• CR/NC deadline TODAY
 – If you’re considering this, we can discuss in office hours today (or before/after)
• Poll for Alternative presentation times
 ![Poll for alternative presentation times chart]
• Tentative schedule
 – Lab 6 due April 5
 – Lab 7 due April 15
 – Project Proposal due April 19
 – Midterm 2 on April 24
Outline for March 29

• Lab 3 followups
• SVM optimization
 – Coordinate ascent
 – Incremental algorithm
• Next week: Start Neural Networks
 – Reading posted
Outline for March 29

• Lab 3 followups
 • SVM optimization
 – Coordinate ascent
 – Incremental algorithm
• Next week: Start Neural Networks
 – Reading posted
Lab 3
(solutions not posted online)
Lab 3, Part (a)

- Always good to start by identifying the goal and the variable(s) to predict. Classification or Regression?

- Think about train and test holistically, not separately. Normally will not have them separated or be able to visualize them.
• As alpha decreases, we generally see the SGD solution become closer to the analytic solution.

• But if alpha becomes *really* small, we see it get further away.... Why?
Lab 3, Part (g)

- RMSE has several advantages over cost, even though it is very closely related! Why?
Outline for March 29

• Lab 3 followups

• SVM optimization
 – Coordinate ascent
 – Incremental algorithm

• Next week: Start Neural Networks
 – Reading posted
Loop until convergence:

For $i = 1, \cdots, n$

$$\alpha_i \leftarrow \arg \max_{\hat{\alpha}_i} W(\alpha_1, \cdots, \alpha_{i-1}, \hat{\alpha}_i, \alpha_{i+1}, \cdots \alpha_n)$$
Coordinate Ascent

Loop until convergence:

\[
\text{For } i = 1, \cdots, n \{ \\
\alpha_i \leftarrow \arg \max_{\hat{\alpha}_i} W(\alpha_1, \cdots, \alpha_{i-1}, \hat{\alpha}_i, \alpha_{i+1}, \cdots, \alpha_n) \\
\}
\]

• In practice, need to choose pairs of alphas since we have the constraint:

\[
\sum_{i=1}^{n} y_i \alpha_i = 0
\]

More details: see Andrew Ng notes
Meta-optimization process

• Incremental SVM optimization algorithm
Meta-optimization process

• Incremental SVM optimization algorithm

• Choose a subset S of examples and run coordinate ascent fully
Meta-optimization process

• Incremental SVM optimization algorithm

• Choose a subset S of examples and run coordinate ascent fully

• Identify which alpha values are 0 \Rightarrow these cannot be support vectors in final solution!
Meta-optimization process

• Incremental SVM optimization algorithm

• Choose a subset S of examples and run coordinate ascent fully

• Identify which alpha values are 0 \Rightarrow these cannot be support vectors in final solution!

• Discard these points and add new ones; repeat
Incremental SVM Optimization Algorithm

* $K = \text{subset size}$
* $S = \text{subset}$
* $|S| = K$
* randomize order of examples
* initially $S = \{x_1, x_2, \ldots, x_K\}$

Repeat until no more examples:

- run coordinate ascent with train data S
- $\Rightarrow \alpha$'s on all these examples + hyperplane
- if $\alpha_i = 0$ for $x_i \in S$, discard x_i
- add examples to S until $|S| = K$
Meta-optimization: example
Meta-optimization: example

$K = 4$
Round 1:
* $S = \{x_1, x_2, x_3, x_4\}$
* Support vectors are: x_1, x_2, x_4
* Alpha 0: x_3
* Hyperplane:
Round 1:
* $S = \{x_1, x_2, x_4, x_5\}$
* Support vectors are: x_4, x_5
* Alpha 0: x_1, x_2
* Hyperplane:

![Diagram illustration]
Round 3:
* $S = \{x_4, x_5, x_6, x_7\}$
* Support vectors are: x_4, x_5, x_7
* Alpha 0: x_6
* Hyperplane: ---
Round 4:
* $S = \{x_4, x_5, x_7, x_8\}$
* Support vectors are: x_4, x_5, x_7
* Alpha 0: x_8
* Hyperplane: —
Round 5:
* $S = \{x_4, x_5, x_7, x_9\}$
* Support vectors are: x_4, x_7, x_9
* α_0: x_5
* Hyperplane:

\[
x_2 = x_1
\]
Handout 12, Final Solution