Polynomial Regression

Polynomial regression is a regular linear regression with a change of basis.

Example.
From linear model to a quadratic model:

\[
\begin{bmatrix}
1 \\
x_1 \\
x_2 \\
\vdots \\
x_p \\
\end{bmatrix}_{(p+1)\times 1} \quad \xrightarrow{\text{change of basis}} \quad \begin{bmatrix}
1 \\
x_1^2 \\
x_1x_2 \\
\vdots \\
x_1x_p \\
x_2^2 \\
x_2x_3 \\
\vdots \\
x_2x_p \\
x_p^2 \\
\end{bmatrix}_{(2p+1)\times 1}
\]

(1)

In general, if the degree is d and the number of features is p, then there will be pd+1 coefficients in a dth degree polynomial model.

Generalized Linear Model

Recall that in linear model,

\[
h_{\vec{b}}(\vec{x}) = \vec{b}^T \cdot \vec{x}.
\]

In generalized linear model,

\[
h_{\vec{b}}(\vec{x}) = \vec{b}^T \cdot \phi(\vec{x}),
\]

where \(\phi(\vec{x}) \) is the transformation of \(\vec{x} \).

In matrix form,

\[
\Phi = \begin{bmatrix}
\phi(\vec{x}_1) \\
\phi(\vec{x}_2) \\
\vdots \\
\phi(\vec{x}_n)
\end{bmatrix}.
\]

(2)

The analytic solution is

\[
\vec{b} = (\Phi^T \Phi)^{-1} (\Phi^T \vec{y}).
\]
Example.

If \(p = 1 \), \(h_\theta(x) = b_0 + b_1 x + b_2 x^2 + ... + b_d x^d = \hat{\theta}^T \cdot \phi(x) \), where \(\phi(x) = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} \).

Generalization Error

If there are \(n \) data points, they can be fit perfectly in a model with degree \(d = n - 1 \). This could lead to overfitting.

![Figure 1: Three models of different complexity on a price vs. size dataset. From CS66 lec08 slides page 11.](image)

There are trade-offs between two types of errors.

Structure Error

Hypothesis space is too restricted to model the true relationship.

- Having more data does not help
- Need more flexible model

Estimation (Approximation) Error

Hypothesis space is able to model the true relationship, but the correct model is hard to identify due to large hypothesis space, small \(n \), or noise

- Add more data
- Need to reduce hypothesis space
In practice, we favor building a complex model first and then reducing the hypothesis space to introduce more flexibility.

Regularization

Regularization is a technique for controlling model complexity and preventing overfitting by adding a penalty to the cost function. This effectively penalizes large coefficient terms. We prefer smaller weights for b_j because doing so prevents any single feature from dominating the prediction, and helps to identify useless features that have close-to-zero weights after regularization. This is important for feature selection.

Three Common Regularizers

L_0, L_1, and L_2 are all commonly used regularizers for constraining a model. L_2 has several advantages over other regularizers. First, it is differentiable and thus can be more easily added to a gradient descent algorithm. Second, because its form is a sum of squared weights, and squaring values < 1 returns smaller values, small weights will be kept within the vicinity of 0 while weights > 1 will spread out, which motivates the selection of features.

Cost Function with Regularization

Using L_2 norm,

$$J(\vec{b}) = \frac{1}{2} \sum_{i=1}^{n} (\vec{b}^T \vec{x}_i - y_i)^2 + \frac{\lambda}{2} \sum_{j=1}^{p} b_j^2,$$

where $\lambda \geq 0$ is a regularization parameter. Small λ results in more fit to the training data and consequently more error to the test data, while large λ keeps weights small and leads to more generalization.
Stochastic Gradient Descent with Regularization

The coefficients update as follows:
\[b_0 \leftarrow b_0 - \alpha (\vec{b}^T \vec{x}_i - y_i) \]
\[b_j \leftarrow b_j - \alpha ((\vec{b}^T \vec{x}_i - y_i)x_{ij} + \lambda b_j) \]
\[= (1 - \alpha \lambda)b_j - \alpha ((\vec{b}^T \vec{x}_i - y_i)x_{ij}), \]
where \(\alpha \) and \(\lambda \) are hyperparameters.

The cost function is
\[J(\vec{b}) = (\vec{X} \vec{b} - \vec{y})^T (\vec{X} \vec{b} - \vec{y}) + \lambda \vec{b}^T \vec{b}. \]

And the analytic solution is
\[
\hat{\vec{b}} = (\vec{X}^T \vec{X} + \lambda \vec{I})^{-1} \vec{X}^T \vec{y}, \quad \text{where } \vec{I} = \begin{bmatrix}
0 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{bmatrix}.
\]

Logistic Regression

In logistic regression, output is restricted to \([0, 1]\). Compared to linear regression, a logistic model is better able to capture the uncertainty and probabilistic nature of a dataset with binary outcomes. Let 1 encode Y and 0 encode N. We predict
\[
\hat{y} = \begin{cases}
1 & \text{if } \vec{b}^T \vec{x} \geq 0.5 \\
0 & \text{otherwise}
\end{cases}
\]