Outline: Feb 28

- Continue Neighbor-Joining (NJ)
- Theory of the Q-criteria
- Consistency of NJ

Notes:
- Office hours TODAY 1-3pm
- Create “cheat-sheet” for midterm
- Choose partners for Lab 5
Lab 4 Runtime plot examples
Hannah and Melissa
Angelina and Rye

Read Mapping Runtime, length of reference = 168859

- built-in index
- FM-Index

runtime (s)

number of reads (n)
Charlotte and Emily
Lesia and Linda
Continue Neighbor-Joining (NJ)
NJ initialization

Input

We are given a set of samples \mathcal{X} and a dissimilarity map δ on \mathcal{X}.

Initialization

- Create a star tree with center vertex c and an edge (c, u) between c and all samples $u \in \mathcal{X}$.
- Let N_c be the set of neighbors of c and $n = |N_c|$ (cardinality of N_c). Set d equal to δ.

$$N_c = \{b, e, f, g, h\}, \quad |N_c| = 5$$
NJ Iterative step (part a)

(a) Find vertices f, g that minimize the Q-criteria. Note that UPGMA would only use the first term in this formula, $d(i, j)$. The remaining terms represent how far i and j are from the other vertices.

$$Q(i, j) = (n - 2) \cdot d(i, j) - S_i - S_j,$$

where

$$S_i = \sum_{k \in N_i} d(i, k)$$
NJ Iterative step (part a)

(a) Find vertices f, g that minimize the Q-criteria. Note that UPGMA would only use the first term in this formula, $d(i, j)$. The remaining terms represent how far i and j are from the other vertices.

$$Q(i, j) = (n - 2) \ d(i, j) - S_i - S_j,$$

where

$$S_i = \sum_{k \in N_c} d(i, k)$$

UPGMA
NJ Iterative step (part a)

(a) Find vertices \(f, g \) that minimize the \(Q \)-criteria. Note that UPGMA would only use the first term in this formula, \(d(i, j) \). The remaining terms represent how far \(i \) and \(j \) are from the other vertices.

\[
Q(i, j) = (n - 2) \left(d(i, j) - S_i - S_j \right),
\]

where

\[
S_i = \sum_{k \in N_i} d(i, k)
\]

UPGMA

How far away \(i \) and \(j \) are from all the other vertices (further away means we’ll join them earlier)
NJ Iterative step (part b)

(b) Join f and g at internal vertex v. Now N_c contains v but not f and g. Compute the new edges weights:

\[
d(f, v) = \frac{1}{2}d(f, g) + \frac{1}{2(n-2)}[S_f - S_g] \\
d(g, v) = \frac{1}{2}d(f, g) + \frac{1}{2(n-2)}[S_g - S_f]
\]
(b) Join f and g at internal vertex v. Now N_c contains v but not f and g. Compute the new edges weights:

\[
\begin{align*}
d(f, v) &= \frac{1}{2} d(f, g) + \frac{1}{2(n-2)} [S_f - S_g] \\
d(g, v) &= \frac{1}{2} d(f, g) + \frac{1}{2(n-2)} [S_g - S_f]
\end{align*}
\]
(b) Join f and g at internal vertex v. Now N_c contains v but not f and g. Compute the new edges weights:

\[d(f, v) = \frac{1}{2} d(f, g) + \frac{1}{2(n-2)} [S_f - S_g] \]

\[d(g, v) = \frac{1}{2} d(f, g) + \frac{1}{2(n-2)} [S_g - S_f] \]
(b) Join \(f \) and \(g \) at internal vertex \(v \). Now \(N_c \) contains \(v \) but not \(f \) and \(g \). Compute the new edges weights:

\[
\begin{align*}
d(f, v) &= \frac{1}{2} d(f, g) + \frac{1}{2(n-2)} [S_f - S_g] \\
d(g, v) &= \frac{1}{2} d(f, g) + \frac{1}{2(n-2)} [S_g - S_f]
\end{align*}
\]
NJ Iterative step (part b)

(b) Join f and g at internal vertex v. Now N_c contains v but not f and g. Compute the new edges weights:

$$d(f, v) = \frac{1}{2} d(f, g) + \frac{1}{2(n-2)} [S_f - S_g]$$

$$d(g, v) = \frac{1}{2} d(f, g) + \frac{1}{2(n-2)} [S_g - S_f]$$

The difference between how far f and g are from other vertices. In this example g is on average further from other vertices, so $d(g, v) > d(f, v)$.
(b) Join \(f \) and \(g \) at internal vertex \(v \). Now \(N_c \) contains \(v \) but not \(f \) and \(g \). Compute the new edges weights:

\[
\begin{align*}
 d(f, v) &= \frac{1}{2} d(f, g) + \frac{1}{2(n-2)} [S_f - S_g] \\
 d(g, v) &= \frac{1}{2} d(f, g) + \frac{1}{2(n-2)} [S_g - S_f]
\end{align*}
\]

The difference between how far \(f \) and \(g \) are from other vertices. In this example \(g \) is on average further from other vertices, so \(d(g, v) > d(f, v) \)

\[N_c = \{ b, e, h, v \}, \quad |N_c| = 4 \]
NJ Iterative step (part c)

(c) Compute the distances from v to all remaining vertices $i \in N_c$:

\[d(i, v) = \frac{1}{2} [d(f, i) - d(f, v)] + \frac{1}{2} [d(g, i) - d(g, v)] \]
NJ Iterative step (part c)

(c) Compute the distances from v to all remaining vertices $i \in N_c$:

\[
d(i, v) = \frac{1}{2}[d(f, i) - d(f, v)] + \frac{1}{2}[d(g, i) - d(g, v)]
\]

Another way to write this:

\[
d(i, v) = \frac{1}{2}[d(f, i) + d(g, i) - d(f, g)]
\]
NJ Termination

Termination

When $n = 3$, the tree topology does not change since we have obtained a binary tree. We still need to run the last iteration though to determine the 3 remaining edge weights. The output is then the tree topology and all edge weights.

$N_c = \{e, v, w\}, \quad |N_c| = 3$
Termination

When $n = 3$, the tree topology does not change since we have obtained a binary tree. We still need to run the last iteration though to determine the 3 remaining edge weights. The output is then the tree topology and all edge weights.

We could “merge” e and w at c, then we would find $d(e,c)$ and $d(w,c)$ in step (b) and find $d(v,c)$ in step (c)

$$N_c = \{e, v, w\}, \quad |N_c| = 3$$
Handout 13 Solution
\(n = 5 \)

\[\begin{array}{ccccc}
A & B & C & D & E \\
1 & 6 & 13 & 15 & 18 \\
\end{array} \]

\[\begin{array}{ccccc}
0 & 1 & 3 & 5 & 0 \\
0 & 2 & 5 & 5 & 0 \\
0 & 5 & 5 & 0 & 0 \\
\end{array} \]

\[\begin{array}{ccccc}
A & B & C & D & E \\
-26 & -22 & -16 & -16 & \\
\end{array} \]

\[\begin{array}{ccccc}
A & B & C & D & E \\
-26 & -22 & -16 & -16 & \\
\end{array} \]

\[d(D, v) = 1 = \frac{1}{2} d(D, E) = \frac{1}{2} \sqrt{(50 - 50)} \]

\[d(E, v) = 1 = \frac{1}{2} d(E, C) = \frac{1}{2} \sqrt{(50 - 50)} \]

\[N = 3 \]

\[N = 3\]
Q-criteria theory and consistency
NJ: is consistent if \(S \) is a tree metric, then \(S' \) (induced tree metric from NJ) is equal to \(S \)
length of tree walk
= 12 + 5 + 9 + 7
= 33

tree walk (Hautain 15)
Q-criteria

Finding f&g that minimize the average total "tree length"

want the tree that minimizes the total "amount of evolution"