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Abstract

An important problem in high-throughput protein crys-
tallography is constructing a protein model from an
electron-density map. Previous work by some of this pa-
per’s authors [1] describes an automated approach to this
otherwise time-consuming process. An important step in
the previous method requires searching the density map for
many small template protein-fragments. This previous ap-
proach uses Fourier convolution to quickly match some ro-
tation of the template to the entire density map. This pa-
per proposes an alternate approach that makes use of the
spherical-harmonic decomposition of the template and of
some region in the density map. This new framework allows
us to mask specific regions of the map, enabling a first-pass
filter to eliminate a majority of the density map without re-
quiring an expensive rotational search. We show our new
template matching method improves accuracy and reduces
running time, compared to our previous approach. Protein
models constructed using this matching also show signifi-
cant accuracy improvement.

1 Introduction

There has been significant research interest in high-
throughput protein crystallography [2], where X-ray crys-
tallography is used to rapidly determine a protein’s three-
dimensional conformation. One bottleneck in the process is
producing a protein model from the electron-density map.
The electron-density map – essentially a three-dimensional
image of a protein – is produced as an intermediate result in
crystallography.

Interpreting this electron-density map is the final step of
X-ray crystallography. Interpretation begins with the den-
sity map and the (provided) amino-acid sequence of the
protein it contains, and produces a complete 3D molecu-
lar model of the protein. Interpretation finds the Cartesian
coordinates of every atom in the protein. In poor-quality

density maps, interpretation may take several weeks of a
crystallographer’s time.

We previously developed a method, ACMI, which au-
tomatically produces a backbone trace in poor-quality
electron-density maps [1]. A backbone trace is an impor-
tant intermediate step in computing a complete (all-atom)
molecular model. An important – but computationally ex-
pensive – subprocess in our previous work requires search-
ing the density map for a set of pentapeptide (5-amino-acid)
templates. Searching the map considers all possible 3D ro-
tations of the template at every 3D location in the map,
resulting in a 6-dimensional search problem. ACMI uses
Fourier convolution [3] to quickly compute the squared-
density difference between the density map and a single ro-
tation of some template at all possible translations simulta-
neously.

We introduce ACMI-SH, which considers the spherical-
harmonic decomposition [4] of a template’s electron density
and the electron density in some local region in the map.
This decomposition lets us efficiently match all rotations of
the template fragment at a single location. “Convolution”
over rotations (as opposed to translations) allows ACMI-SH
to mask – that is, to eliminate from consideration – some
(x, y, z) locations in the density map. Specifically, we pro-
pose a “first-pass filter” that eliminates points that are not
likely to match any template. At these locations, ACMI-SH
assigns a low similarity score without performing a rota-
tional search, significantly reducing the overall runtime.

We also show that a simple filtering method is effec-
tive, allowing ACMI-SH to eliminate 80% of the density
map from its search while only eliminating 2-3% of the true
matches. Using this filtering, we are able to produce im-
proved protein models (compared to ground truth) in less
running time. Improved accuracy results from the finer
angular sampling our faster approach allows, and perhaps
most importantly, the substantial number of false negatives
thrown out by the first-pass filter.
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Figure 1. An overview of density map inter-
pretation: (a) A density map with the solved
structure indicated as connected sticks, and
(b) a backbone trace, where one central atom
(Cα) in each amino acid is located.

2 Automatic Density Map Interpretation
2.1 Protein Crystallography Background

Interpreting an electron-density map produces an all-
atom protein model from this three-dimensional image.
Figure 1 illustrates the task. In this figure, the electron-
density map is illustrated as an isocontoured surface. Fig-
ure 1a shows a sample electron-density map, into which an
interpreted model has been placed. Sticks indicate bonds
between atoms in the interpreted model. Figure 1b presents
a simplified representation of the protein, a backbone trace.
A backbone trace represents the location of one central
atom, occurring in each amino acid, the alpha carbon (or
Cα).

One measure of density map quality is the map resolu-
tion. When placed in an X-ray beam, some protein crystals
diffract the beam better than others. In general, the more
the crystal diffracts the beam, the higher the resolution, and
the better quality the map.

At excellent resolutions (2Å or lower) individual
atoms are visible, and automated interpretation is usu-
ally straightforward, primarily with the atom-based method
ARP/WARP [5]. However, when the resolution is worse
than about 2.5Å or the map contains noise – due to data
collection or experimental inaccuracy – it can take weeks of
a crystallographer’s time to complete a backbone trace.

2.2 Overview of ACMI

ACMI – our previous method – produces high-
confidence backbone traces from poor-quality density
maps. The method is model-based, using the provided se-
quence of the protein to construct a model. Our previous
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Figure 2. The undirected graph correspond-
ing to the protein Markov field model. The
probability of some backbone model is pro-
portional to the product of potential func-
tions: one associated with each vertex, and
one with each edge in the fully-connected
graph.

work shows that – with poor-resolution density maps – it is
able to identify amino acids more accurately then alterna-
tive approaches.

Given a protein’s linear amino-acid sequence, ACMI
constructs a pairwise Markov-field model [6]. A pairwise
Markov field defines some probability distribution on a
graph, where vertices are associated with random variables,
and edges enforce pairwise constraints on those variables.
In ACMI’s protein model, each vertex corresponds to an
amino acid, and the random variables describe the location
and orientation of each Cα. Edges enforce pairwise struc-
tural constraints on the protein.

Figure 2 shows the Markov field model associated with
some protein. The probability of some backbone model
U = {ui} (where ui is the position and orientation of the
ith Cα) is given as

P (U = {ui}) ∝
∏

amino-acid i

ψi(ui)×
∏

amino-acids i,j
i 6=j

ψij(ui, uj)

This first product models how well an amino acid matches
some location in the density map; the second models the
global structural constraints on the protein.

The vertex potential ψi at each node i can be thought
of as a “prior probability” on each alpha carbon’s location,
given the density map. One way to think of this is as there
being an “amino-acid finder” associated with each vertex.

The edge potentials, ψij , which enforce structural con-
straints on the protein, are further divided into two types:
adjacency constraints ψadj model interactions between ad-
jacent residues, while occupancy constraints ψocc model
interactions between residues distant on the protein chain
(though not necessarily spatially distant in the folded struc-
ture). Adjacency constraints make sure that adjacent Cα’s
are about 3.8Å apart; occupancy constraints make sure no
two Cα’s occupy the same 3D space. The graph is fully
connected with edges enforcing occupancy constraints.



A fast approximate-inference algorithm finds the most
likely location of each Cα, given the density map. For each
amino acid in the provided protein sequence, ACMI’s in-
ference algorithm returns a probability distribution of that
amino-acid’s Cα location in the density map.

This paper concerns improved computation of the ver-
tex potentials ψi. Accurate computation of these potentials
is critical to ACMI’s performance. ACMI’s “amino-acid
finder” considers a 5-mer (a 5-amino-acid sequence) cen-
tered at each position in the protein sequence, builds a set
of small template pentapeptides (5-amino-acid structures).
ACMI clusters these pentapeptides, and searches the map
for a single representative from each cluster.

Matching a template to the map uses Fourier convolution
(like that of Cowtan’s FFFEAR [3]) to compute the squared
density difference of one rotation of a template to the en-
tire density map. Finally, ACMI uses a tuning set to convert
squared density differences into a probability distribution
over the electron-density map. Although efficient, one dis-
advantage of ACMI is that we are forced to search the en-
tire density map for each template. The Fourier convolution
does not allow us to search in only some locations in the
map.

2.3 Other Approaches

Several methods have been developed to handle poor-
quality, low-resolution density maps, where atom-based ap-
proaches like ARP/WARP fail to produce a reasonable
model. In addition to ACMI, Ioerger’s TEXTAL and Ter-
williger’s RESOLVE both aim to automatically interpret
maps around 3Å resolution.

Ioerger’s TEXTAL [7] attempts to interpret poor-
resolution density maps using ideas from pattern recogni-
tion, which summarize regions of density using a set of
rotation invariant features. RESOLVE’s automated model-
building routine [9] uses a hierarchical procedure in which
helices and strands are located by an extensive search of all
rotations and translations, then are extended iteratively us-
ing a library of known tripeptides.

At poor resolutions, both methods have difficulty cor-
rectly identifying amino acids. Our previous work shows
that ACMI outperforms both TEXTAL and RESOLVE inter-
preting poor-resolution maps. Additionally, both algorithms
have a tendency to produce a very segmented chain in poor-
resolution maps, requiring significant human labor to fix.

3 Spherical Harmonics and the Fast Rotation
Function

We report herein a new technique for computing prior
probabilities that results in improved interpretation accu-
racy. Our method is based on spherical-harmonic decom-
position and is similar to the fast rotation function used in

molecular replacement [10, 11], as well as for shape match-
ing in other domains [12, 13].

Spherical harmonics Y m
l (θ, φ), with order l = 0, 1, . . .

and degree m = −l,−(l − 1), . . . , l, are the solution to
Laplace’s equation in spherical coordinates. They are anal-
ogous to a Fourier transform, but on the surface of sphere.
They form an orthogonal basis set on the sphere’s surface.
Any spherical function f(θ, φ) can be written

f(θ, φ) =
∞∑

l=0

l∑
m=−l

alm · Y m
l (θ, φ)

The key advantage of such a representation is that several
different “fast rotation” algorithms exist to quickly com-
pute the cross correlation of two functions on a sphere as
a function of rotation [11, 14]. That is, given (real) func-
tions f(θ, φ) and g(θ, φ) on the sphere, we want to compute
the cross correlation between them as a function of rotation
angles ~r,

Cfg(~r) =
∫ ∫

f(θ, φ) ·R(~r) · g(θ, φ) · sin θ dθ dφ (1)

If the functions f and g are band-limited to some maximum
bandwidth B (or can be reasonably approximated as such),
then these fast rotation functions quickly compute this cross
correlation given the spherical-harmonic decomposition of
f and g (running in O(B4) or O(B3 log B) as opposed to
the naive O(B6)) [14, 15]. A full derivation is shown by
Kostelec and Rockmore [14].

4 A Method for Fast Template Matching

We derive an improved vertex potential from this fast ro-
tation function. An overview of our local-match procedure
appears in Algorithm 1, and is illustrated in Figure 3.

When searching for some pentapeptide, we begin by
computing the density we would expect to see given the
pentapeptide (one models each atom with a Gaussian sphere
of density). We then interpolate this calculated density
in concentric spherical shells (uniformly gridding θ − φ
space) extending out to 5 or 6 Å (chosen to cover most
of the density in an average pentapeptide) in 1Å steps.
A fast spherical-harmonic transform computes spherical-
harmonic coefficients corresponding to each spherical shell
using a recursion similar to that used in fast Fourier trans-
forms [16].

Similarly, we interpolate the density map using the same
set of concentric spherical shells around some grid point,
and again, take the spherical-harmonic transform of each
spherical shell’s density. Given these two sets of spherical-
harmonic coefficients – one corresponding to the template
and one corresponding to some location in the density map
– a fast implementation of Equation 1 computes the cross
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Figure 3. ACMI’s improved template-matching algorithm. Given some pentapeptide template (left)
the expected electron-density is calculated. In the map (right), a spherical region is sampled. Spher-
ical harmonic coefficients are calculated for both, and the fast rotation function computes cross
correlation as a function of template rotation.

correlation over all rotations of the template pentapeptide.
ACMI-SH uses the implementation of Rockmore and Kost-
elec [14].

After computing the cross correlation, we compute the
vertex potential ψi as the probability that a particular cross
correlation value was not generated by chance. That is, we
assume that the distribution of the cross correlation between
some template’s density and some random location in the
density map is normally distributed with mean µ and vari-
ance σ2:

Cfg ∼ N (x;µ, σ2)

We estimate these parameters µ and σ2 by computing cross
correlations between the template and random locations in
the map. Given some cross correlation xc, we compute the
expected probability that we would see score ci or higher
by random chance,

pnull(xc) = P (X ≥ xc;µ, σ2) = 1− Φ((xc − µ)/σ)

Here, Φ(x) is the normal cumulative distribution function.
Each amino-acid’s potential is then (1− pnull)/pnull.

For a given template, ACMI-SH scans the density map
M, centering the template at every location (xi, yi, zi) ∈

M. At each location, we sample concentric spheres of den-
sity around (xi, yi, zi), take the spherical-harmonic trans-
form, and compute the cross correlation between the tem-
plate and density map around (xi, yi, zi) as a function of
3D rotation angles ~r = (α, β, γ).

Convoluting in rotational space rather than Cartesian
space (as in FFFEAR [3]) offers a several advantages. First
we only have to search the asymmetric unit of the protein
crystal – that is, only the smallest non-repeated portion of
the density map – rather than the entire map. This alone
may offers six to eight-fold runtime savings.

Additionally, convoluting in rotational space allows the
use of a “first-pass filter” that only considers some small
portion of the density map over which we perform a ro-
tational search. Because ACMI searches the entire map at
once using a Fourier convolution, it requires that we search
over the entire density map for each fragment, even if we
know a template lies in some small area. Using ACMI-SH,
we instead search all of rotational space at once, allowing
us to limit the (x, y, z) locations at which we search. A
comparison of several such filters is presented in the next
section.

There are other changes between ACMI and ACMI-SH as



Algorithm 1: ACMI-SH’s template matching.
input : amino-acid sequence Seq, density map M
output: Vertex potentials ψi(y, r) for i = 1 . . . N

(µCC , σCC)← learn-from-tuneset()

foreach residue i do
PDBfragsi ← lookup-in-PDB(Seqi−2:i+2)

foreach frag ∈ PDBfragsi do
template← compute-dens(frag)
templCoef ← SH-transform(template)

foreach point yj ∈M do
if is-filtered-out(yj) then next yj

signal← sample-dens-around(yj)
sigCoef ← SH-transform(signal)
CC←fast-rotate(templCoef, sigCoef)

foreach rotation rk ∈ R do
zk ← (µCC − CCk)/σCC

pnull ← normCDF (zk)
ψi(yj , rk)← (1− pnull)/pnull

end
end

end
end

well. Because ACMI-SH samples spherical density shells,
the template for which we are searching is a fixed-size
sphere around the center of each template structure. This
sphere includes many (but not all) atoms from the pentapep-
tide; in addition, it includes atoms from other portions of the
protein located nearby. This contrasts with ACMI, where
each template was arbitrarily shaped: a mask was extended
to 2.5Å away from each atom in the template pentapeptide.

We feel this is advantageous as it captures the context
of each pentapeptide: for example, if some 5-mer always
occurs on the surface of a protein, all of that 5-mer’s tem-
plates will be on the protein surface, and will be reflected
in the cross-correlation scores. That is, a template on the
surface of a protein will match best to regions of the map
on the surface of the protein. Alternatively, one could use a
fixed-size sphere to align a template to the map, then com-
pute the correlation coefficient over some arbitrary-shaped
region; in our experience this produces no improvement in
matching accuracy, and incurs non-trivial overhead.

A final difference between ACMI and ACMI-SH is that
– in ACMI – we cluster the template structures (from the
PDB) to produce a minimal subset for which we search.
ACMI-SH no longer clusters these templates. In ACMI,
clustering serves mainly to reduce computational costs.
Due to improved efficiency of ACMI-SH, we are able to
search for a greater number of fragments than before. Even
if we wanted ACMI-SH to cluster templates, we run into

trouble. ACMI clusters pentapeptides using RMS deviation
as a distance metric. In ACMI-SH, templates are now fixed-
sized sphere, which often includes atoms not in the pen-
tapeptide. This makes RMS deviation, which does not take
these atoms into account, an ineffective measure for simi-
larity between two templates.

Therefore, ACMI-SH simply searches for every template
pentapeptide in the protein data bank corresponding to a
particular 5-mer sequence.1

5 Results

This section evaluates ACMI-SH using four different
performance measures. The first two measures are simple
tests of ACMI-SH: we first show the error introduced by
band-limiting density templates, then we compare several
different first-pass filters. Our third test compares ACMI
to ACMI-SH, in terms of matching accuracy and running
time as rotational sampling (the resolution of the θ–φ grid)
varies. Finally, we use both ACMI and ACMI-SH’s match-
ing routines as input to ACMI’s inference engine, and com-
pare the resulting protein models to other approaches. The
experimental setup in this final section is the same as we
used in [1].

Our data set for testing comes from a set of ten model-
phased electron-density maps from the Center for Eukary-
otic Genomics at the University of Wisconsin–Madison.
The maps are natively all of fairly good resolution – 1.5 to
2.5Å – and all have crystallographer-determined solutions.
To test algorithm performance on poor-quality (≥3.0 Å)
data, we smoothly truncated the structure factors at 3Å and
4Å resolution, and recomputed the electron-density maps.
Truncating in this fashion gives maps virtually identical to
maps natively at a particular resolution.

5.1 Errors in Band-Limiting Density

Rotationally aligning two regions of density using spher-
ical harmonics requires that we compute spherical harmon-
ics of both the density map and the template density up
to some band limit B. This band-limited signal will be
somewhat different than the original signal. Figure 4 shows
the average squared density difference between the original
sampled density and the bandwidth-limited density as B is
varied. The dotted line in this figure shows the squared den-
sity between two random regions, as a baseline (this mea-
sure does not depend on bandwidth limit or resolution).

This figure shows a bandwidth limit B = 12 accurately
models the original density, with density difference < 10−3

for 3Å resolution maps and< 10−4 for 4Å resolution maps.
The difference between two random signals is around 2.

Trepani and Navaza provide [11] a rule of thumb for the
bandwidth limit in Patterson maps (an experimental map

1We remove proteins in our testbed from this database before testing.
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Figure 4. The average squared density differ-
ence between a region of sampled density
and the bandwidth-limited region. The dot-
ted line shows the error between two random
regions.

related to the electron-density map), where the band limit
B relates to the density map resolution d and the radius r
by the formula B ≈ 2πr/d. In this application, where we
use a radius of 5Å (thus B ≈ 10 for a 3Å map and 8 for a
4Å map), the rule produces reasonable bandwidth limits.

5.2 First-pass Filtering

A significant advantage of ACMI-SH over our previous
work is that our new approach allows us to filter out re-
gions of the map that are very unlikely to have a Cα (the
center of each template corresponds to a Cα), without need-
ing to perform a computationally expensive rotational align-
ment. This section compares four different first-pass filters,
all which are quickly computed.

The first three filters are based upon the observation that
in density maps, especially poor-resolution maps, Cα lo-
cations correspond to the highest-density points in the map
[17]. The first of these filters considers filtering points based
on the point’s density, while the other two consider the den-
sity sum in a 2 or 3Å radius around each point.

The fourth and final filter we test is based upon the skele-
tonization of the density map [18]. Skeletonization, similar
to the medial axis transformation in computer vision, gradu-
ally “erodes” the density map until it is a narrow ribbon ap-
proximately tracing the protein’s backbone and sidechains.
We consider filtering each point based upon its distance to
the closest skeleton point. This is the first-pass filter used
by CAPRA [8] to eliminate points from the density map.

Figure 5 compares the performance of these four simple
filters at both 3Å and 4Å resolution. These plots show, on
the x-axis, the portion of the entire map we consider (sorted
by our filter criteria), while the y-axis shows the fraction of
true Cα locations included. For example, a point at coordi-
nates (0.2, 0.9) means a filter for which – at some threshold
value – we look at only 20% of the density map and still find
90% of the true Cα locations. Somewhat surprisingly, the
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Figure 5. A comparison of four different fil-
ters for quickly eliminating some portion of
points in the density map. Filter performance
is compared on (a) 3Å and (b) 4Å resolution
density maps.

simplest filter, the point density, performs the best. The re-
mainder of our experiments consider using the point-density
as a first-pass filter, eliminating a conservative 80% of the
density map from rotational search.

5.3 Template Matching

This section compares ACMI and ACMI-SH’s template-
matching performance. We compare the performance of
both algorithms as the angular sampling of our density tem-
plate is varied. Given the sequences for each of the ten
proteins in our testset, we considered searching for 10 ran-
domly chosen amino acids in each protein (100 amino acids
total). For each amino acid, we found at least 50 template
pentapeptides with similar 5-mer sequences.

To test ACMI, we cluster these pentapeptides based on
the RMS deviation of their optimal alignment, and select a
representative structure from each cluster. Further details
are in the original ACMI paper [1]. When testing our im-
proved implementation (ACMI-SH), we perform no such
clustering. Instead, we search the entire map for each of
the 50+ templates. For ACMI-SH, we filter out all points
below the 80th percentile density, assigning them some low
probability.
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Figure 6. A comparison of ACMI-SH’s and
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amino-acid log-likelihood of the true trace
(higher values are better).

Figure 6 compares the performance of ACMI to our im-
proved search using spherical harmonics (ACMI-SH) in
both 3Å and 4Å density maps. In this plot, the x-axis mea-
sures the running time of the algorithm (in seconds), while
the y-axis measures the per-amino-acid log-likelihood that
matching gives the true solution. Higher likelihoods are bet-
ter; the more likely the true model, the more likely its struc-
ture will be recovered by inference.

It is interesting to note here that ACMI-SH, even at its
lowest bandwidth limit, offers equal or better accuracy then
the previous approach, in significantly less running time.

5.4 Comparison of Protein Models Pro-
duced

In previous work, we compared the performance of
ACMI on these maps to two other automated techniques
specialized to low-resolution maps: Ioerger’s TEXTAL and
Terwilliger’s RESOLVE, both described in Section 2.3.

We test ACMI-SH on these same maps, using the same
experimental methodology. Figure 7 compares the accuracy
of the Cαmodel predicted by ACMI-SH with that of ACMI,
RESOLVE, and TEXTAL. Figures 7a and 7b show the aver-
age Cα RMS error and percentage of amino acids located
over the ten structures. Figures 7c and 7d show scatterplots
in which each individually solved electron-density map is a

point. The x-axis indicates ACMI’s error (or percent amino
acids correctly identified); the y-axis shows the same metric
for ACMI-SH.

On these maps, ACMI uses θ = 20◦ angular discretiza-
tion, while ACMI-SH was run with a bandwidth B = 12,
and a filter that eliminated a conservative 80% of points
based on the density of each point.

Here ACMI-SH shows a clear improvement over all
other approaches. Both Figures 6 and 7 show the greatest
improvement in 4Å-resolution maps. Even with this im-
proved accuracy, the running time of ACMI-SH is about
60% of that of ACMI (see the middle dots in Figure 6).

The accuracy increase in using spherical harmonics
likely comes from several different places. The increased
efficiency allows a finer angular sampling: the bandwidth
limit B = 12 is analogous to a 15◦ angular spacing. This
increased efficiency also lets us search for each individual
template – without clustering – which may help accuracy
somewhat. Searching for a 5Å sphere, which captures the
context of a particular amino acid (i.e. is an amino-acid
typically on the surface or in the core of the protein?) may
be improving the matching as well. Finally, band-limiting
the signal, which throws out the highest-frequency compo-
nents, may help eliminate noise from the density map.

6 Conclusions and Future Work

We describe a significant improvement over our previous
work in three-dimensional template matching in electron-
density maps. Our previous work used Fourier convolution
to quickly search over all (x, y, z) coordinates for some ro-
tation of a template. Instead, we use the spherical-harmonic
decomposition of a template to rapidly search all rotations
of some fragment at a single (x, y, z) location. Unlike
Fourier convolution, this method allows an initial filtering
algorithm to reduce computational time by “masking out”
locations in the density map unlikely to contain any tem-
plate instance. Our improved template matching offers both
improved efficiency and accuracy, compared to previous
work, finding substantially better models in about 60% of
the running time.

An interesting future direction involves template search-
ing and ACMI’s probabilistic inference. ACMI-SH makes it
possible to efficiently search for a fragment at a single lo-
cation. This suggests an approach where we initial search
few locations. As inference in our model proceeds, loca-
tions that appear to be promising Cα locations may emerge.
We could then search at these locations, in essence using the
first few iterations of our inference algorithm as a first-pass
filter. This work represents a significant advance in inter-
pretation of poor-resolution of density maps. However, to
increase usability by the crystallographic community, more
of an effort must be made at reducing running time.
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Figure 7. Comparing ACMI-SH’s protein models with three other methods. (a) The average Cα RMS
error and (b) percentage of amino acids located. Scatterplots compare ACMI’s performance with
ACMI-SH’s on (c) RMS error and (d) percentage of amino acids located.
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