
A comprehensive analysis of classification algorithms for
cancer prediction from gene expression

Raehoon Jeong
Swarthmore College
500 College Avenue

Swarthmore, PA 19081
rjeong1@swarthmore.edu

Ameet Soni
Swarthmore College
500 College Avenue

Swarthmore, PA 19081
soni@cs.swarthmore.edu

ABSTRACT
With the advent of inexpensive microarray technology, bi-
ologists have become increasingly reliant on gene expression
analysis for detecting disease states, including diagnosis of
cancerous tissue [12]. While random forests and SVMs have
proven to be popular methods for expression analysis, lit-
tle work has been done to compare these methods with
AdaBoost, a popular ensemble learning algorithm, across
a wide array of cancer prediction tasks. Our work shows
AdaBoost outperforms other approaches on binary predic-
tions while random forests and SVMs are the best choice in
multi-class predictions.

Categories and Subject Descriptors
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General Terms
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1. INTRODUCTION
Previous work has shown that the problem of predicting

cancer states of gene expression profiles is well-suited for tra-
ditional supervised learning algorithms, including random
forests [1, 2], support vector machines (SVM) [4, 14], and
AdaBoost [3, 12]. Practitioners, however, are left with little
guidance in selecting the best choice for their novel predic-
tion task. This problem is particularly acute with gene ex-
pression profiles, which are highly susceptible to the curse of
dimensionality, as most have orders of magnitude more gene
measurements (i.e., features) than samples (i.e., instances).

Previous research has compared several prediction algo-
rithms across multiple data sets. Statnikov et al. [10] showed
SVMs outperform k-nearest neighbors, linear discriminant
analysis, and artificial neural networks across 11 types of
cancer diagnosis problems. Diaz-Uriarte and Alvarez de An-
dres [2] introduced random forests classifiers to gene expres-
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sion analysis, but further analysis showed SVMs still per-
formed best across several data sets [11].

Our work differs from existing research in two important
ways. First, our work provides a comprehensive analysis of
the AdaBoost algorithm across a wide variety of cancer data
sets. Second, our work will show that the choice of optimal
algorithm depends heavily on whether the task falls under
binary prediction or multi-class prediction.

We evaluated the current state-of-the-art approaches –
SVMs and random forests – as well as AdaBoost, across 24
data sets. Our analysis shows that AdaBoost performs re-
markably well on binary tasks, generally outperforming both
SVMs and random forests. On multi-class problems, how-
ever, random forests and SVMs are indistinguishable from
one another but generally outperform AdaBoost. Further-
more, our analysis shows that methods that learn ensembles
of trees (random forests and Adaboost) see no benefit from
external feature selection, eliminating the need for a time-
consuming pre-processing step.

2. METHODS
We initially compared several classifiers, including LDA,

k-nearest neighbors, among others. For brevity, we present
just the top methods: random forests, SVM, and AdaBoost.

Random forest [1] generates an ensemble of decision trees
fit to bootstrap samples with a random selection of features.
We optimized the number of trees over {500, 1000, 2000}
and the number of selected features over {0.1m, 0.5m,

√
m},

where m is the original number of features.
Support vector machine [14] derives a hyperplane in a

high-dimensional space that discriminates the classes. We
utilized a polynomial kernel and one-vs-rest prediction in the
case of multi-class data sets. We tuned the penalty parame-
ter C over {0.01, 0.1, 1, 10, 100} and the degree over {1, 2, 3}.

AdaBoost [3] builds a series of weak classifiers, which col-
lectively make predictions. After building each weak classi-
fier, it puts more weight on incorrectly classified instances,
so that the subsequent classifiers are more likely to predict
those data points correctly. We used decision stumps for the
weak classifier with learning rates of {0.5, 0.75, 1} and the
number of weak classifiers of {50, 75, 100}.

There were a total of 24 microarray data sets used in the
analysis – 12 binary and 12 multi-class. They were publicly
available from past literature or Gene Expression Omnibus1.
See the cited papers in Tables 1 and 2 for further details.

1http://www.ncbi.nlm.nih.gov/geo/



Table 1: Binary class results
Data set Random forest SVM AdaBoost

adenocarc.(2) [11] 0.707 0.864 0.893
brain(2) [11] 0.504 0.471 0.6
breast(2) [11] 0.751 0.722 0.773
breast2(2) [7] 0.912 0.895 0.931
colon(2) [11] 0.888 0.904 0.892

hcc(2) [5] 0.683 0.650 0.683
leukemia(2) [11] 0.978 0.992 0.958
myeloma(2) [13] 0.792 0.792 0.775

nsclc(2) [6, 9] 0.976 0.976 0.973
prostate(2) [11] 0.954 0.950 0.964

average 0.815 0.822 0.844

We used the implementations from scikit-learn2 and tuned
the parameters (noted above) with 5-fold cross validation.
We used 10-fold stratified cross-validation for evaluation and
report area under the receiver operating curve (AUROC) for
each data set and algorithm combination. AUROC is more
robust than accuracy when dealing with class-imbalances in
the data set. For multi-class prediction, we take the average
of each positive classes ROC (using one-vs-rest prediction).

3. RESULTS & DISCUSSION
We ran the three methods on the data sets in Tables 1

and 2. For simplicity, we do not report the results for trivial
data sets (i.e. all methods reported 100% accuracy).

For binary tasks, AdaBoost had the highest average AU-
ROC scores. It is notable that it performed at least as good
as algorithms previously considered state-of-the-art for gene
expression data. For multi-class tasks, however, random
forests and SVM both had higher scores than that of Ad-
aBoost. Our result showed higher scores for random forests
over SVM, contrary to [11].

Random forests and AdaBoost provide significant advan-
tages for practitioners. First, they internally select the op-
timal features and thus implicitly perform dimensionality
reduction. This is more difficult with SVMs, which perform
feature selection externally, increasing the cost and requiring
user guidance. Second, tree-based methods provide easy-to-
interpret models; top genes utilized for prediction can easily
be extracted. This is particularly important to practitioners,
who are primarily interested in understanding the genetic
mechanisms of cancer.

The results presented were all on raw data after normaliz-
ing the features. Several different feature selection methods
were used as well, motivated by Statnikov et al. [11]. How-
ever, they did not improve the scores significantly, and some
actually dropped, so they were not presented in the results.
This means that all three algorithms are capable of learn-
ing from noisy and redundant data. Future work will ex-
plore feature selection in further details. It should be noted,
however, that our results match or surpass the reported re-
sults on individual data sets. Furthermore, initial attempts
with common features selection methods (e.g., PCA, recur-
sive feature elimination, backward elimination with random
forests) show no added benefit.
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Table 2: Multiclass results
Data set Random forest SVM AdaBoost

brain2(4) [11] 0.960 0.963 0.849
brain3(5) [11] 0.967 0.950 0.912
breast3(3) [11] 0.818 0.794 0.747

nci(8) [8] 0.950 0.943 0.732
tumors(9) [11] 0.918 0.900 0.606

tumors2(11) [11] 0.995 0.996 0.891
average 0.935 0.924 0.789
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