Outline: Mar 28

- Finish Tajima’s D and population genetics
- Example of how Tajima’s D can be used in practice
- Begin: HMMs (Hidden Markov Models)
- Today: Markov chains

Notes:
- Office hours TODAY 1-3pm
- Lab 6 due tonight (late days are an option!)

Technical summer opportunity on campus:
Swarthmore Projects for Educational Exploration and Development (SPEED) https://goo.gl/EBv42o
Deviations from neutrality: Tajima’s D
Expected values of S (number of segregating sites) and π (average pairwise heterozygosity)

- For now we will consider a single site

- Let μ be the per site, per generation mutation rate
Expected values of S (number of segregating sites) and π (average pairwise heterozygosity)

- For now we will consider a single site

- Let μ be the per site, per generation mutation rate

- Considering two samples, the expected time to coalescence is 1 coalescent unit or $2N$ generations
Expected values of S (number of segregating sites) and π (average pairwise heterozygosity)

- For now we will consider a single site
- Let μ be the per site, per generation mutation rate
- Considering two samples, the expected time to coalescence is 1 coalescent unit or $2N$ generations
- Therefore the expected number of mutations separating the two samples is

$$E[\pi] = 4N\mu = \theta$$
Expected values of S (number of segregating sites) and π (average pairwise heterozygosity)

- For $E[S]$, we need to compute the total branch length

$$T_{\text{total}} = \text{total length of all branches in the tree}$$
Expected values of S (number of segregating sites) and π (average pairwise heterozygosity)

- For $E[S]$, we need to compute the total branch length

$$T_{\text{total}} = \text{total length of all branches in the tree}$$

$$E[T_{\text{total}}] = \sum_{i=n}^{2} E[T_i] \cdot i$$
Expected values of S (number of segregating sites) and π (average pairwise heterozygosity)

- For $E[S]$, we need to compute the total branch length

$$T_{\text{total}} = \text{total length of all branches in the tree}$$

$$E[T_{\text{total}}] = \sum_{i=n}^{2} E[T_i] \cdot i$$

$$= \sum_{i=n}^{2} \frac{2}{i(i-1)} \cdot i$$
Expected values of S (number of segregating sites) and π (average pairwise heterozygosity)

- For $E[S]$, we need to compute the total branch length

$$T_{\text{total}} = \text{total length of all branches in the tree}$$

$$E[T_{\text{total}}] = \sum_{i=n}^{2} E[T_i] \cdot i$$

$$= \sum_{i=n}^{2} \frac{2}{i(i-1)} \cdot i$$

$$= 2 \sum_{i=1}^{n-1} \frac{1}{i}$$
Expected values of S (number of segregating sites) and π (average pairwise heterozygosity)

- For $E[S]$, we need to compute the total branch length

\[
T_{\text{total}} = \text{total length of all branches in the tree}
\]

\[
E[T_{\text{total}}] = \sum_{i=n}^{2} E[T_i] \cdot i
\]

\[
= \sum_{i=n}^{2} \frac{2}{i(i-1)} \cdot i
\]

\[
= 2 \sum_{i=1}^{n-1} \frac{1}{i}
\]

\[
= 2a_1
\]
Expected values of S (number of segregating sites) and π (average pairwise heterozygosity)

- After we have the total branch length, we can multiple by $2N\mu$, the rate of mutations per unit of coalescent time

\[
E[S] = E[T_{\text{total}}] \cdot (2N\mu)
\]

- We can simplify this to get an expression similar to the expected value for π

\[
E[S] = 4N\mu \cdot a_1 = \theta a_1
\]
Putting this together, we get Tajima’s d

- We will consider lowercase d, whose expectation is $E[d] = 0$

$$d = \pi - S/a_1$$

- Tajima’s (capital) D is defined as:

$$D = \frac{d}{\sqrt{\text{Var}(d)}}$$

- We will mainly focus on the sign of d so we’ll ignore the denominator
What do deviations from $d=0$ mean?

- If d is close to 0, neutral expectations (probably) hold (i.e. constant population size, random mating, no natural selection)

- If $d > 0$, the pairwise heterozygosity is higher than we expect relative to the number of segregating sites => excess of **middle** frequency SNPs

- If $d < 0$, the number of segregating sites is higher than we expect relative to the pairwise heterozygosity => excess of **rare** variation
What do deviations from $d=0$ mean?

- If d is close to 0, neutral expectations (probably) hold (i.e. constant population size, random mating, no natural selection)

- If $d > 0$, the pairwise heterozygosity is higher than we expect relative to the number of segregating sites \Rightarrow excess of *middle* frequency SNPs
 - Bottleneck or population decline
 - Population structure or isolation with migration

- If $d < 0$, the number of segregating sites is higher than we expect relative to the pairwise heterozygosity \Rightarrow excess of *rare* variation
What do deviations from $d=0$ mean?

- If d is close to 0, neutral expectations (probably) hold (i.e. constant population size, random mating, no natural selection).

- If $d > 0$, the pairwise heterozygosity is higher than we expect relative to the number of segregating sites => excess of middle frequency SNPs
 - Bottleneck or population decline
 - Population structure or isolation with migration

- If $d < 0$, the number of segregating sites is higher than we expect relative to the pairwise heterozygosity => excess of rare variation
 - Population growth
 - Natural selection
(a) bottleneck
 decay
(b) excess
 variation
 structure

$d > 0$
\[
\lambda = \frac{1.25 \times 10^{-8} \text{mut}}{\text{base} \cdot \text{gen}} \cdot (2N_{\text{gen}}) \cdot (1 \text{ base})
\]

rare: \(\leq 0.05 \)

common: \(\geq 0.05 \)

\[
\begin{align*}
\text{site 1} & \quad \text{site 2} \\
\ast & \quad \ast \\
\ast & \\
\Uparrow & \\
1.5 = 5 & \quad 3.3 = 9
\end{align*}
\]
Tajima’s D in practice
Genomic regions exhibiting positive selection identified from dense genotype data

Christopher S. Carlson,1,2 Daryl J. Thomas,2 Michael A. Eberle,1 Johanna E. Swanson,1 Robert J. Livingston,1 Mark J. Rieder,1 and Deborah A. Nickerson1

1Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730, USA; 2Center for Biomolecular Science and Engineering, University of California, Santa Cruz, California 95064-1099, USA

Figure 2. A probability density plot of the distribution of Tajima’s D in the sliding windows is shown for each population. All three distributions depart significantly from a normal distribution, most noticeably in the heavy tail at low values in each population.
• Why is Tajima’s D greater than 0?
• Why is Tajima’s D greater than 0?

• Hypothesis: bottleneck in European and Asian populations is still affecting patterns of variation

• Population structure is playing a role in African populations
Regions where Tajima’s $D < 0$, probably natural selection (could be random)
• Extended regions of low D, could be strong selection

• This paper found several regions under selection in European and Chinese populations that are linked to drug metabolism
Genomic regions exhibiting positive selection identified from dense genotype data

Christopher S. Carlson,1,2 Daryl J. Thomas,3 Michael A. Eberle,1 Johanna E. Swanson,1 Robert J. Livingston,1 Mark J. Rieder,1 and Deborah A. Nickerson1
1Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730, USA; 2Center for Biomolecular Science and Engineering, University of California, Santa Cruz, California 95064-1099, USA

Example of Tajima’s D from the literature

Nucleotide diversity analysis

There are several statistics that can be used to describe nucleotide diversity, including \(\theta_s \) (equation 1), \(\pi \) (equation 2), and \(\theta_H \) (equation 3). These statistics can be calculated for a given resequencing data set by using the following parameters: \(n \) is the number of chromosomes resequenced, \(S_n \) is the number of polymorphic sites observed, \(p_i \) is the derived (nonancestral) allele frequency of the \(i \)th SNP, and \(q_i \) is the ancestral allele frequency of the \(i \)th SNP.

\[
\theta_s = \frac{S_n}{\sum_{i=1}^{n-1} i^{-1}}
\]

(1)

\[
\pi = \frac{n}{n-1} \sum_{i=1}^{S_n} 2p_i q_i
\]

(2)

\[
\theta_H = \frac{n}{n-1} \sum_{i=1}^{S_n} 2p_i^2
\]

(3)

There are many statistics that can evaluate departures from the expected patterns of neutral variation. One of these is Tajima’s D (Tajima 1989), equation 4:

\[
D = \frac{\pi - \theta_s}{\sqrt{Var(\pi - \theta_s)}}
\]

(4)
Next topic: Hidden Markov Models (HMMs)
Markov Chains

\[\begin{align*}
N &= 1, \quad 2N = 2 \\
X &= \# \text{ of } A \text{ alleles.}
\end{align*} \]

State diagram

\[\begin{align*}
\text{State sequence:} \\
& \quad \{e_0, e_1, e_2, \ldots, e_n\}
\end{align*} \]
\[P(z_0, z_1, z_2, \ldots) = P(z_0) \prod_{i=1}^{L} P(z_i | z_{i-1}) \]

Conditional prob.
Bayes Thm

Conditional prob

\[P(a, b) = P(a)P(b | a) \]

\[= P(b)P(a | b) \]

Bayes Thm

\[P(a)P(b | a) = P(b)P(a | b) \]

\[P(a) = P(a, r) + P(a, s) \]

\[= P(r)P(a | r) + P(s)P(a | s) \]

\[\approx 0.9 \]

\[\approx 0.2 \]