The second midterm (April 19 in lab) covers in-class material days 13-32, labs 5-8, reading weeks 5-10. You may bring a 1 page (front and back), hand-written “cheat-sheet”, but no other notes or resources. You will not need a calculator. I have put vocab in blue.

1. Phylogenetic Trees
 - Study vocab from the end of class 12 + idea of pairwise differences
 - What is a phylogenetic tree and what can we learn from them?
 - What is the input and output of a phylogenetic tree algorithm? Input: dissimilarity map, Output: tree topology (often binary) AND branch lengths
 - Induced tree metric, ultrametric, rooted, unrooted
 - What are we trying to minimize with phylogenetic tree algorithms?
 - UPGMA algorithm, how to run it and interpret the results
 - Neighbor Joining algorithm, how to run it and interpret the results (how to root tree?)
 - How do UPGMA and NJ compare? Advantages/disadvantages depending on the situation?

2. Ancestral State Reconstruction
 - What is ancestral state reconstruction? What can we learn from it?
 - Multiple mutations at the same site are rare. Could be convergent evolution.
 - Fitch’s algorithm (small parsimony): what is the input, method, output, and interpretation
 - Sankoff’s algorithm (weighted parsimony): same as above + how is it different from Fitch?
 - Runtime for Fitch and Sankoff
 - Perfect phylogeny: what is the input (data from many sites), what is the goal (yes/no answer, ideally + tree and mutation history)
 - Notation (i.e. O_i) and interpretation (containment, disjoint, etc, what do they mean?)
 - Naive algorithm for perfect phylogeny (check all pairs of sites)
 - Gusfield’s algorithm: how to run it and interpret the results + why does it work?
 - Why do we use radix sort? What is the runtime of Gusfield’s algorithm?

3. Population Genetics
 - What is population genetics? What changes when we consider a single species?
 - What is recombination and what affect does it have on population genetic analysis?
 - Wright-Fisher model of evolution within a population
 - Notation: N for population size, n for sample size, etc
 - Idea of genetic drift and new mutations either dying out or fixing in the population
 - Neutrality assumptions: constant N, random mating, no natural selection
 - Measures of sequence diversity: S, π, and the site frequency spectrum (SFS)
• Finding a common ancestor and how we use that to derive the coalescent

• Idea that coalescent times \((T_n, T_{n-1}, \cdots, T_2)\) are exponentially distributed

• Skip: integrals to show expected value, etc + Hardy-Weinberg

• Tajima’s \(d\): how to compute it and why we expect it to be 0 under neutrality

• How to interpret Tajima’s \(d\) in terms of deviations from neutrality

4. Hidden Markov Models

• What is a Markov chain? What are transition probabilities? Stationary distribution?

• Difference between a state diagram and a state sequence for a Markov process

• Probability concepts: conditional probability, probabilities “sum to 1”

• What is a hidden Markov model (HMM)? Observed sequence \(\vec{x}\), hidden state sequence \(\vec{z}\).

• Transition, emission, and initial state probabilities (notation, meaning, etc)

• Viterbi algorithm: input, method (fill in recursive data structure + backtrace to get best path), output and interpretation

• Forward and Backward algorithms and how we use them to get the posterior decoding

• Parameter estimation for HMMs when the state sequence is known

• Baum-Welch algorithm for parameter estimation when the state sequence is unknown

• HMM example in genetics: time to most recent common ancestor (TMRCA) for \(n = 2\)

• Skip: details of log-space (just know why we need to use it), and formulas for \(A_{kl}\) and \(E_k(b)\) in Baum-Welch

5. Principal Components Analysis

• Main ideas of human evolution (not details)

• High-level idea of PCA (input, output, what does the output represent)

• Genealogical interpretation of PCA