SVM Optimization Practice

(find and work with a partner)

1. Incremental SVM optimization algorithm. Let $K = 4$ (initial dataset size). We will iteratively add points in order of their indices (not randomly). Run the incremental SVM optimization algorithm – at each stage, write out S, the support vectors, and which α values end up being 0. At the end, what is the equation of the separating hyperplane?

Round 1:
- $S = $
- Support vectors:
- α's that are 0:

Round 2:
- $S = $
- Support vectors:
- α's that are 0:

Round 3:
- $S = $
- Support vectors:
- α's that are 0:

Round 4:
- $S = $
- Support vectors:
- α’s that are 0:
2. *Coordinate descent/ascent example.* Here we will try to minimize the function of two variables \(f(x, y) = 5x^2 - 6xy + 5y^2 \) (correction!) Initially, let \(x = -1 \) and \(y = -1 \). First, fix \(y \) and minimize the function with respect to \(x \) by taking the derivative. Then use that value to fix \(x \) and minimize the function with respect to \(y \) (you only need to do two iterations). What is the actual solution in this case?

Acknowledgements: second example by Nicoguaro on Wikipedia