

Welcome! *Do now*:

- 1. Finish readings before you continue (1.0-1.1, 1.4, 4.0-4.2)
- 2. Register your iClicker: forms.gle/uDx8Ejc7DWdh5b dd7

CS31: Introduction to Computer Systems

Week 2, Class 1
Data Representation
01/30/24

Dr. Sukrit Venkatagiri Swarthmore College

Announcements

Lab 1 is due Thursday, 11:59pm

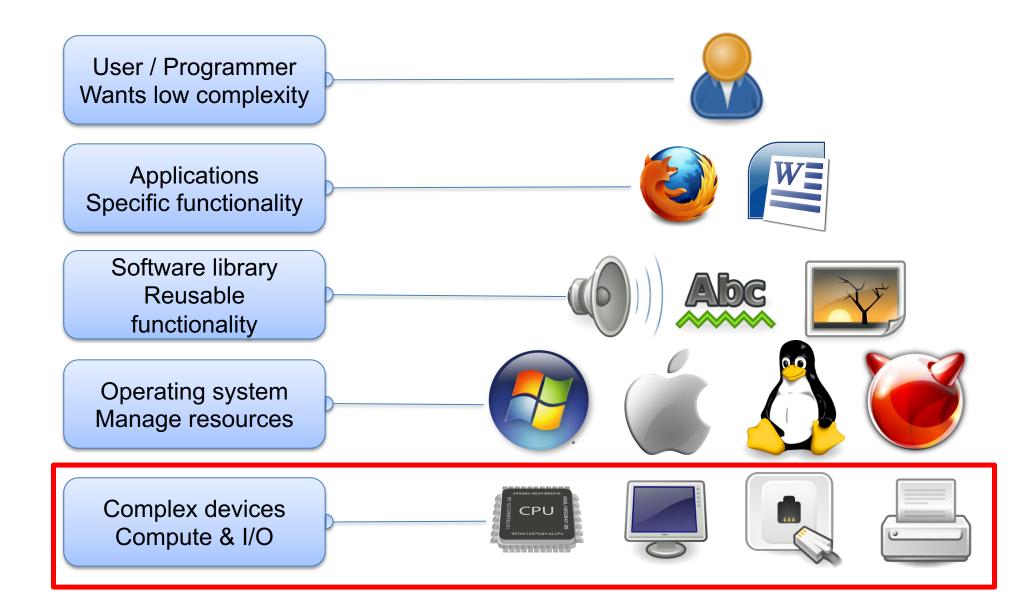
- HW1 is due Friday, 11:59pm
 - up to groups of four
 - invitations sent from gradescope
- Clickers will count for credit from Tuesday, February 6th

Agenda

Data representation

- number systems + conversion
- data types, storage
- sizes, representation
- signedness

Abstraction



Data Storage

- Lots of technologies out there:
 - Magnetic (hard drive, floppy disk)
 - Optical (CD / DVD / Blu-Ray)
 - Electronic (RAM, registers, ...)
- Focus on electronic for now
 - We'll see (and build) digital circuits soon
- Relatively easy to differentiate two states
 - Voltage present
 - Voltage absent

Bits and Bytes

- Bit: a 0 or 1 value (binary)
 - HW represents as two different voltages
 - 1: the presence of voltage (high voltage)
 - 0: the absence of voltage (low voltage)
- Byte: 8 bits, the <u>smallest addressable unit</u>

```
Memory: 01010101 10101010 00001111 ... (address) [0] [1] [2] ...
```

- Other names:
 - 4 bits: Nibble
 - "Word": Depends on system, often 4 bytes

Files

Sequence of bytes... nothing more, nothing less

Binary Digits (BITs)

- One bit: two values (0 or 1)
- Two bits: four values (00, 01, 10, or 11)
- Three bits: eight values (000, 001, ..., 110, 111)

How many unique values can we represent with 9 bits? Why?

- One bit: two values (0 or 1)
- Two bits: four values (00, 01, 10, or 11)
- Three bits: eight values (000, 001, ..., 110, 111)
- A. 18
- B. 81
- C. 256
- D. 512
- E. Some other number of values.

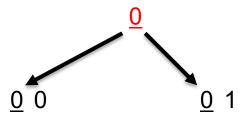
How many unique values can we represent with 9 bits? Why?

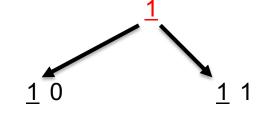
- One bit: two values (0 or 1)
- Two bits: four values (00, 01, 10, or 11)
- Three bits: eight values (000, 001, ..., 110, 111)
- A. 18
- B. 81
- C. 256
- D. 512
- E. Some other number of values.

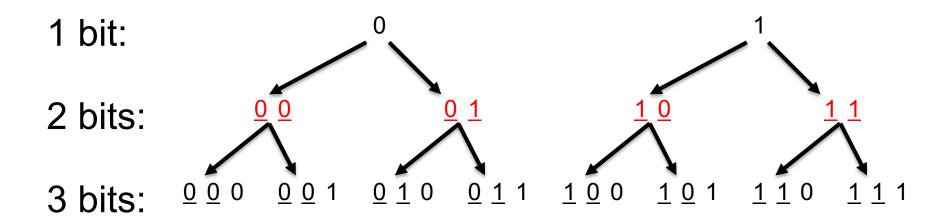
1 bit: 0

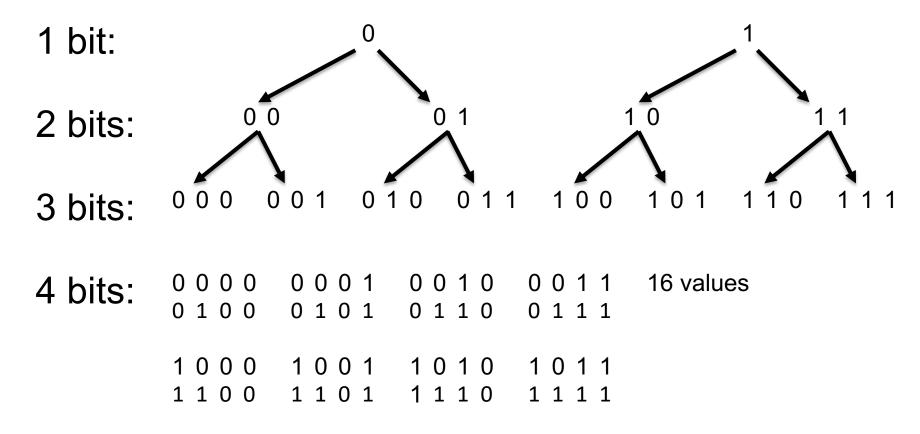
1 bit:

2 bits:









N bits: 2^N values

C types and their (typical!) sizes

```
• 1 byte: char, unsigned char
• 2 bytes: short, unsigned short
• 4 bytes: int, unsigned int, float
• 8 bytes: long long, unsigned long long, double
• 4 or 8 bytes: long,
                         WARNING: These sizes are NOT a
  unsigned long v1;
                        guarantee. Don't always assume that
  short s1;
                         every system will use these values!
  long long 11;
  // prints out number of bytes
  printf("%lu %lu %lu\n", sizeof(v1), sizeof(s1), sizeof(ll));
```

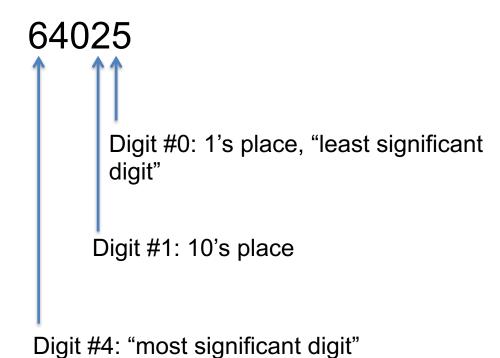
How do we use this storage space (bits) to represent a value?

Let's start with what we know...

- Digits 0-9
- Positional numbering
- Digits are composed to make larger numbers
- Known as Base 10 representation

Decimal number system (Base 10)

• Sequence of digits in range [0, 9]



Decimal: Base 10

A number, written as the sequence of N digits,

$$d_{n-1} \dots d_2 d_1 d_0$$

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, represents the value:

$$[d_{n-1} * 10^{n-1}] + [d_{n-2} * 10^{n-2}] + ... + [d_1 * 10^1] + [d_0 * 10^0]$$

$$64025 =$$
 $6*10^4 + 4*10^3 + 0*10^2 + 2*10^1 + 5*10^0$
 $60000 + 4000 + 0 + 20 + 5$

Binary: Base 2

- Used by computers to store digital values.
- Indicated by prefixing number with 0b
- A number, written as the sequence of N digits, d_{n-1}...d₂d₁d₀, where d is in {0,1}, represents the value:

$$[d_{n-1} * 2^{n-1}] + [d_{n-2} * 2^{n-2}] + ... + [d_2 * 2^2] + [d_1 * 2^1] + [d_0 * 2^0]$$

Converting Binary to Decimal

Most significant bit
$$10001111$$
 Least significant bit 76543210

Representation:
$$_{1}$$
 $_{2}$ $_{2}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{1}$ $_{2}$ $_{4}$ $_{5}$ $_{1}$ $_{1}$ $_{2}$ $_{4}$ $_{1}$ $_{2}$ $_{4}$ $_{4}$ $_{5}$ $_{1}$ $_{2}$ $_{4}$ $_{1}$ $_{2}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{4}$ $_{5}$ $_{4}$ $_{5}$ $_{7}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{5}$ $_{7}$ $_{1}$ $_{2}$ $_{4}$

10001111 = 143

Hexadecimal: Base 16

Indicated by prefixing number with **0x**

A number, written as the sequence of N digits,

$$d_{n-1}...d_2d_1d_0$$
,

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, <u>A, B, C, D, E, F}</u>, represents:

$$[d_{n-1} * 16^{n-1}] + [d_{n-2} * 16^{n-2}] + ... + [d_2 * 16^2] + [d_1 * 16^1] + [d_0 * 16^0]$$

Generalizing: Base b

The meaning of a digit depends on its position in a number.

A number, written as the sequence of N digits,

$$d_{n-1} \dots d_2 d_1 d_0$$

in base b represents the value:

$$[d_{n-1} * b^{n-1}] + [d_{n-2} * b^{n-2}] + ... + [d_2 * b^2] + [d_1 * b^1] + [d_0 * b^0]$$

Base 10:
$$[d_{n-1} * 10^{n-1}] + [d_{n-2} * 10^{n-2}] + ... + [d_1 * 10^1] + [d_0 * 10^0]$$

Other (common) number systems.

- Base 2: How data is stored in hardware.
- Base 8: Used to represent file permissions.
- Base 10: Preferred by people.
- Base 16: Convenient for representing memory addresses.
- Base 64: Commonly used on the Internet, (e.g. email attachments).

It's all stored as binary in the computer.

Different representations (or visualizations) of the same information!

What is the value of 0b110101 in decimal?

A number, written as the sequence of N digits $d_{n-1}...d_2d_1d_0$ where d is in $\{0,1\}$, represents the value:

$$[d_{n-1} * 2^{n-1}] + [d_{n-2} * 2^{n-2}] + ... + [d_2 * 2^2] + [d_1 * 2^1] + [d_0 * 2^0]$$

A. 26

B. 53

C. 61

D. 106

What is the value of 0b110101 in decimal?

A number, written as the sequence of N digits $d_{n-1}...d_2d_1d_0$ where d is in $\{0,1\}$, represents the value:

$$[d_{n-1} * 2^{n-1}] + [d_{n-2} * 2^{n-2}] + ... + [d_2 * 2^2] + [d_1 * 2^1] + [d_0 * 2^0]$$

A. 26

B. 53

C. 61

D. 106

What is the value of 0x1B7 in decimal?

$$[d_{n-1} * 16^{n-1}] + [d_{n-2} * 16^{n-2}] + ... + [d_2 * 16^2] + [d_1 * 16^1] + [d_0 * 16^0]$$

(Note: $16^2 = 256$)

A. 397

B. 409

C. 419

D. 437

What is the value of 0x1B7 in decimal?

$$[d_{n-1} * 16^{n-1}] + [d_{n-2} * 16^{n-2}] + ... + [d_2 * 16^2] + [d_1 * 16^1] + [d_0 * 16^0]$$

(Note: $16^2 = 256$)

D. 437

$$1*16^2 + 11*16^1 + 7*16^0 =$$

$$256 + 176 + 7 = 439$$

Important Point...

 You can represent the same value in a variety of number systems or bases.

- It's all stored as binary in the computer.
 - Presence/absence of voltage.

Hexadecimal: Base 16

- Fewer digits to represent same value
 - Same amount of information!

- Like binary, the base is power of 2
- Each digit is a "nibble", or half a byte.

Each hex digit is a "nibble"

• One hex digit: 16 possible values (0-9, A-F)

• 16 = 2⁴, so each hex digit has exactly four bits worth of information.

We can map each hex digit to a four-bit binary value.
 (helps for converting between bases)

Each hex digit is a "nibble"

Example value: 0x1B7

Four-bit value: 1

Four-bit value: B (decimal 11)

Four-bit value: 7

In binary: 0001 1011 0111

1 B 7

Converting Decimal -> Binary

- Two methods:
 - division by two remainder
 - powers of two and subtraction

Method 1: decimal value D, binary result b (b_i is ith digit):

```
i = 0
while (D > 0)
    if D is odd
             set b<sub>i</sub> to 1
    if D is even
             set b<sub>i</sub> to 0
    i++
    D = D/2
```

Example: Converting 105

idea:

example: D = 105 $b_0 = 1$

Method 1: decimal value D, binary result b (b_i is ith digit):

```
i = 0
while (D > 0)
   if D is odd
        set b<sub>i</sub> to 1
   if D is even
        set b<sub>i</sub> to 0
   i++
   D = D/2
```

Example: Converting 105

idea: D example: D = 105
$$b_0 = 1$$
 $D = D/2$ $D = 52$ $b_1 = 0$

Method 1: decimal value D, binary result b (b_i is ith digit):

```
i = 0
while (D > 0)
   if D is odd
        set b<sub>i</sub> to 1
   if D is even
        set b<sub>i</sub> to 0
   i++
   D = D/2
```

Example: Converting 105

```
idea:
               example: D = 105 b_0 = 1
                        D = 52
                               b_1 = 0
        D = D/2
                        D = 26 b_2 = 0
        D = D/2
        D = D/2
                     D = 13 b_3 = 1
        D = D/2
                      D = 6 	 b_4 = 0
        D = D/2
                      D = 3 b_5 = 1
        D = D/2
                                   b_6 = 1
        D = 0 (done)
                        D =
                                    b_7 = 0
                              105
                                  = 01101001
```

Method 2

•
$$2^0 = 1$$
, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, $2^5 = 32$, $2^6 = 64$, $2^7 = 128$

To convert 105:

- Find largest power of two that's less than 105 (64)
- Subtract 64 (105 64 = 41), put a 1 in d₆
- Subtract 32 (41 32 = $\underline{9}$), put a 1 in d₅
- Skip 16, it's larger than 9, put a 0 in d₄
- Subtract 8 (9 8 = $\underline{1}$), put a 1 in d₃
- Skip 4 and 2, put a 0 in d₂ and d₁
- Subtract 1 (1 1 = 0), put a 1 in d₀ (Done)

$$\frac{1}{d_6}$$
 $\frac{1}{d_5}$ $\frac{0}{d_4}$ $\frac{1}{d_3}$ $\frac{0}{d_2}$ $\frac{0}{d_1}$ $\frac{1}{d_0}$

What is the value of 357 in binary?

8 7654 3210

→ digit position

- A. 1 0110 0011
- B. 1 0110 0101
- C. 1 0110 1001
- D. 1 0111 0101
- E. 1 1010 0101

$$2^{0} = 1$$
, $2^{1} = 2$, $2^{2} = 4$, $2^{3} = 8$, $2^{4} = 16$, $2^{5} = 32$, $2^{6} = 64$, $2^{7} = 128$, $2^{8} = 256$

What is the value of 357 in binary?

8 7654 3210

A. 1 0110 0011

B. 101100101

C. 1 0110 1001

D. 1 0111 0101

E. 1 1010 0101

$$357 - 256 = 101$$

 $101 - 64 = 37$
 $37 - 32 = 5$
 $5 - 4 = 1$

$$\frac{1}{d_8} \frac{0}{d_7} \frac{1}{d_6} \frac{1}{d_5} \frac{0}{d_4} \frac{0}{d_3} \frac{1}{d_2} \frac{0}{d_1} \frac{1}{d_0}$$

$$2^{0} = 1$$
, $2^{1} = 2$, $2^{2} = 4$, $2^{3} = 8$, $2^{4} = 16$, $2^{5} = 32$, $2^{6} = 64$, $2^{7} = 128$, $2^{8} = 256$

So far: Unsigned Integers

With N bits, can represent values: 0 to 2ⁿ-1

We can always add 0's to the front of a number without changing it:

10110 = 010110 = 00010110 = 0000010110

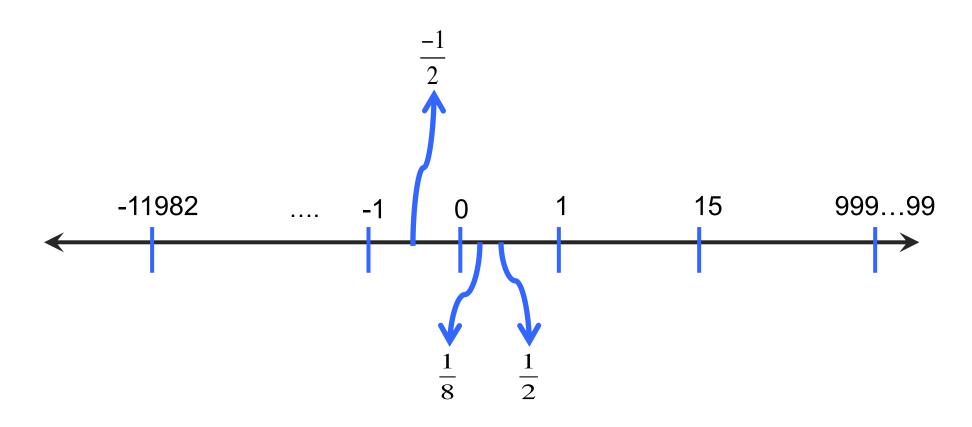
So far: Unsigned Integers

With N bits, can represent values: 0 to 2ⁿ-1

- 1 byte: char, unsigned char
- 2 bytes: short, unsigned short
- 4 bytes: int, unsigned int, float
- 8 bytes: long long, unsigned long long, double
- 4 or 8 bytes: long, unsigned long

Additional Info: Fractional binary numbers

How do we represent fractions in binary?



Additional Info: Representing Signed Float Values

- One option (used for floats, <u>NOT integers</u>)
 - Let the first bit represent the sign
 - 0 means positive
 - 1 means negative
- For example:
 - **0**101 **->** 5
 - **1**101 **-> -**5
- Problem with this scheme?

Additional Info: Floating Point Representation

- 1 bit for sign sign | exponent | fraction |
- 8 bits for exponent
- 23 bits for precision

```
value = (-1)^{sign} * 1.fraction * 2^{(exponent-127)}
```

let's just plug in some values and try it out

```
0x40ac49ba: 0 10000001 01011000100110111010 sign = 0 exp = 129 fraction = 2902458 = 1*1.2902458*2^2 = 5.16098
```

I don't expect you to memorize this