
Lab 8: NoSQL and Query Evaluation
CS44 Database Systems, Spring 2015
Due by 11:59pm on Sunday, May 3

The primary objectives of this lab are to reinforce course objectives:

• Obtain experience with a non-relational database (MongoDB)

• Identify differences between relational and NoSQL database systems

• Identify algorithms for evaluating relational operators

• Analyze the performance of these various algorithms

You may work with one other person on this lab. There are two distinct components of this lab;
each section below will detail the deliverables. Briefly, the files you will need to manually submit
include:

• history – a history of your shell session

• lab8.pdf – the solution to the problem set below

The other deliverable is your database from the tutorial below; I will automatically obtain this.
Place all files in your ~/cs44/labs/8/ directory and use handin44 to electronically submit the lab.
Be sure you indicate your partner using the p option during the handin process and also be writing
all names on the PDF document. Your solution is due 11:59pm on Sunday, May 3, 2015.

MongoDB tutorial

Overview

In this part of the lab, you will complete a simple tutorial to illustrate usage of a popular NoSQL
database system – MongoDB. The goal of this module is to complete the tutorial for understanding,
not to exactly replicate the coding examples. This component will be graded only for completion
– the files you hand in will verify that you completed the tutorial. So, to be clear, allocate your
time to maximize understanding of the differences between MongoDB and a typical RDBMS like
SQLite.

Getting Started

Access the tutorial via the following URL: http://openmymind.net/mongodb.pdf Note: there are
printed copies of this tutorial left behind by Kyle after his talk. I have noticed a few typos but it is
almost exactly the same.

To get started, run:

$ mongo l i c o r i c e . c s . swarthmore . edu
MongoDB shel l v e r s i on : 3 . 0 . 2
connect ing to : l i c o r i c e . c s . swarthmore . edu/ t e s t

The program mongo invokes an interactive shell environment. The argument specifies to connect
to a MongoDB server on licorice.cs.swarthmore.edu. This is essential. Forgetting this will
cause a local instance to run, which will be difficult to find later.

Enter the following as the first command in the shell,

http://www.mongodb.org/
http://openmymind.net/mongodb.pdf


> use userID

Replace userID with your login ID (e.g., asas or asas tnas if you prefer to include both
partners ids). This is essential to create a unique space for you to work in – omitting this will cause
conflicts with other users.

MongoDB has already been installed for you, so you can go ahead and start with Chapter 1.
Feel free to skim/skip the following (i.e., you do not need to enter the commands for these sections,
but should still read):

• Chapter 2 on Updates.

• Chapter 7 – everything after explaining queries

If you cannot finish the tutorial in one sitting, run the exact same setup as above – use will
load the existing database from your previous session.

Deliverables

• The database resulting from your tutorial. This is automatically generated if you properly
connected to licorice and used a database named using your user id.

• history. This is a shell history of user usage of mongo. To submit this history, copy the file
to your lab 8 directory:

$ cp ˜/ . d b s h e l l ˜/ cs44 / l ab s /8/history

Problem Set

1. MongoDB tutorial

Answer these questions about NoSQL and MongoDB. Most of these can be found in the
tutorial above.

(a) What is the corresponding relational concept for each of these terms (e.g., “schema” or
”table”). Not any important differences:

• collection

• document

• field

• index

(b) In MongoDB, how do you define a selection operation ? projection?

(c) How does mongodb store data - that is, what is the name of the file format of documents?

Relational DBs define many-to-one relationships by defining distinct relationship ta-
bles (e.g., an Enrolee table encodes the many-to-many relationship between Courses
and Students). How does MongoDB use arrays/embedded docs to handle many-to-one
relationships?



2. Duplicate elimination

Consider the following query:

SELECT DISTINCT E. t i t l e , E . ename FROM Execut ives E

You have the following data stored in the database about the table Executives:

• The schema:

Executives(ename, title, dname, address)

• All fields are strings and use the exact same amount of space

• The relation contains 10,000 pages

• There are 10 buffer pages

• ename is unique (this simplifies analysis by making the number of results predictable)

Using the optimized version of sort-based duplicate elimination (the initial pass creates sorted
runs of tuples containing only ename and title; subsequent passes simultaneously merge runs
while eliminating duplicates), answer the questions below:

(a) How many sorted runs are produced in the initial pass? How big is each run? What is
the total I/O cost of this phase?

(b) How many merging passes are required to fully sort/eliminate duplicates? What is the
I/O cost of each of these passes? You may assume the amount of duplicates is negligible.

(c) How many I/Os are needed if we instead used a clustered index on title? How about
for an unclustered index? Assume in both cases that we are using a secondary B+-tree
index, each with about 2500 leaf pages.

(d) Would an unclustered index on < title, ename > be superior to sorting for eliminating
duplicates? Explain your answer.

(e) Would your above analysis change if our query changed to:

SELECT E. t i t l e , E . ename FROM Execut ives E

That is, DISTINCT is no longer used. Be brief in your response.

3. Join Algorithms

Consider the join R ./R.a=S.b S with the following information:

• Relation R contains 10,000 tuples with 10 tuples per page

• Relation S contains 2,000 tuples with 10 tuples per page

• Attribute b is the primary key of S

• Both tables are organized as heap files, with no indices available

• Your buffer is 52 pages

Answer the questions below, defining the precise page I/O cost of the algorithm and ignoring
the size of the output in your analysis:



(a) What is the cost of the join if we use a page-nested loop join?

(b) What is the cost of a block-nested loop join?

(c) What is the cost of a sort-merge join (use the optimized version from lecture)?

(d) What is the cost of a hash join?

(e) For each of the previous three algorithms (block-nested loop, sort-merge, hash), calculate
the smallest value of B buffer pages for which your cost does not change. That is, how
small can we make the buffer and still have the same I/O cost? Your answer may vary
for each algorithm.

Deliverables

Place a PDF document with your solution in your Lab 8 directory.


