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ABSTRACT
The task of automatically annotating music with text tags
(referred to as autotagging) is vital to creating a large-scale
semantic music discovery engine. Yet for an autotagging
system to be successful, a large and cleanly-annotated data
set must exist to train the system. For this reason, we have
collected a data set, called Swat10k, which consists of 10,870
songs annotated using a vocabulary of 475 acoustic tags

and 153 genre tags from Pandora’s Music Genome Project.
The acoustic tags are considered “acoustically-objective”be-
cause they can be consistently applied to songs by expert
musicologists. To develop an autotagging system, we use
the Swat10k data set in conjunction with two new sets of
content-based audio features obtained using the publicly-
available Echo Nest API. The Echo Nest Timbre (ENT)
features represent a song using a collection of short-time
feature vectors. Compared with Mel-frequency cepstral co-
efficients (MFCCs), ENTs provide a more compact repre-
sentation of music and improve autotagging performance.
We also evaluate the Echo Nest Song (ENS) feature vec-
tor, which is a collection of mid-level acoustic features (e.g.,
beats per minute, average loudness). While the ENS fea-
tures generally perform worse than the ENTs, they increase
the performance of several individual tags. Furthermore,
we plan to publicly release our song annotations and corre-
sponding Echo Nest features so that other researchers will
be able to use Swat10K to develop and compare alternative
autotagging algorithms.
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1. INTRODUCTION
The popularization of digital audio has given music lis-

teners an unprecedented level of access to music [7]. Music
discovery sites like Pandora1 generate novel playlists for in-
dividual users based on user preferences. Pandora creates
personalized Internet radio stations with songs that are se-

mantically similar user-selected artists or songs. Pandora’s
Music Genome Project employs highly-trained, expert musi-
cologists to semantically analyze music. These musicologists
determine the appropriate text-based tags, (e.g., “southern
rap influences”, “prominent use of the organ”, “minor key
tonality”), for each song in their corpus. Each musicologist
will spend between 20-30 minutes per song selecting the ap-
propriate tags from a vocabulary of several hundred tags.
These tags can be considered “acoustically objective” since
there is a high-level of agreement between the musicologists
when annotating the same song. Once a song has been an-
notated, it can be compared to other songs based on a com-
parison of the tags. The quality of these annotations comes
at the price of scalability; this method of annotation is ex-
tremely human-labor intensive. For this reason, Pandora’s
song corpus is relatively limited despite having spent many
years (and millions of dollars) on music annotation. One
potential solution to this problem is content-based autotag-
ging.

Autotagging involves the automatic generation of tags
based on an analysis of the audio signal [3,13,18,21]. That
is, using human-annotated training songs, we learn a clas-

sifier that can predict tags for an unannotated song based
on audio features that are extracted from the song. The
quality and quantity of the training data greatly affects the
performance of the autotagging system. One problem facing
the Music Information Retrieval (Music-IR) research com-
munity is the lack of a large, cleanly-labeled data set. This
problem persists partly because of the inability to freely dis-
tribute a large corpus of high-quality music without vio-
lating copyright law. Another obstacle is the development
of a standard vocabulary of music tags [7]. However, the
aforementioned cost of training experts and collecting an-
notations is perhaps the biggest problem for the research
community.

To overcome these problems, we have collected a large
data set, called Swat10k, that consists of 10,870 partially-
annotated songs by 4,597 artists. This data set is diverse in
that it covers 18 genres (“rock”, “jazz”, “classical”) and 135
subgenres (“indie rock”, “bebop”, “romantic period opera”).

1http://www.pandora.com



In addition to genre and subgenre tags, we have mined be-
tween 2 and 25 acoustic tags for each song from the Music
Genome Project. This acoustic tag vocabulary consists of
475 “acoustically objective” tags which have been provided
by trained music experts.

In addition to this data set, we introduce two new sets of
audio features. Both sets are obtained using the Echo Nest’s
public application programming interfaces (API)2. While we
cannot directly distribute the Swat10k music due to copy-
right restrictions, all of the audio features presented in this
paper are publicly available. More importantly, the Echo
Nest offers a host of additional social (e.g, text-mining mu-
sic blogs, tracking preference information) and acoustic in-
formation that we have not explored in this paper. By pub-
lishing the Echo Nest song ID for each of the Swat10k songs,
other researchers have the ability to extract additional music
information using the Echo Nest API.

The first new set of audio features is the set of Echo
Nest Timbre (ENT) features. Each song is represented by
a bag of short-time audio feature vectors. We show that
our state-of-the-art autotagging system is improved when
we use ENT feature vectors rather than the commonly used
Mel-frequency cepstral coefficients (MFCC) representation.
This is a particularly good result because we generally have
several hundred ENT feature vectors for the average-length
song, whereas we might have tens of thousands of MFCC
feature vectors for the same song. This means that the
computation required to predict the likelihood of tags is re-
duced by two orders of magnitude when using ENTs instead
of MFCCs.

We also describe a second audio feature representation
called the Echo Nest Song (ENS) features. Each song is
represented by a single feature vector where each dimension
corresponds to a mid-level acoustic characteristic. For ex-
ample, we use estimates of the beats-per-minute (BPM), the
key (e.g., A, A#, B, etc.), the modality (i.e., major or mi-
nor), and average loudness. We compare the autotagging
performance of two types of discriminative classifiers, Sup-
port Vector Machines (SVM) and Boosted Decision Stumps
(BDS), trained with song-level Echo Nest features (ENS).
Although the short-time features (ENT, MFCC) outperform
these song-level (ENS) features over the entire tag vocabu-
lary, we see improvements for several individual tags when
using song-level features.

2. RELATED WORK
Early work on content-based audio analysis for text-based

music information retrieval focused (and continues to focus)
on music classification by genre, emotion, and instrumenta-
tion (e.g., [4,11,23]). These classification systems effectively
“tag” music with class labels (e.g., “blues”, “sad”, “guitar”).
More recently, autotagging systems have been developed to
annotate music with a larger, more diverse vocabulary of
(non-mutually exclusive) tags [3,13,18,21].

In the 2008 Music Information Retrieval Evaluation eX-
change (MIREX), eleven autotagging systems were com-
pared head-to-head in the “Audio Tag Classification” task
[1]. Due to multiple evaluation metrics and lack of statisti-
cal significance, there was no clear “best”system, though our
system was the top performing system for many of the eval-

2http://developer.echonest.com

uation metrics [21]. Our system uses a generative approach
that learns a Gaussian mixture model (GMM) distribution
over an MFCC feature space for each tag in the vocabulary.
We use this approach for content-based music autotagging
when our audio representation is a bag of short-time feature
vectors (e.g., MFCC or ENT).

Mandel and Ellis proposed another top performing ap-
proach in which they learn a binary SVM for each tag in the
vocabulary [13]. They use Platt scaling [16] to convert SVM
decision function scores to probabilities so that tag relevance
can be compared across multiple SVMs. Eck et. al. [3] also
use a discriminative approach by learning a boosted decision
stump (BDS) classifier for each tag. We compare the per-
formance of SVMs and BDSs when our audio representation
is a single feature vector for each song (e.g., ENS).

Within the Music-IR community, the recent interest in
music autotagging has lead to many discussions about cre-
ating annotated music data sets. Such data sets are com-
monly found in other domains such as image annotation
(Corel 5k [2], CalTech 101 & 256 [6]) and text classification
(Reuters-21578 [10], 20 Newsgroups [8]). To this end, we
previously created the CAL500 data set [20]: 500 songs by
500 artists, each of which have been annotated by 3 non-
expert undergraduate students using a vocabulary of 174
tags. While this data set has been used by dozens of re-
searchers, it has two major limitations: the small size of the
music corpus and the relative subjectivity of many of the
tags (e.g., emotions, song usages).

More recently, Law et. al. introduced the MagnaTagatune
data set that consists of 6,362 copyright-cleared songs by 269
artists [9]. This data set has been annotated by non-experts
using a music annotation called Tagatune3. The vocabu-
lary consists of 188 tags that players have used to describe
music during the course of game play. For a song-tag anno-
tation pair to be valid, at least two players must indepen-
dently enter the same tag when listening to the same song.
While the music corpus is available for free download and
the song annotations are verified by multiple users, there are
two main drawbacks of this data set. First, the small number
of artists limits the acoustic diversity of the music. Second,
and more importantly, the vocabulary is rather simplistic
since the game play encourages players to use short, obvi-
ous tags such as “singer”, “blues”, “drums”. By comparison,
the Swat10k vocabulary includes highly descriptive subgenre
tags (e.g., “delta blues”) and highly descriptive acoustic tags
(e.g., “four-on-the-floor beats”).

Perhaps the most common source of training data for
content-based autotagging systems is “social” tags that can
be harvested from musically-oriented social networks like
Last.fm and MyStrands [3, 7, 22]. While this is an abun-
dant source of semantic music information, the data collec-
tion process is noisy in that it involves a large community
of non-expert and biased fans annotating music with an un-
constrained vocabulary of free-text tags. Much like the mu-
sic annotation game approach, the vocabulary of tags that
emerges from social tagging tends to be focused on simplis-
tic and obvious tags. In addition, many tags tend to focus
on social, rather than acoustic aspects of the music.

3http://www.gwap.com/tagatune-o



3. THE SWAT10K ANNOTATED MUSIC
CORPUS

The Swat10k data set contains 10,870 songs that are
weakly-labeled4 using a tag vocabulary of 475 acoustic tags

and 153 genre tags. These tags have all been harvested
from Pandora’s website and result from song annotations
performed by expert musicologists involved with the Music
Genome Project. We have attempted to collect at least 60
songs from 135 sub-genre radio stations that are produced
by Pandora. All of the genres and sub-genres associated
with a given song are considered genre tags. For each song
in the data set, between 2 and 25 acoustic tags were down-
loaded from the Pandora music search engine. Because Pan-
dora claims that their musicologists maintain a high level of
agreement, we consider the song-tag annotations to be ob-
jective. By comparison, other sources of semantic music an-
notation (social tagging, music annotation games) that are
collected from non-experts using an open-ended vocabulary
may be more subjective and less oriented towards acoustic
characteristics [19].

4. THE ECHO NEST MUSIC API
The Echo Nest is a music technology startup company

that was founded in 2005 by Whitman and Jehan, two ac-
tive Music-IR researchers from the MIT Media Lab. In
addition to other services, the Echo Nest provides a free
music analysis API that individuals can use to collect in-
formation about songs and artists. Once a track has been
uploaded and automatically analyzed, the user can query
the API using the unique song ID to obtain content-based
audio features, as well as socially-oriented information that
has been mined from blogs, webpages, social networks, and
other sources of music information. Examples of content-
based audio features include the estimated times (and as-
sociated confidences) of section (e.g., chorus, verse) transi-
tions, bars, beats, and tatums, as well as the predicted key,
tempo, time signature, modality and average loudness. In
this paper, we focus exclusively on content-based audio fea-
tures. However, by publishing the Swat10k song list with
the associated Echo Nest song IDs, researchers may extract
the features that we describe in the following section, as well
as additional audio-content and social-context features [22].

5. AUDIO FEATURES
In this section, we introduce two novel audio feature rep-

resentations, Echo Nest Timbre (ENT) and Echo Nest Song
(ENS) features, and compare them to the standard Mel-
frequency cepstral coefficients (MFCC) representation [17].
For both the ENT and MFCC representations, each song
is represented as a bag-of-feature-vectors where each fea-
ture vector represents a short-time segment of audio con-
tent. These short-time feature vectors can be considered
low-level because they encode information about the short-
term spectral characteristics of the audio track. By contrast,
the ENS feature representation is a single feature vector for
each song where each dimension corresponds to a specific
mid-level audio characteristic like the estimated time signa-
ture or the estimated modality (i.e., major or minor).
4The term “weakly labeled” means that song is labeled with
a tag if the tag applies to the song, but the absence of a tag
does not necessarily mean that the tag does not apply to the
song.

5.1 Mel-frequency Cepstral Coefficients
(MFCC)

Mel-frequency Cepstral Coefficients (MFCC) are short-
time audio representations that have been used for many
speech recognition and music analysis tasks [12, 17]. More
specifically, they were incorporated into each of the top per-
forming autotagging systems in the 2008 MIREX tag clas-
sification task [1, 3, 13, 21]. An MFCC feature vector is a
low-dimensional encoding of the spectral shape of a short-
time (23 msec) audio sample. For each song, we select
six 5-second intervals that are uniformly spaced throughout
the song. Twelve MFCCs are calculated by sliding a half-
overlapping 23 msec window over the audio signal. The first
and second instantaneous derivatives, referred to as deltas,
are calculated using the 4 previous and 4 future MFCC fea-
ture vectors. We create the 36-dimensional MFCC+∆ by
appending the deltas to the MFCC vectors. Note that, for
our 30 seconds of audio content, we extract about 2,700
MFCC feature vectors. If we were to use the entire song,
we may need to extract tens of thousands of MFCC feature
vectors depending on the length of the song.

5.2 Echo Nest Timbre (ENT)
Using the Echo Nest API, we can break a song up into seg-

ments. Segments are defined as short sound clips (typically
between 100-500 msec) with relatively uniform timbre and
harmony (e.g., a note). For each audio segment, the Echo
Nest calculates 12 “timbre”coefficients that are related to 12
learned basis functions5. Each basis function, when repre-
sented as a spectrogram in the time-frequency domain, can
be loosely related to perceptual qualities such as loudness,
brightness, flatness and attack strength.

As with the MFCC representation, we consider two bag-
of-feature-vector representations of these timbre-related fea-
tures: ENT and ENT+∆. The ENT feature vectors are a
time series of 12-dimensional timbre coefficients. Using this
time series, we can calculate the first and second instanta-
neous derivatives for each coefficient to create the 36 dimen-
sional ENT+∆ representation. Unlike the MFCC feature
vectors, which are derived from 30 seconds of audio, the
ENTs and ENT+∆s are derived from the audio content of
the entire song. That is, because segments are typically
greater than 100 msec in length, each song can be repre-
sented using many fewer ENT feature vectors than MFCC
feature vectors. On average, only 785 ENT feature vectors
are used to describe each song in the data set compared to
2,736 MFCC feature vectors.

5.3 Echo Nest Song (ENS)
The third set of features are the Echo Nest Song (ENS)

features. We compute 34 individual features for each song
using music information that is extracted using the Echo
Nest API . Ten of these features, including loudness, tempo,
key, mode, and time signature, are unmodified Echo Nest
features. The remaining features either summarize rhyth-
mic features, (e.g., bars per second, mean bar length, and
variance of bar lengths), or relate two rhythmic features,
(e.g. ratio of beats to bars.) We have included a full list of
the ENS features in the appendix.

5The exact calculation of the Echo Nest timbre basis func-
tions is a trade secret of the company.



Table 1: Area under the ROC curve, mean average precision, R-precision, and 10-precision for GMM classi-
fiers trained on short-time features. See text for a description of these evaluation metrics.

475 Acoustic Tags 153 Genre Tags
# Dimensions AUC MAP 10-Prec R-Prec AUC MAP 10-Prec R-Prec

Baseline - 0.5007 0.0177 0.0148 0.0148 0.4964 0.0126 0.0098 0.0096
MFCC 12 0.8090 0.0898 0.1156 0.1000 0.8557 0.1409 0.1803 0.1531
ENT 12 0.8265 0.1098 0.1435 0.1213 0.8716 0.1731 0.2155 0.1841
MFCC+∆ 36 0.8418 0.1241 0.1622 0.1392 0.8786 0.1957 0.2517 0.2106
ENT+∆ 36 0.8468 0.1317 0.1728 0.1469 0.8874 0.2110 0.2661 0.2244

6. AUTOTAGGING ALGORITHMS
Autotagging can be considered a multiclass, multilabel

classification problem in which each song can be labeled
with multiple tags. For each tag in the vocabulary, we train
a classifier using the audio features that are extracted from
annotated training songs. To annotate a new song, each
tag-level classifier is used to predict a relevance score (e.g.,
probability) that is proportional to the strength of associa-
tion between the song and the tag. Then during evaluation,
we can rank order songs based on their predicted relevance
to a given tag.

6.1 Gaussian Mixture Models (GMM)
Our first autotagging algorithm involves learning a Gaus-

sian mixture model (GMM) distribution over an audio fea-
ture space (e.g., MFCC, ENT) for each tag in our vocabulary
(See [21] for details). First, the expectation-maximization
(EM) algorithm is used to learn the parameters of a GMM
for each song in our training set. Then, for each tag, we
use the Mixture Hierarchies EM algorithm [24] to combine
the song-specific GMMs from each positively-labeled train-
ing song. The resulting tag-specific GMMs are then used
to predict a song-tag likelihood score for each tag in the
vocabulary and each song in the test set. These likelihood
scores can be interpreted as the parameters of a multinomial
distribution over the vocabulary of tags.

6.2 Support Vector Machines (SVM)
In [13], Mandel and Ellis propose using SVM classifiers

for autotagging. An SVM is a binary classifier that learns a
hyperplane that separates two classes while maximizing the
margin surrounding the hyperplane. As in [13], we learn one
SVM for each tag using both songs that have been annotated
with the tag and songs that have not been annotated with
the tag. We then use Platt scaling to output an approximate
probability for the tag based on the distance of a data point
from the separating hyperplane [16]. In our experiments,
we train SVM classifiers using both linear and radial basis
function (RBF) kernel functions.

6.3 Boosted Decision Stumps (BDS)
Like SVMs, Boosted Decision Stump (BDS) classifiers are

discriminative classifiers that have been used for autotag-
ging music [3]. A decision stump is a classifier that focuses
on one dimension of a feature vector. If the value of that di-
mension is above or below a learned threshold, the decision
stump outputs a vote in favor of the tag. A BDS classifier is
a weighted vote of a set of decision stumps. Using the Ad-
aBoost algorithm [5], we can build up this set by iteratively
adding a decision stump and an associated weight. That is,

at each iteration of the algorithm, the decision stump that
best minimizes the classification error of the training set is
selected. The weight is proportional to the reduction in the
training set error. As with the SVM classifier, we learn one
one-versus-all binary classifier for each tag in the vocabu-
lary. In addition, we can apply Platt scaling to produce
probability estimates for a tag given a song.

7. EXPERIMENTS
The first experiment compares the MFCC and ENT fea-

ture sets using the GMM classification algorithm. The sec-
ond experiment evaluates the performance of ENS features
when using SVM or BDS classifiers against ENT features
when using the GMM algorithm.

In each of our experiments, we train a classifier using 5-
fold cross-validation. For cross-validation, we apply an artist

filter so that all of the songs from each artist appear in either
the training set or test set, but not both [15]. This prevents
the possibility of overfitting the model to a particular artist
in the training set.

The vocabulary of acoustic tags and the vocabulary of
genre tags are considered separately. We prune the acous-
tic tag vocabulary to contain only tags with at least 10
positively-labeled songs in the training set and at least 2
positively-labeled songs in the test set. The tag vocabulary
described above is the result of pruning our original vocab-
ulary of over 1,000 unique acoustic tags.

For comparing approaches (defined by a feature set and
an autotagging algorithm), we rank order test set songs once
for each tag in each vocabulary. For each rank ordering, we
use four standard information retrieval metrics to evaluate
performance: area under the ROC (AUC), mean average
precision (MAP), ten precision (10-Prec), and R-precision
(R-Prec). The results are summarized in tables 1 and 2.
Each metric in these tables is calculated by averaging the
performance of each tag over the five folds, and then aver-
aging over all of the tags in each of our two vocabularies
(acoustic tags and genre tags). To calculate the baseline

scores, each tag rank ordering is a random ordering of the
test set songs. The random scores are averaged in the same
way as the predicted scores.

The first performance metric is the area under the receiver
operating characteristic (ROC) curve (denoted AUC). The
ROC curve compares the rate of correct detections to false
alarms at each point in the ranking. A perfect ranking (i.e.,
all the relevant songs at the top) results in an AUC equal
to 1.0. We expect the AUC to be 0.5 if we randomly rank
songs. Mean average precision (MAP) is found by moving



Table 2: Area under the ROC curve, mean average precision, R-precision, and 10-precision for the BDS
classifier (BDS), the SVM classifier with a linear kernel (SVM-L), and the SVM classifier with an RBF
kernel (SVM-RBF) trained on song-level features. ENT+∆ is repeated from table 1 for comparison.

475 Acoustic Tags 153 Genre Tags
AUC MAP 10-Prec R-Prec AUC MAP 10-Prec R-Prec

Baseline 0.5007 0.0177 0.0148 0.0148 0.4964 0.0126 0.0098 0.0096
ENT+∆ 0.8468 0.1317 0.1728 0.1469 0.8874 0.2110 0.2661 0.2244
SVM-L 0.6182 0.0366 0.0399 0.0399 0.6676 0.0505 0.0637 0.0569
SVM-RBF 0.6913 0.0559 0.0702 0.0648 0.7425 0.0789 0.1036 0.0913
BDS 0.7816 0.0864 0.1507 0.1131 0.8014 0.1139 0.1566 0.1291

down the ranked list of artists and averaging the precision6

at every point where we correctly identify a relevant song.
10-precision for a tag is the precision when 10 songs are
retrieved (e.g., the “search engine metric”). R-precision for
a tag is the precision when R songs are retrieved, where R

is the number of relevant songs in the ground-truth. More
details on these standard IR metrics can be found in Chapter
8 of [14].

When comparing two approaches directly to test whether
one is superior to another, we use a one-tailed, paired t-test
(with α = 0.05) over the individual tag performances (aver-
aged over the five folds, with n = 475 or n = 153 depending
on the vocabulary) on each of the evaluation metrics.

7.1 Short-Time Feature Comparison
Table 1 displays the performance of autotagging using the

GMM algorithm trained on four short-time feature represen-
tations: MFCC, MFCC+∆, ENT, ENT+∆. The left side
of the table shows the performance on the 475 acoustic tags
and the right side shows the performance on the 153 genre
tags. Each choice of feature vectors performs significantly
better than random in each of the evaluation metrics. Fur-
thermore, there is a significant improvement when adding
the deltas to both MFCCs and ENTs. In comparing MFCC
and ENT features of equal dimensionality, the ENT features
have significantly higher scores for each metric for both vo-
cabularies.

To summarize, ENT+∆ is the short-time feature that pro-
duces the best performance for both acoustic and genre tags.
This is an interesting since (a) MFCC is the standard short-
time feature representation used by Music-IR community,
and (b) ENT represent songs with far fewer feature vectors,
and thus provide a more compact representation. This is es-
pecially important when considering the computation cost
of computing the likelihood of a bag-of-feature-vectors for
a large number of songs and a large number of tag-specific
GMMs.

7.2 Song-Level Features
Table 2 shows the performance of song-level ENS features

when using an SVM classifier with a linear kernel, an SVM
classifier with an RBF kernel, and a BDS classifier. The
performance of the ENS features using each of the three
classifiers is significantly lower than the performance of the
GMM classifier trained with ENT+∆ feature vectors. Fur-
thermore, the BDS classifier is significantly better than the
SVM-RBF classifier, which is in turn significantly better

6Precision is the ratio of correctly-labelled songs to the total
number of retrieved songs.

than the SVM-L classifier across all metrics.
While the ENS features lead to a decrease in performance

when averaged across all tags in the vocabulary, on certain
tags (e.g. “triple note feel”, “a mid-tempo shuffle feel”, and
“a twelve-eight time signature”) ENS features produce large
improvements over short-time features. Table 3 presents
the five acoustic tags with the greatest performance increase
(based on AUC) when using the BDS classifier trained on
ENS features compared to the GMM classifier trained on
ENT+∆ features. For each of these tags, we show the first
five features selected by the BDS classifier.

A qualitative evaluation of the relationship between tags
and the most predictive audio features is very interesting.
For instance, it is obvious that the predicted time signature

of a song should improve the classification performance of
the tag “a twelve-eight time signature”. However, the role
of the variance of bar length feature with “a twelve-eight
time signature” is not as apparent. In music, a twelve-eight
time signature means that each measure contains four sets
of triplet beats. Human listeners often mistake the time sig-
natures of these pieces to be either 3/4 or 4/4, depending
on which subdivision of each beat is stressed. One plausible
explanation is that the Echo Nest segmentation algorithm
is affected by this same phenomenon, leading to a high vari-
ance in the predicted length of each bar.

8. CONCLUSIONS
We present the Swat10k data set which contains 10,780

songs annotated with a large combined vocabulary of 628
tags. In our comparison of short-time audio features, we
show that ENT features outperform MFCC features of the
same dimensionality using a GMM classifier. In addition
to the increased performance, the ENT features require two
orders of magnitude fewer feature vectors from each song.
We also compare the performance of two SVM classifiers
and a BDS classifier when using song-level Echo Nest (ENS)
features. These features perform worse than short-time fea-
tures when averaged over all tags. However, when looking
at certain individual tags, autotagging performance is in-
creased when using song-level features.

By making the song & artist names, the Echo Nest song
IDs, and the genre & acoustic tags for each song available
to the public, we believe that the Swat10k data set will
be a useful benchmark data set for the development and
evaluation of novel autotagging systems7.

7To obtain Echo Nest Song IDs for the Swat10k data set,
please contact the authors.



Table 3: Acoustic tags that are improved when using Echo Nest Song Features (ENS) and a Boosted Decision
Stump classifier (BDS) compared to using Echo Nest Timbre (ENT) Features and a Gaussian Mixture Model
(GMM) classifier.

Acoustic tags most improved by BDS classifier
Tag Improvement (AUC) First 5 Features Selected

“triple note feel” 0.1926 time signature, time signature, variance of bar
length, ratio of beat length to bar length,

tatums per second
“a twelve-eight time signature” 0.1816 key, time signature, variance of bar length,

weighted ratio of beat length to bar length, song
loudness

“minimalist arrangements” 0.1732 number of sections, song loudness, weighted
ratio of tatum length to beat length, mode, end

of fade in
“a mid-tempo shuffle feel” 0.0828 song loudness, time signature, start of fade out,

weighted ratio of beat length to bar length,
variance of tatum length

“use of modal harmony” 0.0782 song loudness, number of sections, variance of
section length, number of sections, key

confidence
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Appendix: Echo Nest Song (ENS) Features
The Echo Nest provides a public API that can be used to call a
variety of functions on any uploaded song. To call a function on
a specific song, you need the Echo Nest Song ID.

1. song loudness

2. end of fade in

3. start of fade in

4. key

5. key confidence

6. mode

7. tempo

8. tempo confidence

9. time signature

10. time signature confidence

11. number of sections

12. mean section length

13. variance of section length

14. bars per second

15. average bar length

16. variance of bar length

17. weighted average bar length*

18. beats per second

19. average beat length

20. variance of beat length

21. weighted average beat length*

22. tatums per second

23. average tatum length

24. variance of tatum length

25. weighted average tatum length*

26. ratio of avg beat length to avg bar length

27. ratio of avg tatum length to avg beat length

28. ratio of avg tatum length to avg bar length

29. weighted ratio of avg beat length to avg bar length*

30. weighted ratio of avg tatum length to avg beat length*

31. weighted ratio of avg tatum length to avg bar length*

32. ratio of beat count to bar count

33. ratio of tatum count to beat count

34. ratio of tatum count to bar count

* Weighted averages, µ, are calculated by

µ =

P

n

i=1
cixi

P

n

i=1
ci

where x is the predicted length and c is the confidence associated
with that prediction.


