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Introduction

* Microarray is a relatively inexpensive 1 Training Question 1
technology used to measure gene Training For binary class tasks, AdaBoost showed
expression levels. set * S-fold internal cross validation equal or getter erfor;nance than the state-
l * Feature selection ! P
e Cancer classification with microarray » Parameter tuning on accuracy of-the-art methods. Random forest and SVM
data can assist doctors in making early . I/Q\Igoc?th ms were more effective for multi-class tasks.
diagnosis and accurate prognosis. Felat:ire for:'e:tm AdaBoost Ouestion 2
selection | uestion
* Microarray analysm 1s.h1gh.1y susceptible / l\ The performance was clearly different for
to the curse of dimensionality (e.g. over LN binary and multi-class tasks
50,000 genes with ~100 samples). Claccifioat £RRN KA RAKA BN aadh '
Question 1 a|55| C i on \ // '@, e [n most cases, classification with raw data
, , , , aigorithm Y fadh produced the better results than using
Which algorlthm is the most effective for * LDA, k-nearest neighbors, etc. (omitted due to poor performance) various feature selection methods. We
e . . . X .
cancer classification with microarray data | 2 Evaluation can say that all three algorithms were
Question 2 Tech robust to noisy and redundant features.
| estng Model » 10-fold external cross validation |
How does performance differ for set . Area under the ROC curve * The performance varies grea.tly on the
binary and multi-class data sets? * Independently run on each data set type of cancer and the experiment.

Results Future works
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