
CS31: Introduction to 
Computer Systems

Dr. Sukrit Venkatagiri
Swarthmore College

Dive into Systems by Matthews, Newhall, and Webb Stable Diffusion

Week 14, Class 1
Other Synchronization

Problems
04/30/24



Agenda

• Classic thread patterns

• Pthreads primitives and examples of other forms of 
synchronization:
– Barriers 
– Condition variables
– RW locks



Common Thread Patterns

• Producer / Consumer (a.k.a. Bounded buffer)

• Thread pool (a.k.a. work queue)

• Thread per client connection



The Producer/Consumer Problem

• Producer produces data, places it in shared buffer
• Consumer consumes data, removes from buffer
• Cooperation: Producer feeds Consumer
– How does data get from Producer to Consumer?
– How does Consumer wait for Producer?

Producer Consumer3 5 4 92

in

out
buf



Producer/Consumer: Shared Memory

• Data transferred in shared memory buffer.

Producer
while (TRUE) {
 buf[in] = Produce ();
 in = (in + 1)%N;
}

Consumer
while (TRUE) {
 Consume (buf[out]);
 out = (out + 1)%N;
}

shared int buf[N], in = 0, out = 0;



Producer/Consumer: Shared Memory

• Data transferred in shared memory buffer.

• Is there a problem with this code?
A. Yes, this is broken.
B. No, this ought to be fine.

Producer
while (TRUE) {
 buf[in] = Produce ();
 in = (in + 1)%N;
}

Consumer
while (TRUE) {
 Consume (buf[out]);
 out = (out + 1)%N;
}

shared int buf[N], in = 0, out = 0;



Adding Semaphores

Producer
while (TRUE) {
 wait (X);
 buf[in] = Produce ();
 in = (in + 1)%N;
 signal (Y);
}

Consumer
while (TRUE) {
 wait (Z);
 Consume (buf[out]);
 out = (out + 1)%N;
 signal (W);
}

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;

• Recall semaphores:
– wait(): decrement sem and block if sem value < 0
– signal(): increment sem and unblock a waiting process (if any)



Suppose we now have two 
semaphores to protect our array.  
Where do we use them?

Producer
while (TRUE) {
 wait (X);
 buf[in] = Produce ();
 in = (in + 1)%N;
 signal (Y);
}

Consumer
while (TRUE) {
 wait (Z);
 Consume (buf[out]);
 out = (out + 1)%N;
 signal (W);
}

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;

Answer choice X Y Z W
A. emptyslots emptyslots filledslots filledslots
B. emptyslots filledslots filledslots emptyslots
C. filledslots emptyslots emptyslots filledslots



Add Semaphores for Synchronization

• Buffer empty, Consumer waits
• Buffer full, Producer waits
• Don’t confuse synchronization with mutual exclusion

Producer
while (TRUE) {
 wait (emptyslots);
 buf[in] = Produce ();
 in = (in + 1)%N;
 signal (filledslots);
}

Consumer
while (TRUE) {
 wait (filledslots);
 Consume (buf[out]);
 out = (out + 1)%N;
 signal (emptyslots);
}

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;



Synchronization: More than Mutexes

• “I want all my threads to sync up at the same point.”
– Barrier: wait for everyone to catch up.



Barriers

• Used to coordinate threads, but also other forms of concurrent 
execution.

• Often found in simulations that have discrete rounds.  (e.g., 
game of life)



Barrier Example, N Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
  while (…) {
    compute_sim_round()
    barrier_wait(&b)
  }
}

T1T0 T2 T3 T4

Barrier (0 waiting)

Time



Barrier Example, N Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
  while (…) {
    compute_sim_round()
    barrier_wait(&b)
  }
}

Time

T1

T0 T2

T3

T4

Barrier (0 waiting)

Threads make progress computing 
current round at different rates.



Barrier Example, N Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
  while (…) {
    compute_sim_round()
    barrier_wait(&b)
  }
}

Time

Barrier (3 waiting)

Threads that make it to barrier must 
wait for all others to get there.

T1

T0 T2

T3

T4



Barrier Example, N Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
  while (…) {
    compute_sim_round()
    barrier_wait(&b)
  }
}

Time

Barrier (5 waiting)

Barrier allows threads to pass when 
N threads reach it.

T1T0 T2 T3 T4

Matches



Barrier Example, N Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
  while (…) {
    compute_sim_round()
    barrier_wait(&b)
  }
}

Barrier (0 waiting)

Threads compute next round, wait 
on barrier again, repeat…

T1

T0 T2 T3

T4

Time



Synchronization: More than Mutexes

• “I want all my threads to sync up at the same point.”
– Barrier: wait for everyone to catch up.

• “I want to block a thread until something specific happens.”
– Condition variable: wait for a condition to be true



Condition Variables
• In the pthreads library:
– pthread_cond_init:  Initialize CV
– pthread_cond_wait:  Wait on CV
– pthread_cond_signal:  Wakeup one waiter
– pthread_cond_broadcast: Wakeup all waiters

• Condition variable is associated with a mutex:
1. Lock mutex, realize conditions aren’t ready yet
2. Temporarily give up mutex until CV signaled
3. Reacquire mutex and wake up when ready



Condition Variable Pattern
while (TRUE) {
 //independent code

 lock(m);
 while (conditions bad)
    wait(cond, m);

 //proceed knowing that conditions are now good

 signal (other_cond);  // Let other thread know
 unlock(m);
}



Condition Variable Example

Producer
while (TRUE) {
 item = Produce();

 lock(m);
 while (count == N)
    wait(m, notfull);

 buf[in] = item;
 in = (in + 1)%N;
 count += 1;

 signal (notempty);
 unlock(m);
}

Consumer
while (TRUE) {
 lock(m);
 while (count == 0)
    wait(m, notempty);

 item = buf[out];
 out = (out + 1)%N;
 count -= 1;

 signal (notfull);
 unlock(m);

 Consume(item);
}

shared int buf[N], in = 0, out = 0;
shared int count = 0;  // # of items in buffer
shared mutex m;
shared cond notempty, notfull;



Synchronization: More than Mutexes
• “I want all my threads to sync up at the same point.”
– Barrier: wait for everyone to catch up.

• “I want to block a thread until something specific happens.”
– Condition variable: wait for a condition to be true

• “I want my threads to share a critical section when they’re 
reading, but still safely write.”
– Readers/writers lock: distinguish how lock is used



Readers/Writers
• Readers/Writers Problem:
– An object is shared among several threads
– Some threads only read the object, others only write it
– We can safely allow multiple readers
– But only one writer

• pthread_rwlock_t:
– pthread_rwlock_init:  initialize rwlock
– pthread_rwlock_rdlock: lock for reading
– pthread_rwlock_wrlock: lock for writing



Common Thread Patterns

• Producer / Consumer (a.k.a. Bounded buffer)

• Thread pool (a.k.a. work queue)

• Thread per client connection



Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool



Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool

Queue of work to be done:



Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool

Queue of work to be done: Farm out work to threads 
when they’re idle.



Thread Pool

Queue of work to be done:

As threads finish work at their own 
rate, they grab the next item in queue.

Common for “embarrassingly 
parallel” algorithms.

Works across the network too!

Thread Pool / Work Queue

• Common way of structuring threaded apps:



Thread Per Client

• Consider Web server:
– Client connects
– Client asks for a page:
• http://web.cs.swarthmore.edu/~kwebb/cs31
• “Give me /~kwebb/cs31”

– Server looks through file system to find path (I/O)
– Server sends back html for client browser (I/O)

• Web server does this for MANY clients at once



Thread Per Client
• Server “main” thread:
– Wait for new connections
– Upon receiving one, spawn new client thread
– Continue waiting for new connections, repeat…

• Client threads:
– Read client request, find files in file system
– Send files back to client
– Nice property: Each client is independent
– Nice property: When a thread does I/O, it gets blocked 

for a while.  OS can schedule another one.



Summary

• Many ways to solve the same classic problems
– Producer/Consumer: semaphores, CVs, messages

• There’s more to synchronization than just mutual exclusion!
– CVs, barriers, RWlocks, and others.


