## Using Regression to Combine Data Sources for Semantic Music Discovery

Brian Tomasik, Joon Hee Kim, Margaret Ladlow, Malcolm Augat, Derek Tingle, Richard Wicentowski, Douglas Turnbull



Conclusions

Setup

Goal

Create a semantic music discovery engine

- given a text query, return a ranked list of relevant songs

Problem

Need to "annotate" music with tags:

 $\widehat{y}_{s,t}$  = (estimated) affinity score between song s and tag t

Approach

- 1. Collect information from multiple input data sources (each represented with a score  $x_{s,t}$ )
- 2. Combine sources using regression

Research Question

Can we share information across tags using Bayesian hierarchical regression models to improve semantic music annotation?

Data Sources

Web Documents (WD)

Introduction

Idea

Text-mine tags from relevant web documents

Approach

- 1. Collect top 10 web pages for each song from Google using "song name" "artist name" query
- 2. Calculate score:

$$x_{s,t}^{WD} = \sum_{d \in D_s} \frac{n_{t,d}}{N_{t,d}}$$

 $D_{s}$  - the set of documents for song s

 $n_{td} \sim \#$  of times tag t appears in document d

 $N_{td} \sim \#$  number of times it could have appeared.

dea

Content-based Autotagging (CB)

Learn a joint probabilistic model of audio features and tags

Approach

- 1. Learn a Gaussian mixture model (GMM) distribution over an MFCC feature space for each tag
- 2. Estimate the posterior probability of tag t given bag-of-MFCC vectors ( $X_s$ ) for song s

$$\begin{cases} x_{s,t}^{CB} \approx P(t|\mathcal{X}_s) = \frac{P(\mathcal{X}_s|t)P(t)}{P(\mathcal{X}_s)} \end{cases}$$

Top performing approach in 2008 MIREX Audio Tag Classification task [1]

Idea

Approach

Collaborative Filtering (CF)

Copy tags from annotated songs to an unannotated song based on artist similarity

1. Estimate the similarity between two artists based on co-occurrence within the music preference lists of 400,000 Last.fm users.

2. For artist a of song s, find the set of all songs (S) from the closest k = 32 artists to a.

3. Calculate the fraction of songs in *S* that are labeled with tag *t* 

See our ISMIR 2009 Paper on Tag Propagation for details [2]

 $x_{s,t}^{CF} = \frac{\sum_{i \in \mathcal{S}} y_{i,t}}{|\mathcal{S}|}$ 

t are labeled with tag t

Improve estimated affinity scores (  $\widehat{y}_{s,t}$  ) by combining scores from the data sources (  $x_{s,t}^{WD}, x_{s,t}^{CB}, x_{s,t}^{CF}$  )

Preprocessing Scores

For each tag t and data source i in {WD, CB, CF}, we

- 1. Transform scores so they are roughly normally distributed (e.g., log or power transform)
- 2. Standardize (mean = 0, variance = 1)

#### Fixed Combiners

Goal

- Simple functions of input scores
- E.g., max, min, product, sum, median

 $\rightarrow \left( \widehat{y}_{s,t} = \max(x_{s,t}^{WD}, x_{s,t}^{CB}, x_{s,t}^{CF}) \right)$ 

Combination Methods

Drawback: each data source receives "equal" weight

#### **Learned Combiners**

- Learn a parametric model using human-labeled training data
- For example, learn "betas" for a linear discriminant function

$$\widehat{y}_{st} = \sum_{i \in \{WD, CB, CF\}} \beta_t^i x_{st}^i$$

#### Linear and Logistic Regression

- Generalized linear models
- Learn beta parameters using maximum likelihood estimation
- Beta parameter for each tag is learned independently from one another

Linear 
$$y_{s,t} = \beta_t x_{s,t} + \epsilon_{s,t}$$
  $\epsilon_{s,t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_t^2)$ 

Logistic  $y_{s,t} = \frac{1}{1 + exp(-z_{s,t})}$   $z_{s,t} = \beta_t x_{s,t} + \epsilon_{s,t}$   $\epsilon_{s,t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_t^2)$ 

#### Hierarchical Bayesian Models [3]

- Assume beta's share common structure across the vocabulary of tags

$$\begin{cases}
\beta_t &= \overline{\beta} + v_t \\
v_t &\stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)
\end{cases}$$

- For example, three tags with independent beta coefficients equal to 0.1, 0.2, and 0.3 then  $\overline{\beta}=$  0.2 with  $\sigma=$  0.1

#### Mixture Hierarchical Model

- Instead of assuming that  $v_t$  is normally distributed, assume that  $v_t$  comes from a *mixture* of normal distributions
- Intuition: Suppose  $\beta_t$  for "genre tags" clusters around 0.25 and for "acoustic tags" clusters around 0.05 then if  $\overline{\beta} = 0.20$ , then  $v_t$  might have two peaks at 0.05 and -0.15.

### 10,870 songs

2 tag vocabularies

- 71 genre and subgenre tags

(e.g., "rock", "delta blues", "trance", "piano concerto")

- 151 acoustic tags from Pandora's Music Genome Project (e.g., "acoustic instrumentation", "vocal harmonies", "major key tonality")

c.g., acoustic instraincementation, vocarnaminomes, major key tomanty ,

3 data sources (WD, CF, CB) plus popularity (P) value based on Last.fm scrobble count

5-fold cross validation with an artist filter

- Training set split 3-to-1 to first train CB system, and then regression model

Rank order test set song once for each tag -> calculate standard IR evaluation metric s

# Regression Model - Independent Linear Regression 71 Genre Tags 151 Acoustic Tags

|               | 71 Genre Tags     |                   |                 |                   | 151 Acoustic Tags   |                   |                   |                 |
|---------------|-------------------|-------------------|-----------------|-------------------|---------------------|-------------------|-------------------|-----------------|
|               | AUC               | MAP               | R-Prec          | 10-Prec           | AUC                 | MAP               | R-Prec            | 10-Prec         |
| Random        | $0.502 \pm 0.003$ | $0.09 \pm 0.01$   | $0.08 \pm 0.01$ | $0.08 \pm 0.02$   | $0.508 \pm 0.003$   | $0.032 \pm 0.003$ | $0.030 \pm 0.003$ | $0.03 \pm 0.00$ |
| WD            | $0.666 \pm 0.010$ | $0.25 \pm 0.02$   | $0.29 \pm 0.02$ | $0.47 \pm 0.03$   | $0.616 \pm 0.006$   | $0.135 \pm 0.007$ | $0.181 \pm 0.008$ | $0.29 \pm 0.02$ |
| CF            | $0.732 \pm 0.010$ | $0.45 \pm 0.02$   | $0.45 \pm 0.02$ | $0.72 \pm 0.04$   | $0.641 \pm 0.008$   | $0.154 \pm 0.010$ | $0.213 \pm 0.011$ | $0.25 \pm 0.02$ |
| CB            | $0.781 \pm 0.014$ | $0.23 \pm 0.02$   | $0.25 \pm 0.02$ | $0.38 \pm 0.03$   | $0.836 \pm 0.008$   | $0.141 \pm 0.007$ | $0.161 \pm 0.008$ | $0.19 \pm 0.01$ |
| A113          | $0.871 \pm 0.007$ | $0.52 {\pm} 0.02$ | $0.50 \pm 0.02$ | $0.74 {\pm} 0.04$ | $0.888 {\pm} 0.006$ | $0.276 \pm 0.010$ | $0.298 \pm 0.010$ | $0.42 \pm 0.02$ |
| A113&P        | $0.876 \pm 0.007$ | $0.52 \pm 0.02$   | $0.51 \pm 0.02$ | $0.74 \pm 0.04$   | $0.887 \pm 0.006$   | $0.277 \pm 0.010$ | $0.299 \pm 0.010$ | $0.42 \pm 0.02$ |
|               |                   |                   | Coml            | bination Meth     | od - All3&P         |                   |                   |                 |
| 71 Genre Tags |                   |                   |                 |                   | 151 Acoustic Tags   |                   |                   |                 |

|          | 71 Genre Tags       |                   |                   |                   | 151 Acoustic Tags   |                   |                   |                |
|----------|---------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|----------------|
|          | AUC                 | MAP               | R-Prec            | 10-Prec           | AUC                 | MAP               | R-Prec            | 10-Prec        |
| Min      | $0.658 \pm 0.015$   | $0.27 \pm 0.02$   | $0.27 \pm 0.02$   | $0.60 \pm 0.04$   | $0.654 \pm 0.009$   | $0.121 \pm 0.006$ | $0.161 \pm 0.008$ | $0.26\pm0.0$   |
| Product  | $0.826 \pm 0.009$   | $0.42 \pm 0.03$   | $0.41 \pm 0.02$   | $0.67 \pm 0.04$   | $0.814 \pm 0.006$   | $0.197 \pm 0.008$ | $0.232 \pm 0.009$ | $0.32 \pm 0.0$ |
| Median   | $0.826 \pm 0.009$   | $0.43 \pm 0.02$   | $0.43 \pm 0.02$   | $0.68 \pm 0.04$   | $0.820 \pm 0.006$   | $0.219 \pm 0.009$ | $0.261 \pm 0.009$ | $0.35 \pm 0.0$ |
| Sum      | $0.851 \pm 0.007$   | $0.44 \pm 0.03$   | $0.44 \pm 0.02$   | $0.69 \pm 0.04$   | $0.847 \pm 0.006$   | $0.220 \pm 0.009$ | $0.252 \pm 0.009$ | $0.34 \pm 0.0$ |
| Max      | $0.856 \pm 0.007$   | $0.46 \pm 0.02$   | $0.48 \pm 0.02$   | $0.59 \pm 0.03$   | $0.859 \pm 0.006$   | $0.239 \pm 0.009$ | $0.274 \pm 0.009$ | $0.34 \pm 0.0$ |
| Ind Log  | $0.866 \pm 0.006$   | $0.51 \pm 0.03$   | $0.50 \pm 0.02$   | $0.72 \pm 0.04$   | $0.875 \pm 0.005$   | $0.266 \pm 0.010$ | $0.293 \pm 0.010$ | $0.40 \pm 0.0$ |
| Hier Log | $0.872 \pm 0.006$   | $0.51 \pm 0.03$   | $0.50 \pm 0.02$   | $0.73 \pm 0.04$   | $0.883 \pm 0.006$   | $0.272 \pm 0.010$ | $0.296 \pm 0.010$ | $0.40 \pm 0.0$ |
| Hier Mix | $0.876 {\pm} 0.007$ | $0.52 {\pm} 0.02$ | $0.51 {\pm} 0.02$ | $0.74 {\pm} 0.04$ | $0.887 {\pm} 0.006$ | $0.277 \pm 0.010$ | $0.299 \pm 0.010$ | $0.42 \pm 0.0$ |
| Hier Lin | $0.876 {\pm} 0.007$ | $0.52 {\pm} 0.02$ | $0.51 {\pm} 0.02$ | $0.74 {\pm} 0.04$ | $0.887{\pm}0.006$   | $0.277 \pm 0.010$ | $0.299 \pm 0.010$ | $0.42 \pm 0.0$ |
| Ind Lin  | $0.876 \pm 0.007$   | $0.52 \pm 0.02$   | $0.51 \pm 0.02$   | $0.74 \pm 0.04$   | $0.887 \pm 0.006$   | $0.277 \pm 0.010$ | $0.299 \pm 0.010$ | $0.42 \pm 0.0$ |
|          |                     |                   |                   |                   |                     |                   |                   |                |

#### 1) CB is best for AUC metric, CF is best for Precision metrics

- CF and WD produce sparse annotations -> random ranking after first couple of songs

#### 2) CB better relative performance to CF on acoustic tags

- Suggests that genre labels may be more socially-oriented that acoustic tags
- 3) Popularity information was not too helpful
- Suggests Pandora tags are not biased by popularity

#### 4) Three data sources are better than one or two data sources alone

- Data sources are largely uncorrelated for most tags (i.e., corr. coef. < 0.1)
- Beta coefficients are significantly non-zero and positive
- 5) Trained regression models outperform fixed combiner functions
   But max and sum are not too bad

### 6) Independent Linear Regression works as well as more complex hierarchical models

- Easy to implement, fast to compute, easy to parallelize
- Hierarchical models require additional exploration for cases where there are only a few dozen labeled songs for a tag
- [1] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Semantic Annotation and Retrieval of Music and Sound Effects. IEEE TASLP 2008
- [2] J. Kim, B. Tomasik, and D. Turnbull. *Using Artist Similarity to Propagated Semantic Information*. ISMIR 2009
- [3] P.E. Rossi and R. McCulloch. Bayesm R Package. http://faculty.chicagogsb.edu/peter.rossi/research/bsm.html