
CS31: Introduction to
Computer Systems

Dr. Sukrit Venkatagiri
Swarthmore College

Dive into Systems by Matthews, Newhall, and Webb Stable Diffusion

Week 9, Class 1
Storage and Memory

03/26/24

Welcome!

Stable Diffusion

Which, if any, of these storage devices
is used by cloud service providers
today (e.g., Google Cloud, Amazon
Web Services, Dropbox)?

- floppy disks
- cassette tapes
- punch cards
- hard disk drives
- solid state drives

Announcements
• Updating class schedule
• Updated office hours:
– Tuesday 2:30-4pm (same)
– Thursday 2-3:30pm (updated, no Wed office hours)

• Slides available before each class for note-taking
• Space out HWs and videos (if any)
• More practice questions (ungraded)
• Second ninja session (next year)

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Maze Lab
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

C

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

How do we communicate with aliens?

How do we communicate with aliens?

Reading Quiz

The fact that not all memory technologies
have similar size and performance
characteristics leads to the idea of a ___.

A. Memory Disparity

B. Memory Hierarchy

C. Memory Imbalance

D. Memory Sadness

The idea that we typically access the same data over
and over is known as…
A. caching

B. data repetition

C. iterative data usage

D. locality

Compared to the speed of main memory (DRAM),
accessing a disk is…
A. blazing fast (~100,000x faster)

B. somewhat faster (100x faster)

C. about the same (1x)

D. somewhat slower (100x slower)

E. excruciatingly slow (~100,000x slower)

Transition

• First half of course: hardware focus
– How the hardware is constructed
– How the hardware works
– How to interact with hardware / ISA

• Up next: performance and software systems
– Memory performance
– Operating systems
– Standard libraries (strings, threads, etc.)

Today

• Types of memory
– Primary and secondary

• Memory hierarchy
• Abstraction through cache
– Prediction and locality

• Multi-core CPUs (brief)

Efficiency

• How to efficiently run programs

• Good algorithms are critical…

• BUT: many systems concerns to account for too!
– The memory hierarchy and its effect on program performance
– OS abstractions for running programs efficiently
– Support for parallel programming

Efficiency

• How to efficiently run programs

• Good algorithms are critical…

• Many systems concerns to account for too!
– The memory hierarchy and its effect on program performance
– OS abstractions for running programs efficiently
– Support for parallel programming

Today

• Types of memory
– Primary and secondary

• Memory hierarchy
• Abstraction through cache
– Prediction and locality

• Multi-core CPUs (brief)

Suppose you’re designing a new computer
architecture. Which type of memory would you use?
Why?

A. low-capacity (~1 MB), fast, expensive

B. medium-capacity (a few GB), medium-speed, moderate cost

C. high-capacity (100’s of GB), slow, cheap

D. something else (it must exist)

Classifying Memory

• Broadly, two types of memory:
1. Primary storage: CPU instructions can access any location at any

time (assuming OS permission)
2. Secondary storage: CPU can’t access this directly

Random Access Memory (RAM)
• Any location can be accessed directly by CPU
– Volatile Storage: lose power à lose contents

• Static RAM (SRAM)
– Latch-Based Memory (e.g. RS latch), 1 bit per latch
– Faster and more expensive than DRAM

• “On chip”: Registers, Caches

• Dynamic RAM (DRAM)
– Capacitor-Based Memory, 1 bit per capacitor

• “Main memory”: Not part of CPU

Memory Technologies

• Static RAM (SRAM)
– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)
– 50ns – 100ns, $20 – $75 per GB

(Main memory, “RAM”)

We’ve talked a lot about registers (SRAM) and we’ll cover
caches (SRAM) soon. Let’s look at main memory (DRAM) now.

Dynamic Random Access Memory (DRAM)

CPSC31 Fall 2013, newhall

DRAM
Memory
Chips

Capacitor based:
– cheaper and slower than SRAM
– capacitors are leaky (lose charge over time)
– Dynamic: value needs to be refreshed (every 10-100ms)

Example: DIMM (Dual In-line Memory Module):

Bus Interface

Connecting CPU and Memory
• Components are connected by a bus:
• A bus is a collection of parallel wires that carry

address, data, and control signals.
• Buses are typically shared by multiple devices.

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

How A Memory Read Works
(1) CPU places address A on the memory bus.

Load operation: mov (Address A), %rax

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

A

Read (cont.)
(2) Main Memory reads address A from
 memory, fetches value at that address
 and puts it on the bus

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

Value

Read (cont.)
(3) CPU reads value from the bus, and copies it
 into register rax, a copy also goes
 into the on-chip cache memory

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

Value

Write
1. CPU writes A to bus, memory reads it
2. CPU writes value to bus, memory reads it
3. Memory stores value at address A

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

value, A

Secondary Storage
• Disk, Tape Drives, Flash Solid State Drives, …

• Non-volatile: retains data without a charge

• Instructions CANNOT directly access data on
secondary storage
– No way to specify a disk location in an instruction
– Operating System moves data to/from memory

Secondary Storage
Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

I/O
Controller

USB
Controller

IDE
Controller

SATA
Controller …

I/O Bus (e.g., PCI)

Secondary Storage Devices

CPU Cache

What’s Inside A Disk Drive?
Spindle

Arm

Actuator

Platters

Controller Electronics
(includes processor & memory) bus

connector

Image from Seagate Technology

R/W head

Data Encoded as
points of
magnetism on
Platter surfaces

Device Driver (part of OS code)
interacts with Controller to R/W to disk

Reading and Writing to Disk

disk surface
spins at a fixed
rotational rate
~7200 rotations/min

disk arm sweeps across
surface to position
read/write head over a
specific track.

Data blocks located in some sector of some srack on some surface
1. Disk Arm moves to correct track (seek time)
2. Wait for sector spins under R/W head (rotational latency)
3. As sector spins under head, data are Read or Written

(transfer time) sector

Memory Technology

• Static RAM (SRAM)
– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)
– 50ns – 100ns, $20 – $75 per GB

• Magnetic disk
– 5ms – 15ms, $0.20 – $2 per GB

Like walking:

down the hall

across campus

to Seattle

1 ms = 1,000,000 ns

Solid-state disks (flash): 100 us – 1 ms, $2 - $10 per GB (to Cleveland / Indianapolis)

The Memory Hierarchy

Larger
Slower
Cheaper
per byte

Local secondary storage (disk)
~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM) ~100 cycles to access

CPU
instrs

can
directly
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

What is the best place to store 1GB of data? Why?

A. CPU registers

B. main memory (RAM)

C. secondary storage (e.g., disk drive)

D. cloud storage (e.g., Google Drive)

What is the best place to store 1GB of data… That
you want to back up? That you want to access really
fast? That you want to store affordably?
A. CPU registers

B. main memory (RAM)

C. secondary storage (e.g., disk drive)

D. cloud storage (e.g., Google Drive)

Where does accessing the network belong?

Larger
Slower
Cheaper
per byte

Local secondary storage (disk)
~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM) ~100 cycles to access

CPU
instrs

can
directly
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

A: here

B: here C: somewhere else

The Memory Hierarchy

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, web servers / Internet)

~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM) ~100 cycles to access

CPU
instrs

can
directly
access

slower
than local

disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

Abstraction Goal

• Reality: There is no one type of memory to rule them all!

• Abstraction: hide the complex/undesirable details of reality.

• Illusion: We have the speed of SRAM, with the capacity of disk,
at reasonable cost.

Motivating Story / Analogy

• You work at a grocery store in The Good Place

• Your store has dozens of aisles
– 10-15 minutes to find something
– Customers don’t like searching…

• You have a set of shelves in the from of the store
– < 30 seconds to find movie on front shelf

The Grocery Store Hierarchy

Back Shelves

On
Shelf

Storage

Front
Shelves

~10 minutes to find item

~30 seconds to find item
Goal: strategically put
groceries on shelves to
reduce customer time in
store.

Quick vote: Which single item should we place on
the front shelf?

A. Eggs

B. Milk

C. Oreos

D. Pumpkins

E. There’s no way for us to know

Problem: Prediction
• We can’t know the future…
• So… are we out of luck?

What might we look at to help us decide?
• The past is often a pretty good predictor…

Repeat Customer: Jason

• Has bought Oreos ten times in the last
two weeks for his girlfriend

• You talk to him:
– He just broke up with his girlfriend
– Swears it will be the last time he buys

Oreos (he’s said this the last six times)

Quick vote: Which item should we place on the
shelf for tonight?

A. Eggs

B. Milk

C. Oreos

D. Pumpkins

E. There’s no way for us to know

Repeat Customer: Eleanor
• Eleanor buys pumpkin and eggs

every time she goes grocery shopping

• You talk to her:
– She loves baking pumpkin pie
– She throws eggs out of her 30 story

apartment window

Quick vote: Which two item should we place on the
shelf for tonight?

A. Eggs and Oreos

B. Milk and Pumpkins

C. Milk and Oreos

D. Pumpkins and Eggs

E. There’s no way for us to know

CriPcal Concept: Locality

• Locality: we tend to repeatedly access recently accessed items,
or those that are nearby.

• Temporal locality: An item that has been accessed recently is
likely to be accessed again soon (Jason)

• Spatial locality: We’re likely to access an item that’s nearby (or
related to) others we just accessed (Eleanor)

In the following code, how many examples are
there of temporal / spatial locality?
Where are they?

int i;
int num = read_int_from_user();
int *array = create_random_array(num);
for (i = 0; i < num; i++) {
 printf(“At index %d, value: %d”, i, array[i]);
}

A. 1 temporal, 1 spatial
B. 1 temporal, 2 spatial
C. 2 temporal, 1 spatial
D. 2 temporal, 2 spatial
E. Some other number

Customer: Tahani

• Tahani… doesn’t buy groceries. Pfft.

Customer: Chidi

• Chidi can never decide what to
make for dinner, so he, too, doesn’t
end up buying anything

• Difficult to predict how to stock the
shelves for a customer like him

Big Picture

Local secondary storage (disk)

Remote secondary storage
(tapes, web servers / Internet)

Main memory
(DRAM)

Cache(s)
(SRAM)

Flash SSD / Local network

Registers

For memory exhibiting locality
(stuff we’re using / likely to use):

Work hard to keep them up here!

Bulk storage down here

Move this up on demand

Big Picture

Local secondary storage (disk)

Remote secondary storage
(tapes, web servers / Internet)

Main memory
(DRAM)

Cache(s)
(SRAM)

Flash SSD / Local network

Registers

Faster than memory (On-chip hardware)

Holds a subset of memory

Faster than disk

Holds a subset of disk

Faster than cache

Holds a VERY small amount (subset of cache)

Cache

• Cache: in general, a storage location that holds a subset of a
larger memory but is faster to access

• CPU cache: an SRAM on-chip storage location that holds a
subset of DRAM main memory (10-50x faster to access)

• Goal: choose the right subset, based on past locality, to achieve
our abstraction

When we say “cache”, assume we’re referring to CPU
cache from now on, unless we say otherwise.

Cache Basics

• CPU real estate dedicated to cache

• Usually two (or more) levels:
– L1: smallest, fastest
– L2: larger, slower

• Same rules apply:
– L1 subset of L2
– Goes up to L4 today

ALURegs

L2 Cache

L1

Main Memory

Memory Bus

CPU

Cache Basics

• CPU real estate dedicated to cache

• Usually two levels:
– L1: smallest, fastest
– L2: larger, slower

• We’ll assume one cache
(same principles)

ALURegs

Cache

Main Memory

Memory Bus

CPU

Cache is a subset of main memory.
(Not to scale, memory much bigger!)

Cache Basics: Read from memory

• In parallel:
– Issue read to memory
– Check cache

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

Request data

Cache Basics: Read from memory

• In parallel:
– Issue read to memory
– Check cache

• Data in cache (hit):
– Good, send to register
– Cancel/ignore memory

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

Cache Basics: Read from memory

• In parallel:
– Issue read to memory
– Check cache

• Data in cache (hit):
– Good, send to register
– Cancel/ignore memory

• Data not in cache (miss):
1. Load cache from memory

(might need to evict data)
2. Send to register

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

1.
(~100-200 cycles)

2.

Cache Basics: Write to memory

• Assume data already cached
– Otherwise, bring it in like read

1. Update cached copy

2. Update memory?

ALURegs

Cache

Main Memory

Memory Bus

CPU

Data

When should we copy the written data from cache
to memory? Why?

A. Immediately update the data in memory when we
update the cache.

B. Update the data in memory when we remove
("evict") the data from the cache.

C. Update the data in memory if the data is needed
elsewhere (e.g., another core).

D. Update the data in memory at some other cme.
(When?)

Cache Basics: Write to memory

• Both options (write-through, write-back) viable

• write-though: write to memory immediately
– simpler, accesses memory more often (slower)

• write-back: only write to memory on eviction
– complex (cache inconsistent with memory)
– potentially reduces memory accesses (faster)

Cache Basics: Write to memory

• Both options (write-through, write-back) viable

• write-though: write to memory immediately
– simpler, accesses memory more often (slower)

• write-back: only write to memory on eviction
– complex (cache inconsistent with memory)
– potentially reduces memory accesses (faster)

Sells better.
servers/desktops/laptops

Cache Coherence
• Keeping multiple cores’

memory consistentALURegs

Cache

Main Memory

Memory Bus

CPU

ALURegs

Cache

CPU

Dual Core CPU

Dual Core CPU
Cache Coherence

• Keeping multiple cores’ memory
consistent

• If one core updates data
– Copy data directly from one cache to

the other.
– Avoid (slower) memory

• Lots of hardware complexity here.
We might discuss towards end of
semester.

ALURegs

Cache

Main Memory

Memory Bus

CPU

ALURegs

Cache

CPU

Today

• Types of memory
– Primary and secondary

• Memory hierarchy
• Abstraction through cache
– Prediction and locality

• Multi-core CPUs (brief)

Up next:

• Cache details

• How cache is organized
– finding data
– storing data

• How cached subset is chosen (eviction)

