Outline for April 17

• Practice K-means clustering
• Gaussian Mixture Models (GMM)
• Friday:
 – Finish GMMs
 – Hierarchical clustering algorithms
 – PCA and dimensionality reduction
• Mon/Wed next week: midterm review

• Today in lab: work on proposals
• Goal: finish by end of lab (officially due Friday)
• Midterm 2 next Wed in lab (pick up a study guide!)
Announcements

* Lab today: work on proposal (due Friday)
* Midterm 2 next Wed
* Hand back SVM pset (go over in lab)

Today

* K-means
* Gaussian Mixture Models (GMMs)
Outline for April 17

• Practice K-means clustering

• Gaussian Mixture Models (GMM)

• Friday:
 – Finish GMMs
 – Hierarchical clustering algorithms
 – PCA and dimensionality reduction

• Mon/Wed next week: midterm review
K-means

Goal: minimize

\[J(c) = WCSS = \sum_{k=1}^{K} \sum_{x_i \in E_k} \| x_i - \bar{x}_k \|^2 \]

\[WCSS: \text{within cluster sum of squares} \]

\[\Rightarrow \text{NP-hard (non-convex)} \]

K-means "does well"
E-step expected cluster membership, given current means.

M-step given cluster membership, find means that maximize the likelihood of the data.

How to choose K?

Graph showing the "elbow" and using it as the best K.
Handout 17

ITER 1

\[c_{1}^{(1)} = \frac{3}{3} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \cdot \frac{3}{3} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad C_{2}^{(1)} = \frac{3}{3} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad c_{2}^{(1)} = \frac{3}{3} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \]

ITER 2

\[M_{1} = \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} \]

\[M_{2} = \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} \]

END

\[\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} 2.5 \\ 2 \end{pmatrix} \]

\[\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -1 \end{pmatrix} \]
2. Yes (monotonic)

3. $K = 1$
 \[\bar{\mu} = \begin{bmatrix} \frac{3}{3} \\ \frac{1}{1} \end{bmatrix} = \begin{bmatrix} (3+2+4)/3 \\ (2+2-1)/3 \end{bmatrix} \]

 $\text{WCCSS(1)} = (\sqrt{2})^2 + (1)^2 + (\sqrt{5})^2 = 8$
 $\text{WCCSS(2)} = (\frac{1}{2})^2 + (\frac{1}{2})^2 + 0^2 = \frac{1}{2}$
 $\text{WCCSS(3)} = 0$

4. $K = 2$

Diagram:
- $1 \rightarrow 2 \rightarrow 3$
Outline for April 17

• Practice K-means clustering

• Gaussian Mixture Models (GMM)

• Friday:
 – Finish GMMs
 – Hierarchical clustering algorithms
 – PCA and dimensionality reduction

• Mon/Wed next week: midterm review
GMM
EM
algorithm

Initialization

\(\Pi_k = \text{cluster "size" (\# of datapoints)} \)

\(\Pi_k = \frac{1}{K} \)

\(\tilde{\mu}_k = \text{choose } K \text{ data points to be means} \)

\(\tilde{\sigma}_k^2 = \text{based on sample variance of points closest to each mean} \)
Example of different co-variance constraints on the Iris flower data