Welcome! Do now:

Set your clicker to frequency AA:
- hold the power button till lights
flash

- press A twice

- lights should flash again

Announcements

* Lab 1 grades posted — y’all did well!l But <please> don’t get

complacent.

* Clickers:
* Present/absent: answered more than 50% of the questions
e Correctness: check+ (>50% correct), check (<50% correct), O (absent)

* |IGNORE what you see on iClicker Cloud! (*raises fists at developers*)

Revisiting...

e Left and Right shift

* Overflow: signed vs unsigned

Why did the US decide to ban exports of
certain computer chips to China?

A. To slow down China’s military capabilities
. To slow down China’s manufacturing industry
. To slow down China’s Al industry
. Xenophobia

. None of these

Why did the US decide to ban exports of
certain computer chips to China?

A. To slow down China’s military capabilities

B. To slow down China’s manufacturing industry
. To slow down China’s Al industry
. Xenophobia

. None of these

Moore’s Law: The number of transistors on microchips doubles every two years [SS@aWERE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count

50,000,000,000 GC2IRU €©AMD Epyc Rome
72-core Xeon Phj Centriq 2400 © ©AWS Graviton2
T SCPARtC ; M7 € 32-core AMD Epyc

z torage Contro er /\pple A12X Bionic
1010001000’000 18-core Xeon Haswell ES AH’)S)‘i‘g?\'}g”g"z()‘g 1516Pr0)

PF | I

5,000,000,000 Abox One main SoCis, oAMU Ryzen 7 3700X
H|S|I|con Kirin 710

10-core Core i7 Broadwell-E

Qualcomm Snapdmgon 835

o[)ml core + GPU Iris Core i7 Broadwell-U
Quad-core + GPU GT2 Core i7 Skylake K

61-core-Xeon-Phi 0 8
12-core POWERS 8 0
8-core Xeon Nehalem-EXN 8

Six-core Xeon 7400
Dual-core Itanium 2¢p ©

1,000,000,000 Pentium D Presler OWERG g -4 ’ o Qu ad-core + GPU Core i7 Haswell
Ilsnlum 2 wnh Q Apple A7 (dual-core ARM64 "mobile SoC")
Com |7 (Quad)
SOO’OOO’OOO °\ AMD K10 quad:core 2M L3

Itanium 2 Madison 6M° Core 2 Duo Wolfdale
Pentium D Smnthﬁel(l\ Eore Duo Conroe
Itanium 2 McKm\ey ell Core 2 Duo Wolfdale 3M
Pentium 4 Presmll 2M 0 QCore 2 Duo Allendale

100,000,000 AMD |<8° T P'PCe;LhOng 4 Cedar Mill
50,000,000 Pentium 4 Northwood L
Pentium /T ;NLHIZmettZ; Oo:e?m:ﬁthS;hhn QAtom
Pentium Il Mobile Dixon
o OJ/\Ve\/‘r/)\)E%jsKéopenhumHICoppermme OARM Cortex-A9
-l
1OYOOO’OOO AMD K6 QPenhlugﬂl !}(atma\
5,000’000 Pentium PIO° ?r‘%gn”(’ﬂ um eschutes
Penhum° AMD K5
SA-110
1,000,000 intel 8045%9 __ Fra000
500,000 T Eploiers 2kite "
Intel 8038 Intel o €@ ARM 3
MotorolaééiOZOQ% Lo 4
C WRL
100,000 Motarola |nte|%0286 MultiTitan AgM
50,000 5000 @mteisonss e
Intel 8086¢p €y Intel 8088 Q\FXAAFM 2 AR?A 6
- WDC
10,000 TMS.1000 ---- Zilog Z80 Mggém g mcgl%’é\gﬁb
5,000 RCA1802 Qyieigogs 02
Intel 800§ Intel 8080
MQOS Technology
Motorola 4502 G
Intel 4&)4 é
1,000
O ® P I PR @@ P FT PP P
N N N N N N N q\?‘f&@@f»@%@%@%@@f@%@

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Moore’s Law

* In 1965: Intel co-founder Gordon Moore predicted a doubling of
transistors every year for the next 10 years in his original paper
published in 1965.

* Today: An observation that the number of transistors on a microchip
roughly doubles every two years, while cost is halved over the same
time period.

Your mission, if you choose to accept it:

Build a CPU

Abstraction

e D
User / Programmer
Wants low complexity
€ y

@ D
Applications
Specific functionality
€ y
@ D
Software library
Reusable functionality
€ y

@ D
Operating system

Manage resources
. 4

e

Complex devices

Compute & I/O

Abstraction

Hardware Circuits

Logic Gates

Transistors

re be'dragons.
|cal En@&:ing); :

(Physics)

Complex devices >
Compute & I/O

Abstraction Towards a CPU

Transistors

Arithmetic
& Logic Circuits

ALU
& MUX

CPU

Registers

Logic Gates

Simple
Circuits

Data Storage
Circuits (Latches)

Logic Gates

Input: Boolean value(s) (high and low voltages for 1 and 0)

Output: Boolean value result of Boolean function
Always present, but may change when input changes

<8

And Or p Not ‘\,., "

a = out ° out a ‘>o out
b —| b

out=asb out=a | b out = ~a

A B A&B A|B ~A
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

I\/I ore LOglC G ateS Note the circle on the output.

This circle means bitwise “not”

NAND /
a out a
b — b

out = ~(a & b)

(flip bits).

A B A NAND B A NOR B
O 0O 1 1
0 1 1 %)
1 0 1 0
1 1 %) 0

Combinational Logic Circuits

* Build up higher level processor functionality from basic gates

Acyclic Network of Gates
1 -

Inputs D :D— Outputs
>

1

e Qutputs are boolean functions of inputs
* Outputs continuously respond to changes to inputs

What does this circuit output?

And Or Not

il 1> >

x — 1

Y EFD?,_I_I:D output

Clicker Choices

= O O
_ O = O

What does this circuit output?

And Or Not

T 1> >

x — 1

Y EFD?,_I_I:D output

Clicker Ch0|ces

nmmmm

0 O
0
1
1

O B O O
© O KL K
~, O
S =
© B L O

1
0
1

[EEY

What does this circuit output?

And Or Not

T 1> >

x — 1

Y EFD?,_I_I:D output

Clicker Ch0|ces

nmmmm

0 O
0
1
1

O B O O
© O KL K
~, O
R P O R
© B L O

1
0
1

[EEY

Building more interesting circuits...

* Build-up XOR from basic gates (AND, OR, NOT)

A B A"™B
O O 0
o 1 1
1 © 1
1 1 0

e Q: When is AMB ==17

Abstraction Towards a CPU

Transistors

Arithmetic
& Logic Circuits

ALU
& MUX

CPU

Registers

Logic Gates

Simple
Circuits

Data Storage
Circuits (Latches)

Building an XOR circuit
1 1 >

* General strategy:

1. Determine truth table (given ->)

2. Determine for which rows the result is 1

* express each row with 1 result in terms of input values
A, B combined with AND, NOT

* combine each row expression with OR

3. Translate expression to a circuit

Not

= = O O P>

R © kP O W

O P B O

Which of these is an XOR circuit?

And Or Not

T 1> >

= = O O P>
R O R O

O B B O >

Which of these is an XOR circuit?

A: B:
. 3733 g an B
- e
C: D:
s>) R
—Do—} —Do—%—_‘:D_

E: None of these are XOR.

Which of these is an XOR circuit?

A: B:
; 3733 s an IS
- S
C: D:
A1))
—Do—} —Do—%—_‘:D_

E: None of these are XOR.

XOR Circuit: Abstraction

A™B == (~A & B) | (A & ~B)

A:0 B:0 A™R: A:1 R:0 A™R:
A:0 B:1 A™B: A:1 B:1 A™B:

Recall Goal: Build a CPU (model)

The CPU

1. Processing
i .) . i Unit
Three main classifications of hardware circuits: ALU registers

2. Control
Unit
PC IR

1. ALU: implement arithmetic & logic functionality
* Example: adder circuit to add two values together

2. Storage: to store binary values

 Example: set of CPU registers (“register file”) to store temporary values

3. Control: support/coordinate instruction execution

* Example: circuitry to fetch the next instruction from memory and decode it

Recall Goal: Build a CPU (model)

The CPU

1. Processing
i .) . i Unit
Three main classifications of hardware circuits: ALU registers

2. Control
Unit
PC IR

1. ALU: implement arithmetic & logic functionality
* Example: adder circuit to add two values together

Start with ALU components (e.g., adder circuit, bitwise operator circuits)

Combine component circuits into ALU!

Abstraction Towards a CPU

Transistors

Arithmetic
& Logic Circuits

ALU
& MUX

CPU

Registers

Logic Gates

Simple
Circuits

Data Storage
Circuits (Latches)

Arithmetic Circuits

1 bit adder: A+B

* Two outputs:

1. Obvious one: the sum
2. Other one: ??

Sum (A + B) Cout

= = O O P>
R O R O

Which of these circuits is a one-bit adder?
A B Sum (A + B) Cout

0 0 0 0
o 1 1 0
1 0 1 0
1 1 0 1
A: B:
g—"__D— Sum g—‘jD— Sum
] oCa) Ca
C: D:
g—'® Sum g—‘j Sum

Which of these circuits is a one-bit adder?
A B Sum (A + B) Cout

0 0 0 0
o 1 1 0
1 0 1 0
1 1 0 1
A: B:
g—"__D— Sum g—‘jD— Sum
] oCa) Ca
C: D:
g—'® Sum g—‘j Sum

More than one bit?

* When adding, we sometimes have carry in too

1111
0011010
+ 0001111

Write Boolean expressions A B G, surm Cont
forSum=1and C =1 o0 o 0 0

0 1 0 1 0)

1 0 0 1 0)

1 1 0 0 1

0 0 1 1 0)

0 1 1 0 1

1 0) 1 0 1

1 1 1 1 1

e When is Sum 17?

* WhenisC_, 17

Write Boolean expressions A B G, Sunm Coe

forSum=1andC_, =1 o 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

* When is Sum 1?

~C;, & (A”B) | C,., & ~(A"B) == (C.,, ~ (A"B))

* WhenisC_, 17

Write Boolean expressions A B G, Sunm Coe

forSum=1andC_, =1 o 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

* When is Sum 1?

~C;, & (A”B) | C,., & ~(A"B) == (C.,, ~ (A"B))

* WhenisC_, 17
(A & B) | ((A"B) & Cip)

Sum Cout

[
=]

One-bit (full) adder

* Need to include:
carry-in and carry-out

R B, O O +r = O O|>r
_ O -k O =R O = O|w
R = = = O O O Oln
R O O Rk O = +=»r O
= = = O = O O O

A \

o D—
N j_ | o adder

ﬂ Cout
_/

Multi-bit Adder (Ripple-carry Adder)

0
A A
B° 1-bit cum 33 1-bit cum
0 adder 0 3 adder 3
Cout Co t
A
Bl 1-bit cum e
1 adder !
Cout
Ay
N 1-bit
Az 1-bit By adder SUMy-g
B2 adder Sum;
Cout

Three-bit Adder (Ripple-carry Adder)

010
+ 011

1-bit
adder

1-bit
adder

1-bit
adder

Carry in
, Sumg
3-bit S
adder UMy
Sum,

Carry out

Abstraction Towards a CPU

Transistors

Arithmetic
& Logic Circuits

ALU
& MUX

CPU

Registers

Logic Gates

Simple
Circuits

Data Storage
Circuits (Latches)

Arithmetic Logic Unit (ALU)

* One component that knows how to manipulate bits in multiple ways
* Addition
e Subtraction
e Multiplication / Division
* Bitwise AND, OR, NOT, etc.

* Built by combining components

* Take advantage of abstraction and sharing/reusing hardware when possible
(e.g., subtraction using adder)

Simple 3-bit ALU: Add and bitwise OR

3-bit inputs
A and B:

>
S

Outo
OUtl
Outz

Simple 3-bit ALU

3-bit inputs
A and B:

- Add and bitwise OR

3-bit —— Sumg
adder UM

— Sum,

At any given time, we
only want the output
from ONE of these!

—Outo
——0ut;
—Out,

Simple 3-bit ALU: Add and bitwise OR

3-bit inputs Extra input: control signal to select Sum vs. OR
A and B:
Ay *—
A4 -
A, ® | 3-bit — Sum,
adder UM
Sum,
Bo -
B - I
Bi ® Circuit that takes _83:0
in Sumo_z / OrO_z !
) Or, and only outputs —Out,
one of them,
based on control

] Ory signal.

Which of these circuits lets us select between
two inputs?

Input 1 Input 1
Control Signal —gD Control Signa|§“>&i§>>:>
InputZI InputZI
Input 1 .

Control Signal——[><*:j:}\:>_

1
InputZI

Which of these circuits lets us select between
two inputs?

Input 1 Input 1
Control Signal —gD Control Signa|§“>&i§>>:>
InputZI InputZI
Input 1 .

Control Signal——[><*:j:}\:>_

1
InputZI

Multiplexor: Chooses an input value

Inputs: 2N data inputs, N signal bits

Output: is one of the 2N input values

C 4

V 1 bit 2-way MUX

| %
____ out
a out = (c & a)| (~c &b)

e Control signal ¢, chooses the input for output

e When cis 1: choose a, when cis 0: choose b

N-Way Multiplexor

Choose one of N inputs, need log, N select bits

DO

D1

D2

D3

MUX4
- ,/

Out

(ofY Cy Output
0 0 DO
0 1 D1
1 0 D2
1 1 D3
cl
cO
?——_ Clnputto
Y choose DO
DO >

P

Example 1-bit, 4-way MUX

* When select input is 2 (0b10): C chosen as output

0
So 9
S, A, 1 bit 4-way MUX S Out
;:E 00 0 A
Y 307 S crrreerrerenn ., 01 1 B
A — 'g‘ — 1bit 10 2 C
¢ —\ 0 B — 4way — out
B)) — X 11 | 3 | D
1
3 - \ C Out
C |/
0
D

Simple 3-bit ALU: Add and bitwise OR

3-bit inputs Extra input: control signal to select Sum vs. OR
A and B:
Ay *—
A4 -
A2 | 3-bit — Sumo
adder UM
Sum,
Bo -
Bl ®
B, -
) Org Multiplexor!
] Ory

ALU: Arithmetic Logic Unit

CPU
Instruction:

ADD

Ny

A

L
U

op bits: selects which op to output

— X OD Y

/ OF Qutput flags: set as a

side effect of op
(e.g., overflow detected)

* Arithmetic and logic circuits: ADD, SUB, NOT, ...
* Control circuits: use op bits to select output

e Circuits around ALU:

* Select input values X and Y from instruction or register
e Select op bits from instruction to feed into ALU

* Feed output somewhere

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality
* Example: adder circuit to add two values together

2. Storage: to store binary values

 Example: set of CPU registers (“register file”) to store temporary values

3. Control: support/coordinate instruction execution

The CPU

1. Processing
Unit
ALU registers

2. Control
Unit
PC IR

* Example: circuitry to fetch the next instruction from memory and decode it

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

2. Storage: to store binary values

The CPU
1. Processing 2. Control
Unit Unit
ALU registers PC IR

 Example: set of CPU registers (“register file”) to store temporary values

Give the CPU a “scratch space” to perform calculations and keep track of

the state its in.

CPU so far...

* We can perform arithmetic!

 Storage questions:
* Where to the ALU input values come from?
* Where do we store the result?
* What does this “register” thing mean?

—

Abstraction Towards a CPU

Transistors

Arithmetic
& Logic Circuits

ALU
& MUX

CPU

Registers

Logic Gates

Simple
Circuits

Data Storage
Circuits (Latches)

Memory Circuit Goals: Starting Small

* StoreaOorl
* Retrieve the 0 or 1 value on demand (read)

e Set the 0 or 1 value on demand (write)

R-S Latch: Stores Value Q

When R and S are both 1: Maintain a value
R and S are never both simultaneously 0

S

Q (value stored)

~Q

R-S Latch

R

* To write a new value:
e Set S to 0 momentarily (R stays at 1): to writea 1
* Set R to 0 momentarily (S stays at 1): to writea O

Gated D Latch

Controls S-R latch writing, ensures S & R never both 0

WE

R-S Latch

'a

)
B,

Q (value stored)

~Q

D: into top NAND, ~D into bottom NAND

WE: write-enabled, when set, latch is set to value of D

Latches used in registers (up next) and SRAM (caches, later)

Fast, not very dense, expensive

DRAM: capacitor-based:

An N-bit Register

* Fixed-size storage (8-bit, 32-bit, 64-bit, etc.) & \

* Gated D latch lets us store one bit ,
« Connect N of them to the same write-enable wire!

N-bit input

wires (bus): n——————— g Bit 0
Write-enable: K Bit 1

Ig%i Bit N-1

N-bit Register

I
64-bit Register h Data out

Abstraction Towards a CPU

Transistors

Arithmetic
& Logic Circuits

ALU
& MUX

CPU

Registers

Logic Gates

Simple
Circuits

Data Storage
Circuits (Latches)

“Register file”

* A set of registers for the CPU to store temporary values.

 This is (finally)
something you
will interact with!

* |nstructions of form:

Data in

WE
Data in

WE
Data in

WE
Data in

WE

 “add R1 + R2, store resultin R3”

64-bit Register #0
64-bit Register #1
64-bit Register #2

64-bit Register #3

Register File

MUX

MUX

Memory Circuit Summary

* Lots of abstraction going on here!
e Gates hide the details of transistors.
* Build R-S Latches out of gates to store one bit.
* Combining multiple latches gives us N-bit register.
* Grouping N-bit registers gives us register file.

* Register file’s simple interface:
* Read R,’s value, use for calculation
* Write R,’s value to store result

CPU so far...

We know how to store data (in register file).
We know how to perform arithmetic on it, by feeding it to ALU.

Remaining questions:
Which register(s) do we use as input to ALU?
Which operation should the ALU perform?
To which register should we store the result? AJl this info comes from
our program:

Data in Y a series of instructions.
! 64-bit Register #0
D tW.E MUX
ata in
WE 64-bit Register #1 A
Data in SR L
! 64-bit Register #2 U
WE MUX
Data in , _
WE 64-bit Register #3

Register File

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality
* Example: adder circuit to add two values together

2. Storage: to store binary values

 Example: set of CPU registers (“register file”) to store temporary values

3. Control: support/coordinate instruction execution

The CPU

1. Processing
Unit
ALU registers

2. Control
Unit
PC IR

* Example: circuitry to fetch the next instruction from memory and decode it

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

3. Control: support/coordinate instruction execution

The CPU

1. Processing
Unit
ALU registers

2. Control
Unit
PC IR

* Example: circuitry to fetch the next instruction from memory and decode it

Keep track of where we are in the program.
Execute an instruction, move on to the next...

Recall: Von Neumann Model

Our program (instructions) live
We’'re building this. here. We’ll assume for now that
we can access it like an array.

Mem Addresses

buckets
CPU () o
(Control and Program 1-
Arithmetic) and :
Data 2:
Memory 3:
Input/Output 4:
N-1:

CPU Game Plan

* Fetch instruction from memory

* Decode what the instruction is telling us to do
* Tell the ALU what it should be doing
* Find the correct operands

* Execute the instruction (arithmetic, etc.)

e Store the result

Program State

Let’s add two more special registers (not in register file) to keep track of the program.

Program Counter (PC):

Instruction Register (IR):

Memory address of next instr

Instruction contents (bits)

Data in mews ()
ata in 64-bit Register #0
5 tW'E MUX
ata in e . :
WE 64-bit Register #1
Data i)
ata in 64-bit Register #2
Dat;/\élrzl — MUX
WE 64-bit Register #3
o000
Register File

N-1:

(Memory)

EER—

MR

To Recap:

* OR, AND, NOT, XOR gates
* Boolean expressions

e 1-N-bit adders

* 2-N-way multiplexors (MUXs not... MUK)

* ALUs

* Registers

Your TODO List

* HW2, Lab 2

* The next 11 weeks: Read the readings before class

Fetching instructions.

Load IR with the contents of memory at the address stored in the PC.

(Memory)
Program Counter (PC): Address 0 N
1
Instruction Register (IR): Instruction at Address 0 2:
3:
4.
Data in)
! 64-bit Register #0 Nt
5 tW'E MUX
atain
WE 64-bit Register #1 A
Data in SR L
! 64-bit Register #2
WE MUX
Data in : :
WE 64-bit Register #3

Register File

Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC):

Instruction Register (IR):

Data in 4)
! 64-bit Register #0
Data n
in : :
WE 64-bit Register #1
Data in)
! 64-bit Register #2
WE MUX
Data In 64-bit Register #3
WE -bit Register

Address 0

OP Code | Reg A | Reg B | Result

Register File

cC -

N-1:

(Memory)

MR

Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC):

Instruction Register (IR):

Data in 4)
! 64-bit Register #0
5 tW'E MUX
ata in : :
WE 64-bit Register #1
Data in)
! 64-bit Register #2
WE MUX
Data in A-bit Regi 43
WE 64-bit Register

Address 0

OP Code | Reg A | Reg B | Result

Register File

cC -

OP Code tells
ALU which
operation to
perform.

N-1:

(Memory)

MR

Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

(Memory)
Program Counter (PC): Address 0 N
1
Instruction Register (IR): ' OP Code | Reg A | Reg B | Result 2:
I ! Register ID #'s j
I specify input '
Data in arguments. .
64-bit Register #0 N-L:
D tW.E MUX
atain , ,
WE 64-bit Register #1 f
Data in SR
64-bit Register #2
WE MUX
Data in A-bit Repi =
WE 64-bit Register

Register File

Executing instructions.

Interpret the instruction bits: What operation? Which arguments?

(Memory)

Program Counter (PC): Address 0

Instruction Register (IR): ' OP Code | Reg A | Reg B | Result
I I I Let the ALU do

\ its thing. |
Data in (e.g., Add) N-1:

MR

64-bit Register #0
5 tW'E MUX
ata in : :
WE 64-bit Register #1 f
Data in)
! 64-bit Register #2
WE MUX
Data in A-bit Regi 43
WE 64-bit Register

Register File

Storing results.

We’ve just computed something. Where do we put it?

(Memory)
Program Counter (PC): Address 0 o i
1
Instruction Register (IR): ' OP Code | Reg A | Reg B | Result 2:
I I I 3
H 4:
Data in e : : () N_1;
64-bit Register #0
5 tW'E MUX
ata in e
WE 64-bit Register #1
Data in)
! 64-bit Register #2 _
5 tWE MUX Result location
ata In s . pe
64-bit Register #3 specifies
WE where to store
oo ALU output.

Register File

Questions so far?

We've just computed something. Where do we put it?

(Memory)

Program Counter (PC): Address 0

Instruction Register (IR): ' OP Code | Reg A | Reg B | Result

Data in f) N-1:

MR

64-bit Register #0
5 tW'E MUX
ata in : :
WE 64-bit Register #1 f
Data in R
! 64-bit Register #2 U _
5 tWE MUX Result location
ata in .
64-bit Register #3 specifies
WE — where to store
soe ALU output.

Register File

Why do we need a program counter? Can’t we just
start executing instruction at address O and count up
one at a time from there?

A. We don’t, it’s there for convenience.

B. Some instructions might skip the PC forward by
more than one.

C. Some instructions might adjust the PC backwards.
D. We need the PC for some other reason(s).

Why do we need a program counter? Can’t we just
start executing instruction at address O and count up
one at a time from there?

A. We don’t, it’s there for convenience.

B. Some instructions might skip the PC forward by
more than one.

C. Some instructions might adjust the PC backwards.
D. We need the PC for some other reason(s).

Storing results.

Interpret the instruction bits: What operation? Which arguments?

(Memory)

Program Counter (PC): Address 0 €

CET—

Instruction Register (IR): ' OP Code | Reg A | Reg B | Result

I I I
—

Data in mew (\ N1

MR

64-bit Register #0
5 tV\/_E MUX
ata in me—
WE 64-bit Register #1 A 4
- Data in . : (\ L

WE 64-bit Register #2 U Result might be:

Data in meeees : : Mex Memory
WE 64-bit Register #3 Register

PC

Register File

Recap CPU Model

Four stages: fetch instruction, decode instruction, execute, store result

Program Counter (PC):

Instruction Register (IR):

Data in ()
! 64-bit Register #0
5 tW'E MUX
ata in : :
WE 64-bit Register #1
Data in SR
! 64-bit Register #2
WE MUX
Data in : :
WE 64-bit Register #3

Memory address of next instr

Instruction contents (bits)

Register File

cC -

N-1:

(Memory)

MR

Fetching instructions.

Load IR with the contents of memory at the address stored in the PC.

(Memory)
Program Counter (PC): Address 0 N
1
Instruction Register (IR): Instruction at Address 0 2:
3:
4.
Data in)
! 64-bit Register #0 Nt
5 tW'E MUX
atain
WE 64-bit Register #1 A
Data in SR L
! 64-bit Register #2
WE MUX
Data in : :
WE 64-bit Register #3

Register File

Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC):

Instruction Register (IR):

Data in 4)
! 64-bit Register #0
Data n
in : :
WE 64-bit Register #1
Data in)
! 64-bit Register #2
WE MUX
Data In 64-bit Register #3
WE -bit Register

Address 0

OP Code | Reg A | Reg B | Result

Register File

cC -

N-1:

(Memory)

MR

Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC):

Address 0

Instruction Register (IR):

OP Code | Reg A | Reg B | Result

Datz\a/\; rE‘ 64-bit Register #0
Datz\a/\; : 64-bit Register #1
Datz\a/\; : 64-bit Register #2
Datz\a/\; : 64-bit Register #3

Register File

MUX

MUX

A
L
U

N

OP Code tells
ALU which
operation to
perform.

N-1:

(Memory)

MR

Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC):

Address 0

Instruction Register (IR):

OP Code | Reg A | Reg B | Result

Datz\a/\; rE‘ 64-bit Register #0
Datz\a/\; : 64-bit Register #1
Datz\a/\; : 64-bit Register #2
Datz\a/\; : 64-bit Register #3

Register File

MUX

MUX

cr>/

Register ID #'s
specify input
arguments.

N-1:

(Memory)

MR

Executing instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC):

Instruction Register (IR):

Address 0

OP Code | Reg A | Reg B | Result

Data in mews)
a 3\;2 64-bit Register #0
MUX]
Data In == 1 bit Register #1
WE I gl —
Data i)
ata in 64-bit Register #2
Datg\élrzl — MUX
WE 64-bit Register #3

Register File

Let the ALU do
its thing.
(e.g., Add)

N-1:

(Memory)

CETI——

MR

Storing results.

Interpret the instruction bits: Store result in register, memory, PC.

(Memory)
Program Counter (PC): Address 0 N
1
Instruction Register (IR): ' OP Code | Reg A | Reg B | Result 2:
3:
4.
Data in)
64-bit Register #0 N y
WE MUX N
Data in : :
WE 64-bit Register #1 fﬁ
—> Data in)
WE 64-bit Register #2 y Result might be:
Data in , _ MUX Memory
WE 64-bit Register #3 Register
PC
o000
Register File

Clocking

* Need to periodically transition from one instruction to the next.

* It takes time to fetch from memory, for signal to propagate through
wires, etc.

* Too fast: don’t fully compute result
* Too slow: waste time

Clock Driven System

* Everything in a CPU is driven by a discrete clock
 clock: an oscillator circuit, generates hi low pulse

* clock cycle: one hi-low pair
10 1.0 1 0 1 0 1 O

Clock | | | | | I_

1 cycle

* Clock determines how fast system runs
* Processor can only do one thing per clock cycle
* Usually just one part of executing an instruction

* 1GHz processor:
1 billion cycles/second = 1 cycle every nanosecond

Cycle Time: Laundry Analogy

* Discrete stages: fetch, decode, execute, store

* Analogy (laundry): washer, dryer, folding, dresser

W Dy F

4 Hours

You have big problems if you have
millions of loads of laundry to do....

Laundry

W Dy F
4 Hours
W Dy F
4 Hours
4-hour cycle time. W Dy F
Finishes a laundry load every cycle. 4 Hours

(6 laundry loads per day)

Pipelining (Laundry)

/_A_)

1t hour:
3rd hour: W Dy =

—
W

4th hour: Dy F Dr
——
5t hour: W Dy F Dr

Steady state: One load finishes every hour!
(Not every four hours like before.)

Pipelining (CPU)

1 Nanosecond

| | CPU Stages: fetch, decode,

1t nanosecond: execute, store results
2nd nanosecond:

E
4th nanosecond: - D E S

5th nanosecond: F - F S

Steady state: One instruction finishes every nanosecond!
(Clock rate can be faster.)

Pipelining

(For more details about this and the other things we talked about here,
take architecture.)

Up next

* Talking to the CPU: Assembly language

