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ABSTRACT
Protein X-ray crystallography – the most popular method
for determining protein structures – remains a laborious
process requiring a great deal of manual crystallographer
effort to interpret low-quality protein images. Automat-
ing this process is critical in creating a high-throughput
protein-structure determination pipeline. Previously, our
group developed Acmi, a probabilistic framework for pro-
ducing protein-structure models from electron-density maps
produced via X-ray crystallography. Acmi uses a Markov
Random Field to model the 3D location of each non-hydrogen
atom in a protein. Calculating the best structure in this
model is intractable, so Acmi uses approximate inference
methods to estimate the optimal structure. While previous
results have shown Acmi to be the state-of-the-art method
on this task, its approximate inference algorithm remains
computationally expensive and susceptible to errors. In this
work, we develop Probabilistic Ensembles in Acmi (Pea), a
framework for leveraging multiple, independent runs of ap-
proximate inference to produce estimates of protein struc-
tures. Our results show statistically significant improve-
ments in the accuracy of inference resulting in more com-
plete and accurate protein structures. In addition, Pea pro-
vides a general framework for advanced approximate infer-
ence methods in complex problem domains.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algorithms;
J.3 [Life and Medical Sciences]: [Biology and genetics]

General Terms
Algorithms, Experimentation, Performance

Keywords
ensembles, statistical inference, protein-structure determi-
nation, computational biology
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1. INTRODUCTION
Over the past decade, the field of machine learning has

seen a large increase in the use and study of probabilistic
graphical models due to their ability to provide a compact
representation of complex, multidimensional problems [13].
Graphical models have applications in many areas, including
natural language processing, computer vision, gene regula-
tory network modeling, and medical diagnosis. Recently,
the complexity of problems posed in many domains, such as
statistical relational learning, has stressed the ability of al-
gorithms to reason in graphical models. New techniques for
inference are essential to meet the demands of these prob-
lems in an efficient and accurate manner.

One such application is our group’s work on Acmi (Auto-
mated Crystallographic Map Interpretation), a three-phase,
probabilistic method for determining protein structures from
electron-density maps [7, 8, 9, 20]. The task of determining
protein structures has been a central one to the biological
community, with recent years seeing significant investments
in structural-genomic initiatives[21]. X-ray crystallography,
a molecular-imaging technique, is at the core of many of
these initiatives as it is the most popular method for de-
termining protein structures. In creating a high-throughput
crystallography pipeline, however, the final step of construct-
ing an all-atom protein model from an electron-density map –
a three-dimensional image of a molecule produced as an in-
termediate product of X-ray crystallography – remains a ma-
jor bottleneck in need of automation. In difficult cases, this
can take months of manual effort by a crystallographer.

Previous results show that Acmi outperforms other auto-
mated density-map interpretation methods on difficult pro-
tein structures, producing complete and accurate protein
structures where other methods fail [7]. Acmi models the
probability of all possible configurations of a protein struc-
ture using a graphical model known as pairwise Markov ran-
dom field (MRF) [11]. Acmi’s MRF combines visual features
derived from the electron-density map with biochemical con-
straints in order to effectively identify the most probable
locations for each amino acid in the electron-density map.
Unfortunately, exact inference (i.e., finding the best protein
structure model) is computationally infeasible due to the
complexity of the MRF.Acmi, instead, employs approximate
inference techniques to produce a probability distribution for
each amino acid’s location in the density map. While Acmi
has shown promising results, its inference is not guaranteed
to arrive at the correct solution and, more importantly, is
computationally expensive. This limits Acmi’s ability to
produce sufficiently accurate solutions in many cases.
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Figure 1: The last step in the protein X-ray crystal-
lography pipeline takes a) the electron-density map
(a 3D image) of the protein and finds b) the most
likely protein structure that explains the map. Here,
the electron density is contoured and the chemical
structure of the protein is designated with a stick
model showing all of the non-hydrogen atoms.

To overcome these limitations we propose Probabilistic
Ensembles in Acmi (Pea), a general framework for per-
forming approximate inference in complex domains. Pea
borrows the concept of ensemble learning methods from the
supervised machine learning literature [2, 6]. While tradi-
tional methods build a single model to estimate the underly-
ing true model to a problem, ensembles leverage a collection
of estimates to produce a more accurate solution. We extend
this idea to our task by performing multiple, independent
runs of approximate inference in Acmi to produce multiple
probability estimates of the protein’s locations. Our results
show Pea dramatically outperforms Acmi in both the qual-
ity of inference and accuracy of protein structures produced.
Section 2 provides background on protein structures and

automated interpretion of low-quality electron-density maps.
Section 3 details Acmi, our existing framework for determin-
ing protein structures, including a discussion of approximate
inference. Section 4 describes our proposed technique, Prob-
abilistic Ensembles in Acmi (Pea). Lastly, in Section 5, we
compare Pea to our previous work using a set of difficult
electron-density maps.

2. BACKGROUND

2.1 Protein X-Ray Crystallography
Amino acids form the building blocks of proteins, link-

ing end-to-end to form the linear protein sequence. This
sequence folds to form the three-dimensional protein struc-
ture. The main chain of atoms linking amino acids is known
as the backbone of the protein and the variably sized groups
hanging off of the backbone are called side chains. Amino
acids come in twenty different varieties, with each amino-
acid type having a unique side-chain molecule and the same
set of backbone atoms. All side chains connect to the back-
bone via the Cα atom – the central atom in an amino acid.
X-ray crystallography is the most popular wet-lab tech-

nique for determining protein structures, producing ∼88%
of protein structures in the Protein Data Bank [19]. The
final step in the X-ray crystallography process is taking an
electron-density map – a fuzzy, three-dimensional image of

a protein – and determining (or interpreting) the underlying
protein molecular model that produced the image. Figure 1
shows a sample density map and the resulting interpreta-
tion. Figure 1a is a contoured electron-density map, similar
to what a crystallographer would see at the beginning of
interpretation. In b) we see the resulting protein structure
with all non-hydrogen atoms in a stick representation. The
crystallographer’s task is: given a protein’s amino-acid se-
quence and an electron-density map of the protein, produce
the underlying protein structure.

Several factors make determining the protein structure a
difficult and time-consuming process, mainly by affecting
the quality of the electron-density map. The most signif-
icant factor is crystallographic resolution which describes
the highest spatial frequency terms used to assemble the
electron-density map. Resolution is measured in angstroms
(Å), with higher values indicating poorer-quality maps with
less detail. Another factor making automation difficult is
the phase problem; crystallographer’s can only estimate the
phases needed to calculate the electron-density map, reduc-
ing the interpretability of the image. Lastly, imperfections
in the crystal structure and the stochastic nature of protein
structure can create areas of distortion or smeared density
in the image that contain very little or unreliable features.

2.2 Automated Approaches
The most popular method for automated density-map in-

terpretation is ARP/wARP [15, 18], an algorithm which it-
eratively performs two steps. First, it fits atomic structure
to a density map and second, it refines (or improves) the
quality of the map so more structure can be identified on
the next iteration. ARP/wARP efficiently finds solutions in

maps with 2.7 Å resolution or better. Another approach,
Textal [12], uses rotation-invariant features derived from
regions of the density map to train two pattern-recognition
algorithms: Capra, a neural-network classifier for identi-
fying Cα locations and Lookup for matching side-chain
templates to a region of the density map around a Cα. A
third algorithm, Resolve [22], uses a top-down procedure in
which secondary-structure elements are located in the map
as starting points for building large segments of the pro-
tein structure. Using a large library of protein fragments,
Resolve first extends these secondary-structure elements
before attempting to connect them with loop elements. A
recent method, Buccaneer [4], takes a similar approach as
Textal but utilizes orientation-based features. Buccaneer
currently only performs a backbone trace, and thus does not
provide a complete protein model. Textal, Resolve, and
Buccaneer have successfully interpreted density maps up
to 3.2 Å in quality.

3. AUTOMATED CRYSTALLOGRAPHIC
MAP INTERPRETATION

In previous work, our group developed Acmi (Automated
Crystallographic Map Interpretation) [7, 8, 9, 20], a proba-
bilistic method for determining protein structures from low-
quality electron-density maps (∼3 to 4 Å resolution). This
section provides an overview of our existing framework.

3.1 ACMI Overview
Figure 2 provides an overview of Acmi and its three-phase

process. At the heart of Acmi is a probabilistic model known
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Figure 2: The three-phase ACMI pipeline. Given
an electron-density map and amino-acid sequence,
Phase 1 performs a local-match search indepen-
dently for each amino acid. Phase 2 combines these
local-search results with global constraints to cre-
ate posterior probabilities of each amino acid’s loca-
tion. Finally, Phase 3 uses these marginals to sample
physically feasible, all-atom protein structures. The
upper box in Phase 2 shows a portion of a Markov
Random Field for an example protein sequence.

as a pairwise Markov Random Field (MRF) [11]. An MRF
is an undirected graphical model that defines a probabil-
ity distribution on a graph. MRF’s compactly represent a
full-joint probability by factorizing the complex, large joint-
probability into smaller factors. Vertices (or nodes) in an
MRF are associated with random variables, and edges en-
force pairwise constraints on those variables. In our task,
Acmi seeks to probabilistically represent all possible struc-
tures of a protein in a compact manner. Given an electron-
density map and the linear amino-acid sequence of a protein,
Acmi constructs a graph where each vertex describes the lo-
cation, u⃗i, of the Cα atom for the amino acid at position i
in the sequence. Edges exist between every two amino acids
in the sequence and model the interactions between the pair
of connected amino acids. A sample MRF is show in the
upper Phase 2 box in Figure 2.
Formally, Acmi’s pairwise Markov Random Field model

G = (V,E) consists of vertices i ∈ V connected by undi-
rected edges (i, j) ∈ E. We define the full-joint probability
of all amino-acid locations, U, as

P (U|M) =
∏
i∈V

ψi(u⃗i|M)×
∏

(i,j)∈E

ψi,j(u⃗i, u⃗j). (1)

The first term, ψi(u⃗i|M), is associated with vertex i and
is known as the observation potential function. It can be
thought of as prior probability on the location of an amino
acid given the map, M, and ignoring all other amino acids
in the protein. Acmi calculates this function in Phase 1.
Briefly, Acmi looks up instances of amino acid i in a database
of previously solved structures1 to serve as templates (i.e.,
potential configurations) for amino acid i. Each returned
instance is compared to the density map at each grid point,
with the maximum correlation coefficient across all rotations
being stored [9].

The second term, ψi,j(u⃗i, u⃗j), is associated with edges.
This function represents one of two conformation potentials
which define pairwise chemical constraints on the protein
structure. Edges between neighboring amino acids in the
linear sequence (i.e., |i−j| = 1) are represented by the adja-
cency potential, which encodes the constraint that adjacent
amino acids must maintain an approximate 3.8 Å spacing
as well as proper angles2. Edges between non-neighboring
amino acids (i.e., |i−j| > 1) contain an occupancy potential,
reflecting the constraint that no two amino acids can occupy
the same space.

Given this MRF, we construct a three-phase pipeline (Fig-
ure 2) to calculate the most probable protein structure for a
given protein sequence and electron-density map. As men-
tioned, Phase 1 estimates the observation potential, or the
probable location of each amino acid in the density map in-
dependent of information about other amino acids. Phase
2 then takes these results and combines them with chem-
ical constraints using the MRF outlined above. Inference
on the MRF distributes the evidence and produces a pos-
terior marginal probability of each amino acid’s location in
the electron-density map. Phase 3 uses these probabilities
to sample physically-feasible, all-atom (i.e., side chain and
backbone atoms) protein structures.

Acmi owes much of its success to two distinguishing prop-
erties. First, Acmi simultaneously ties local feature detec-
tion in the density map with global biochemical constraints
to infer possible locations of amino acids. Second, while
other techniques represent an amino acid with a small set
possible locations, Acmi represents each amino acid’s loca-
tion probabilistically; that is, each possible location in the
electron-density map is considered with certain weight. This
allows the algorithm to overcome poor, early decisions while
also allowing weaker evidence to persist and possibly be uti-
lized in later stages.

3.2 Inference in ACMI
The model in Equation 1 represents the full-joint proba-

bility distribution over all possible locations for each amino
acid in the target protein. Calculating this probability ex-
actly, however, is intractable due to the cyclical nature and
large size of Acmi’s graph. Acmi, instead, employs loopy be-
lief propagation (BP) [16, 17], a fast approximate-inference
algorithm, to calculate an approximate marginal probability
distribution for the location of each amino acid’s Cα atom.
This task takes place as Phase 2 in the Acmi pipeline.

Belief propagation calculates marginal probabilities by uti-
lizing an iterative, local message-passing scheme to prop-

1Acmi uses a non-redundant subset of the Protein Data
Bank (PDB) [24].
2Bond and angle distributions are obtained from protein
structures in the Protein Data Bank (PDB).
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Figure 3: A sample message being sent in ACMI’s
belief-propagation algorithm. In a) we show the por-
tion of interest in the protein’s MRF. In b) we show
the current state of beliefs and the calculated mes-
sage to be sent from lysine (amino acid 31 in the se-
quence) to leucine (32). Finally, c) shows leucine’s
updated belief after receiving the message, which
has boosted the confidence in one of the original four
peaks. For simplicity, these distributions represent
probabilities on a 2-dimensional plane.

agate information across a graphical model [17]. Here, a
marginal probability represents the posterior probability of
a single amino acid’s location, incorporating all available in-
formation. While converging to the exact solution is not
guaranteed in cyclical graphs such as Acmi, belief propaga-
tion tends to produce good approximations in practice [16].
A message from amino acid i to amino acid j states, “Based
on my current belief in my location, you should be here (with
weight).”
Formally, BP, at iteration n for vertex i, computes an

estimate of p̂ni (u⃗i), amino acid i’s belief:

p̂ni (u⃗i) = ψi(u⃗i|M)×
∏

k∈Γ(i)

mn
k→i(u⃗i) (2)

where Γ(i) is the set of vertices connected to vertex i. Mes-
sages from amino acid i to amino acid j are calculated by a
convolution of the edge potential ψi,j(u⃗i, u⃗j) (i.e., adjacency
potential or occupancy potential) with amino acid i’s belief

mn
i→j(u⃗j) =

∫
EDM

ψi,j(u⃗i, u⃗j)×
p̂ni (u⃗i)

mn−1
j→i (u⃗i)

du⃗i. (3)

The convolution occurs over the entire distribution, denoted
EDM (for Electron-Density Map). The denominator inside
the integral removes the influence of the previous message
sent across the edge.
A sample iteration of message passing is shown in Fig-

ure 3. This process continues iteratively, one amino acid at
a time, until all amino acids converge to a stable solution,
or some stopping criteria is met. The belief after the final
iteration becomes the posterior probability of each amino
acid’s location and is fed as input to Phase 3.

Figure 4: Ensemble learning methods for super-
vised learning. Multiple algorithms construct mod-
els based on the training data. The resulting mod-
els are combined to produce a more comprehensive,
composite model.

4. METHODS
As mentioned in Section 3.1, Acmi’s Phase 2 utilizes an

approximate inference technique known as loopy belief prop-
agation (BP) to calculate the location of each amino acid
in the protein sequence. Empirically, Acmi’s Phase 2 rarely
converges to a solution and while Acmi performs well on dif-
ficult proteins, results indicate that there are shortcomings
in the inference process [7, 20]. This section discusses the
major contribution of this paper: a new technique for im-
proving Acmi’s performance using a statistical ensemble of
approximate inference solutions. Section 4.1 introduces the
concept of ensemble learning methods from the supervised
machine learning literature and related ideas in probabilistic
inference. Section 4.2 presents our technique, Probabilistic
Ensembles in Acmi (Pea), in a modified Acmi framework.
Lastly, Section 4.3 presents the methodology for experiments
we used to evaluate our proposed technique.

4.1 Ensemble Learning Overview
Ensemble learning methods come primarily from the su-

pervised machine learning community. The goal of super-
vised learning is to develop a model (or classifier) with high
predictive performance on future instances of a problem.
Traditional learning methods involve a search through a hy-

pothesis space that returns a single-best model, f̂(x), to
estimate the underlying (but unknown) true function, f(x).
Ensemble learning methods, illustrated in Figure 4, aim to
develop a collection of models, f̂1(x), f̂2(x), ..., f̂N (x), that,
in aggregate, produce a classifier with better performance
than any single constituent model. Empirical evaluations of
ensemble learning methods (or ensembles) show that such
methods outperform the best individual constituent models
under two conditions [2, 6, 14]. First, the ensemble must be
diverse. A lack of diversity means each model will produce
the same answer to a given instance and thus the collective
performance will mirror individual performance. Second,
the individual members must be at least weakly accurate;
that is, performing better than random guessing.

There are two primary design choices in developing an
ensemble learning method. First, the learner must generate
models that meet the two criteria above i.e., the learner must
generate diverse, accurate models. The machine learning
literature contains a variety of techniques for accomplishing
this, including the popular methods bagging and boosting.
Second, the learner must aggregate the decisions (or pre-
dictions) of each model. This is often accomplished with



Algorithm 1: Probabilistic Ensembles in ACMI (PEA)

input : amino-acid sequence Seq of length N ,
electron-density map of protein M,
number of ensemble components C,
inference protocol for each component protocolc

output: Protein structure U = (u1, u2, . . . , uN ) where
ui is the coordinates of amino acid i

// Calculate vector of observation potentials, Ψ(U)
for i = 1 . . . N do

ψi(u⃗i)← Phase1(Seq,M)
end

// Generate ensemble of posterior probabilities, P
for c = 1 . . . C do

P̂c ← Phase2(Seq,Ψ(U), protocolc)
end

// Sample all-atom protein structure
U← Phase3(Seq,P)

majority voting, where each model gets a weighted or un-
weighted “vote” on the answer to a query instance.
While most work on ensembles is on supervised machine

learning problems, we are interested in structured-prediction
problems such as Acmi. Rather than classification, our
task involves performing inference to estimate the proba-
bility densities of several unknown and connected variables
(e.g., amino-acid locations). Weiss et al. [25] proposed Struc-
tural Ensemble Cascades (SEC), an iterative, hierarchical
method for structured prediction problems. Their model
learns a sequence of coarse-to-fine models to filter possible
output locations in a vision task (e.g., tracking human pose
across frames of video). Ensembles are used in inference,
where an intractable graph is converted to a set of tractable
(i.e., tree-structured) graphs. Wainwright et al. [23] took a
similar approach to the problem of intractable inference by
decomposing the graph into a set of overlapping, tractable
models. These techniques, however, tie parameter learn-
ing between the tractable models, imposing an expensive
increase in inference time. SEC loosens this contraint since
it is not needed for the filtering task.

4.2 Probabilistic Ensembles in ACMI
With the well-documented success of ensemble methods

in classification tasks, we seek to extend the idea of aggre-
gating multiple estimates to probabilistic graphical models.
As discussed in the previous section, current efforts in the
area rely on simplifying the structure of an intractable graph
to create a collection of tractable problems [23, 25]. These
techniques, however, do not easily extend to the graph in
Acmi, which is fully connected and thus difficult to convert
to the necessary number of tree-structured graphs. In ad-
dition, previous work in Acmi introduced an approximation
that exploited redundancies in messages passing to dramat-
ically reduce the complexity of inference [8]. Converting
Acmi to a tree-structured graph loses the gains from this
approximation as well as important information encoded in
edges. Thus, we are interested in a solution that boosts the
accuracy of inference, not that tractability.
We propose Probabilistic Ensembles inAcmi (Pea), shown

in Figure 5 and Algorithm 1. Pea is a framework for gen-
erating and combining multiple approximate inference solu-
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Figure 5: Probabilistic Ensembles in ACMI (PEA).
Phase 1 is the same as in the ACMI framework (Fig-
ure 2). Phase 2 performs C independent inference
runs, each with a unique protocol. This results in a
set of C marginal probabilities for each amino acid’s
location. Phase 3 aggregates the set of marginal
probabilities to produce a protein structure.

tions to create more accurate protein structures. As with
ensemble learning methods in classification, there are two
major design components to address. In Section 4.2.1, we
discuss how Pea generates a diverse set of solutions (i.e.,
ensemble components). In Section 4.2.2, we describe our
framework for aggregating these solutions to produce a pro-
tein structure. Both of these components modify the ex-
isting Acmi framework (Figure 2). Specifically, generating
diverse solutions amends the inference process in Phase 2
and combining the solutions takes place in structure sam-
pling of Phase 3.

4.2.1 Generating Ensemble Components
From Section 3.1, Equation 1 calculates P (U |M) – the

probability distribution over all possible protein structures
given the density map. Since this calculation is intractable,
Phase 2 of Acmi produces p̂i, the approximate marginal
probability of amino acid i’s location for each amino acid
in the protein sequence. Rather than performing inference
once, our proposed framework, Pea, performs several in-
dependent runs of inference. As shown in Figure 5, each
run (C in total) uses a unique protocol and outputs its own
marginal probability distribution for each amino acid’s lo-
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Figure 6: ACMI’s Phase 3 sampling step for amino
acid i. In a) Phase 3 samples M possible new lo-
cations, uim . In b) these locations are weighted by
their agreement with the Phase 2 probability, p̂i. In
c) one location is chosen from the weighted distri-
bution to be amino acid i’s location, ui.

cation. Phase 2, in total, produces a matrix of probabil-
ity distributions P = (P̂1, P̂2, . . . , P̂C) where each ensemble

component c produces P̂c = (p̂1c , p̂2c , . . . , p̂ic). Here, p̂ic
represents the probability of amino acid i’s location in the
density map according component c of the ensemble.
As mentioned in Section 4.1, a desired property of an en-

semble is that the individual components are diverse. For-
tunately, Elidan et al. [10] showed the choice of a message-
passing protocol (i.e., what order to send and receive mes-
sages between nodes) has a large effect on the outcome of be-
lief propagation, particularly in complex, loopy graphs such
as Acmi. We previously examined the effect of using vari-
ous message-passing schedules on Acmi’s performance and
found that this decision choice has a significant impact on
the final solution of Phase 2 [20]. Section 4.3 provides exam-
ple message-schedules for generating ensemble components
in Pea.

4.2.2 Aggregating Ensemble Components
In DiMaio et al. [7], we developed Phase 3 of Acmi which

utilizes particle filtering [1], a sampling algorithm, to gener-
ate all-atom protein structures given the posterior marginal
probabilities from Phase 2. Briefly, Phase 3 is an itera-
tive process which sequentially grows a protein structure
one amino acid at a time3. Figure 6 shows how, at a given
iteration, Phase 3 samples the location, ui, of amino acid
i. Phase 3 first samples M potential locations for the new
amino acid based on the location of already placed amino
acids in the sequence and a distribution of known angles
and distances between neighboring amino acids (i.e., the ad-
jacency potential function ψadj(ui−1, ui) from Section 3.1).
Next, Phase 3 assigns a weight, wm, to each sampled es-

3Phase 3 maintains multiple estimates (or particles) during
the sampling process and uses separate steps to sample back-
bone and side-chain atoms. For simplicity, we only consider
one particle’s backbone placement in this description.

timate, uim , correlated with the likelihood of amino acid i
being in that location. This is calculated from the Phase 2
posterior marginal probabilities:

wm ∝ p̂i(uim). (4)

Lastly, Phase 3 chooses one of the M samples as its predic-
tion for amino acid i’s location in the structure. The sample
is chosen with probability proportional to wm.

In Pea, we must adjust Phase 3 to deal with the exis-
tence of multiple Phase 2 posterior probabilities for each
amino acid. We propose several functions for combining
these probabilities into a single weight measurement. First,
we look at the average score over all ensemble components
using a mixture model:

wm ∝
∑
c

πc · p̂ic(uim) (5)

where πc is the mixture weight, representing the confidence
that component c provides the correct distribution.4 The av-
erage score should perform well if the true location tends to
have a high score across all runs of inference while false pos-
itives are uncorrelated between runs. False positives would
be smoothed out and consistent peaks would maintain high
probabilities. Conversely, strong divergences between mod-
els would smooth away most information. Another proposed
weight function is to instead take the maximum score for a
given location across all components:

wm ∝ max
c
p̂ic(uim). (6)

In difficult sections of a protein, it is very likely that most
models will miss the correct location since there is very lit-
tle evidence. Given multiple estimates, it is more likely that
one model found the correct answer. Using the maximum
score allows Phase 3 to capture the correct location in this
situation, although it may also over-emphasize false posi-
tives. Lastly, we consider using a subsampling approach
where Phase 3 will randomly select one of the ensemble com-
ponents to score the location:

c ∼ U [1, C]

wm ∝ p̂ic(uim)
(7)

where U [1, C] returns an integer between 1 and C with
uniform weight. Alternatively, c could be drawn from a
weighted distribution based on πc in Equation 5. This tech-
nique fits intuitively into the sampling framework of particle
filtering where multiple structure estimates exist to explore
several different paths to the end state.

4.3 Experimental Methodology
In Section 5, we compare the performance of our origi-

nal Acmi framework from DiMaio et al. [7] to our proposed
algorithm, Pea. Previous results show Acmi is the state-
of-the-art technique for low-quality protein images, thus re-
lated approaches are not compared in this paper. We use a
set of ten experimentally-phased electron-density maps de-
scribed in DiMaio et al. [7] for validation. This data was
provided by the Center for Eukaryotic Structural Genomics
(CESG) at UW–Madison. The maps were initially phased
using either the Solve [22] or Sharp [5] packages, with non-
crystallographic symmetry averaging used to improve the

4πc can be set by various measures, such as entropy or prior
knowledge. We use uniform weights in our experiments.



map quality where possible. Based on the electron density
quality, expert crystallographers selected these maps as the
“most difficult” from a larger data set of twenty maps. These
structures have been previously solved and deposited to the
PDB, enabling a direct comparison with the correct model5.
However, all ten required a great deal of human effort to
build the final atomic model.
Phase 1 (performing an independent search for local fea-

tures) is the same for both algorithms, meaning Phase 2
for both the original Acmi and proposed Pea algorithms
begin with the same input. For the experiments in Sec-
tions 5.1 and 5.2, we consider 3 variations of Acmi’s belief-
propagation protocol for Phase 2:

• ORIG, the original protocol of Acmi which is run for
40 iterations per amino acid in a round-robin fashion
starting with amino acid 1, proceeding left to right,
and then reversing at the end of each pass.
• EXT, an extended version of the original protocol go-

ing for 160 iterations.
• BEST, the top-performing individual version of Acmi

from the four protocols considered for Pea (see below).

The BEST protocol provides an overly optimistic estimate of
Acmi to see how Pea performs as an ensemble relative to its
individual components. For Pea, we generate an ensemble
of size 4 with each component having its own protocol:

• Protocol 1 is the same as ORIG above.
• Protocol 2 starts halfway through the sequence.
• Protocol 3 is like ORIG, but runs for 20 iterations
• Protocol 4 employs guided belief propagation [20].

For the learning curve in Section 5.3, 50 protocols were
generated. All were based on the standard, round-robin
schedule and executed for 40 iterations. Each varies in the
starting location and the direction of the first iteration with
half going left to right and the other half going right to left.
Phase 3 experiments in Section 5.2 were run with 100 par-

ticles (see DiMaio et al. [7] for details). For the aggregators
in Section 4.2.2, our shown results reflect a uniform mix-
ture weight. We considered a weight based on the entropy
of the distributions, but the results were statistically equiv-
alent to using a uniform weight. We determine statistical
significance using a paired t-test.

5. RESULTS
Using the methodology described in Section 4.3, we com-

pare the performance of our new approach of using Proba-
bilistic Ensembles in Acmi (Pea) against the original Acmi
algorithm [7]. We compare the results across a set of ten
difficult protein structures. These solutions were previously
solved utilizing significant human effort. Since Phase 1 re-
mains unchanged between the two algorithms, we do not
detail the results of generating the observation potentials.
Section 5.1 first assesses the quality of approximate infer-
ence by comparing the accuracy of the Phase 2 outputs by
the two approaches. In Section 5.2, we feed these Phase 2
probabilities to Phase 3 to measure the accuracy of the all-
atom protein structure models produced by Pea and Acmi.
Lastly, Section 5.3 shows how the accuracy of Pea changes
as the number of ensemble components increases.

5Test-set solutions were removed from Acmi’s fragment li-
brary to blind all methods from the true result.

5.1 Approximate Inference
Our first experiment assesses the quality of approximate

inference solutions produced in Phase 2 for both Acmi and
Pea by examining the accuracy of posterior marginal prob-
abilities. In this experiment, Acmi and Pea use the same
Phase 1 outputs to run their respective Phase 2 algorithms
and halt before executing Phase 3. Pea runs Phase 2 with
four ensemble components using the protocols specified in
Section 4.3. We consider the maximum score aggregator
from Equation 6 and the average score aggregator from Equa-
tion 5 (MAX and AVG, respectively). The sampling algo-
rithm from Equation 7 performs aggregation as a step in
Phase 3 and cannot be compared here. For Acmi, we test
the original, round-robin protocol (ORIG), an extended run
of inference (i.e., 160 iterations) in Acmi (EXT), and the
best-performing individual component of Pea (BEST).

Figures 7a and 7b show the results of running these tech-
niques on a set of difficult protein images. Figure 7a shows
the percentile rank which represents how highly ranked the
correct solution (i.e., location from the deposited structure
in the PDB) is in the posterior marginal probabilities. To
calculate the percentile for a given amino acid, we sort all of
the probabilities in the posterior from highest to lowest and
then calculate the percent of locations lower than the true
location. The optimal score of 100 means the true location
had the highest probability value in the map. In Figure 7b,
the negative log-likelihood is the probability value for the
true location, transformed as a negative-log score. Here, we
desire lower values as they indicate higher probabilities. In
both figures, one column represents the average score across
all 10 test-set proteins and across all amino acids in those
proteins. Columns are color coded based on whether they
are instance of Acmi (light green) or Pea (dark red).

Both figures show that the ensemble method, Pea, dras-
tically outperforms the existing, single inference version of
Acmi across all protocols. Both the maximum and average
aggregators obtain scores in the 89th percentile compared
to the original Acmi protocol which averages scores in the
66th percentile. This implies that, on average, there are
three times as many false positives in Acmi versus Pea.
The negative log-likelihoods tell a similar story; the proba-
bility scores improve by over three orders of magnitude by
using ensembles. The results for the best individual com-
ponent of Pea are only slightly better than standard Acmi,
showing that Pea benefits from combining multiple, good
models rather than from generating one very good model.
The extended run of standard Acmi shows minor improve-
ments as well, but comes nowhere near the performance of
Pea, showing that the gains of our ensemble method can-
not be explained away by an increase in CPU resources. In
fact, the results of all pairwise differences between the Pea
variations and the three Acmi variations are statistically sig-
nificantly at scores of p < 0.01 for both metrics in Figure 7
based on a paired t-test.

5.2 Protein Structures
While the previous results indicate our ensemble tech-

nique improves the accuracy of approximate inference proba-
bilities, biochemists are more interested in the actual protein
structures produced. As a follow-up experiment, we used
the marginal probabilities from Section 5.1 as the input for
Phase 3 of the Acmi and Pea algorithms, respectively, to
produce all-atom protein structures for all 10 of our test-set
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Figure 7: Accuracy of inference solutions. In a) percentile rank of the true solution’s probability. A higher
percentile means the algorithm puts the true location of an amino acid closer to the top of a list of sorted
probabilities. In b) the negative log-likelihood of the true solution. Lower scores mean a higher probability
value for the correct answer. In both, columns are the average score over all amino acids in all test-set
proteins. Dark (red) bars represent variations of PEA, while light (green) bars represent variations of ACMI.
An * denotes a statistically significant difference with ORIG at p < 0.01.

proteins. We use the completeness and correctness of the
resulting protein structures to compare our proposed aggre-
gators for Pea against Acmi.
Figure 8a shows the averaged results of our experiments.

The first three pairs of columns represent, respectively, the
maximum (MAX), average (AVG), and sampling (SAMP)
aggregators for Pea presented in Section 4.2.2. The fourth
pair of columns represent the originalAcmi protocol. Within
each pair, the first column represents the correctness of the
predicted protein structure – that is, what percentage of
amino acids predicted were within 2 Å of their corresponding
true-solution location. This is similar to the precision met-
ric used in information retrieval. The second column repre-
sents the completeness of the predictions – what percent of
amino acids available in the PDB solution were accurately
predicted (within 2 Å). This is akin to a recall metric. Each
column represents an average over all ten test proteins. The
top performer across both metrics was Pea using the aver-
aging function to aggregate ensemble components. On aver-
age, 90.3% of its predicted amino-acid locations were correct
(compared to 79.3% for the original Acmi algorithm) while
completing 84.3% of the real structure (78.6% for Acmi).
Importantly, all three Pea methods outperform Acmi in
both correctness and completeness measures.
Figure 8b provides a closer comparison of Pea versus

Acmi. Here, each datapoint represents the results of one
protein in our test set. The x-axis value is the accuracy of
the original Acmi algorithm and the y-axis is the accuracy
of Pea using the average aggregator. To assess accuracy, we
use an F -measure to combine the correctness and complete-
ness metrics from Figure 8a. The F -measure is commonly
used in the information retrieval community to balance both
the need for high precision and high recall. Here, we use the
traditional F1 metric, which is the harmonic mean of cor-
rectness and completeness:

F1 = 2 · correctness · completeness
correctness+ completeness

(8)

The line represents equivalent performance, and the shaded
region represents values where Pea outperforms ACMI. In
every test case, Pea performs better than or equal to Acmi
in the F1 metric, affirming the results from Figure 8a. The
largest improvement comes in the most difficult test case,
with the F1-score improving from 0.25 to 0.66. This corre-
sponds to an extra 41 percentage points of the true structure
being built and 42 percentage points of extra predictions be-
ing correct. Overall, Pea shows substantial improvement in
6 of the 10 proteins with equal performance in the other 4,
although these values are not statistically significant. The
variance in overall performance is not correlated with either
the size of the protein or image, but indicative of the range
in image quality in our test set.

Figure 8b only considers the average aggregator for Pea
since it performed better than the alternative options. As
hypothesized in Section 4.2.2, the averaging aggregator’s
main advantage is that it can smooth away “noisy” prob-
abilities. That is, as seen in Figure 7, Acmi’s individual
inference runs contain many incorrect locations (i.e., false
positives) with higher probabilities than the correct solution.
This makes it more difficult for Phase 3 to find the correct
location for the structure during sampling. If an ensemble
produces diverse solutions, however, than the “noisy” loca-
tions should be independent between runs. When averaged
together, these incorrect peaks are smoothed away since they
are low in probability in most components, and the signal
from the true location will be boosted since its signal is
detected by multiple inference runs. Thus, while each indi-
vidual run produces moderate results, the average together
reveals only a handful of possible solutions. The maximum
aggregator and sampling aggregator also produced improved
inference probabilities, but did not translate into the same
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Figure 8: Protein-structure prediction accuracy. In a) correctness (light blue) specifies the percent of pre-

dicted structure within 2 Å of the true answer, averaged over all proteins. Completeness (dark red) is the

percent of the true structure a method predicted within 2 Å. ORIG is the standard ACMI algorithm and
MAX, AVG, and SAMP are variations of PEA. An * indicates statistically significant difference compared to
ORIG at p < 0.05. In b) we show a detailed comparison of F1-scores for ACMI (x-axis) and PEA using the
averaging aggregator (y-axis). F1 is the harmonic mean between the correctness (precision) and completeness
(recall) metrics. Each point represents one protein and the shaded region indicates better scores for PEA.

level of improvement in structure quality as the averaging
aggregator. It is difficult to pinpoint the exact reason, but
the areas of major difference happened to be in regions of the
map with this least amount of signal, implying the averaging
aggregator handles noise the best.

5.3 Ensemble Learning Curve
As a last experiment, we consider how the size of an en-

semble effects the accuracy of inference in Pea. Due to
resource limitations, we could not run larger ensembles sizes
for the previous experiments. Instead, for the seven smallest
test-set proteins, we generated ensembles with various num-
ber of components, ranging from 1 to 50. We assessed each
using percentile scores as described for Figure 7a. Figure 9
shows the learning curve for seven of our test-set proteins
as the number of ensemble components increases (the values
past 30 are not shown since no change occurred). Pea uses
the mixture-model average aggregator to combine posteri-
ors. The light, dashed lines represent the inference results
for one test-set protein while the thick, black line represents
the average performance across the seven proteins. As the
figure shows, Pea gains accuracy from adding more compo-
nents, making its largest leap in performance with the first
10 ensemble components before seeing very little improve-
ment after 20 component ensembles.

6. CONCLUSIONS AND FUTURE WORK
While Acmi was previously shown to outperform other

automated density-map interpretation methods in building
all-atom protein structures in low quality electron-density
maps [7], performing approximate inference in Acmi’s model
is an expensive process in need of advanced inference meth-
ods. In this work, we developed a new approximate inference
method based on the concept of ensemble learning meth-
ods from the supervised machine learning community. Our

Figure 9: Learning curve for ensemble inference.
Each dashed line represents one protein’s percentile
scores for Phase 2 posteriors as the number of en-
semble components increases. The solid black line
represents the average learning curve.

new framework, Probabilistic Ensembles in Acmi (Pea), ex-
ecutes several independent runs of inference to provide mul-
tiple, diverse solutions to the problem. We suggest several
protocols for generating unique solutions for each component
of the ensemble as well as different techniques for aggregat-
ing these models to produce a single, accurate prediction of
the protein structure.

Our results show Pea provides improved performance on
a test-set of 10 difficult protein images. This improvement is
seen in the accuracy of the inference process, where the prob-
ability distributions from Pea were statistically significantly
better in terms of both percentile rank and probability value



assigned to the correct location of each amino acid. The re-
sults show that this improvement could not be explained
by either extra CPU resources or by using the single-best
component of Pea. More importantly, Pea’s improved in-
ference translates into more complete and correct protein
structures. In the future, we seek to test Acmi on a larger
set of proteins, including membrane proteins which present
many difficulties for crystallographers [3].
While we presented ensembles of approximate inference

solutions for the task of protein-structure determination, our
method can generally be applied to difficult inference prob-
lems where the complexity of probabilistic graphical models
limits the accuracy of current methods. In future work, we
look to find such applications, and to provide an in-depth
comparison to related inference techniques that rely on sim-
plifying the graph structure [23].
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