27–72, 2004.

[19] M. Levy and M. Sandler. A semantic space for music
derived from social tags. In ISMIR, 2007.

[20] T. Li and G. Tzanetakis. Factors in automatic musical
genre classification of audio signals. IEEE WASPAA,
2003.

[21] M. Mandel and D. Ellis. A web-based game for
collecting music metadata. In ISMIR, 2007.

[22] M. Mandel and D. Ellis. Multiple-instance learning for
music information retrieval. In ISMIR, 2008.

[23] R. Manmatha, T. Rath, and F. Feng. Modeling score
distributions for combining the outputs of search
engines. In ACM SIGIR, New York, NY, USA, 2001.
ACM.

[24] C.D. Manning, P. Raghavan, and H. Schtze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[25] P.J. Moreno, P.P. Ho, and N. Vasconcelos. A
Kullback-Leibler divergence based kernel for SVM
classification in multimedia applications. NIPS, 2004.

[26] E. S. Parris, M. J. Carey, and H. Lloyd-Thomas.
Feature fusion for music detection. In EUROSPEECH,
pages 2191–2194, 1999.

[27] J. C. Platt. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. Advances in Large Margin Classifiers, 1999.

[28] T. Robertson, F. Wright, and R. Dykstra. Order
Restricted Statistical Inference. Wiley and Sons, 1988.

[29] J. Shawe-Taylor and N. Cristianini. Kernel Methods
for Pattern Analysis. Cambridge University Press,
New York, USA, 2004.

[30] C. Snoek, M. Worring, and A. Smeulders. Early versus
late fusion in semantic video analysis. In ACM
Multimedia, 2005.

[31] M. Sordo, C. Lauier, and O. Celma. Annotating music
collections: How content-based similarity helps to
propagate labels. In ISMIR, 2007.

[32] D. Turnbull, L. Barrington, and G. Lanckriet. Five
approaches to collecting tags for music. In ISMIR,
2008.

[33] D. Turnbull, L. Barrington, D. Torres, and
G. Lanckriet. Towards musical query- by- semantic-
description using the CAL500 data set. In ACM
SIGIR, 2007.

[34] D. Turnbull, L. Barrington, D. Torres, and
G. Lanckriet. Semantic annotation and retrieval of
music and sound effects. IEEE TASLP, 2008.

[35] D. Turnbull, R. Liu, L. Barrington, D. Torres, and
G Lanckriet. Using games to collect semantic
information about music. In ISMIR, 2007.

[36] G. Tzanetakis and P. R. Cook. Musical genre
classification of audio signals. IEEE Transaction on
Speech and Audio Processing, 10(5):293–302, 7 2002.

[37] N. Vasconcelos. Image indexing with mixture
hierarchies. IEEE CVPR, pages 3–10, 2001.

[38] B. Whitman and D. Ellis. Automatic record reviews.
In ISMIR, 2004.

[39] B. Zadrozny and C. Elkan. Transforming classifier
scores into accurate multiclass probability estimates.
In KDD. ACM, 2002.

