Ensemble Methods

Scribe: James Rutledge

1 Notation for Ensemble Methods

- \(T \): Number of models/classifiers
- \(\mathbf{x} \): Test example
- \(y \): Test label (binary)
- \(X_t \): Bootstrap training dataset \(t \)
- \(h_t(x) \): Hypothesis about \(X \) from model \(t \)
- \(r \): Probability of error for each model
- \(R \): Number of votes for wrong class

2 Bagging (Bootstrap Aggregation)

Idea: Partition data into 3 sets: a training set, a validation set, and a testing set.
Create \(T \) models, using replacement, with \(n \) examples each. Since we are sampling with replacement, we will get very different data sets.

Why \(n \) examples?
- Probability that we didn’t choose a data point: \((\frac{n-1}{n})^n \)
- Aside: \(\lim_{x \to \infty} (1 + \frac{x}{n})^n = e^x \)
- So, the probability that we didn’t choose a data point = \(e^{-1} \approx .3 \).

Algorithm Idea:

Training -
- for \(t = 1, 2, \ldots, T \):
 - create bootstrap sample \(X_t \)
 - train on model \(X_t \) to get model \(h_t(x) \)

Testing -
- for \(\mathbf{x} \) in testset:
 \(h_t(x) = \text{argmax} \sum_{t=1}^T \mathbb{1}(h_t(x) = y) \)

\(R = \sum_{t=1}^T \mathbb{1}(h_t(x) = \tilde{y}) \) //where \(\tilde{y} \) is the wrong class.

Probability

- \(\text{P}(R=k) = \binom{T}{k} r^k (1-r)^{T-k} \)
- \(r^k \) represents being wrong \(k \) times.
- \((1-r)^{T-k} \) represents being right \(T-k \) times.
- Overall wrong = \(\text{P}(R > \frac{T}{2}) \)
 \(= \sum_{k=\frac{T}{2}+1}^T \binom{T}{k} r^k (1-r)^{T-k} \)

3 Random Forests

Idea: choose a different subset of features for every classifier \(t \).

Goal: decorrelate models
In practice: choose \sqrt{p} features

- without replacement for each model
- results in every model having independent data points and independent features.

4 Boosting

Idea: try to learn from past mistakes. See where we got a lot of errors and update weights to reduce the number of errors.

Training -

- start with equal weights on all data points.
- for T iterations:
 - learn classifier t, using weights
 - change example weights

Testing -

- get predictors for T classifiers
- vote based on training performance