The first midterm (March 1 in lab) covers in-class material days 1-12, labs 1-4, reading weeks 1-4 (see below for exceptions about the research papers). You may bring a 1 page (front and back), hand-written "cheat-sheet", but no other notes or resources. You will not need a calculator. I have put vocab in blue.

1. Introduction and Central Dogma
 - Three types of sequences in molecular biology: DNA, RNA, and Protein
 - How do we transition from DNA to RNA? (transcription process, start/stop codons)
 - How do we transition from RNA to Protein? (translation process, 3 bases per amino acid)
 - Do not need to memorize map from codons to amino acids (including start/stop)

2. Genome Assembly
 - High-level next-generation sequencing (NGS) process (obtain short reads, not entire genome)
 - What is the goal of genome assembly? What is the input; what is the output?
 - Vocab: long read, short read, base pair (bp), coverage (+ how to compute coverage)
 - Common variables: \(G \) = length of genome, \(n \) = number of reads, \(L \) = length of each read
 - What are typical values for these common variables?
 - Overlap graph assembly (often called Overlap Layout Consensus (OLC) assembly)
 - How do we detect overlaps between reads? How do we build the overlap graph? What would an ideal overlap graph look like? How can we simplify the overlap graph?
 - What is the runtime of building an overlap graph and why is it prohibitive?
 - What affect do sequencing errors and repeats have on graph-based genome assemblers?
 - De Bruijn Graph (DBG) assembly: how to build and traverse a DBG to create contigs
 - What is a \(k \)-mer and how should we choose it relative to \(L \)?
 - Additional vocab: directed multigraph, in-degree, out-degree, balanced, semi-balanced, Eulerian path/cycle, connected component
 - Two different traversal algorithms: Fleury’s algorithm and the recursive algorithm
 - Time and space requirements of building and traversing a DBG
 - High-level idea (not all the details) of the modifications Velvet uses to make DBGs practical
 - Assembly evaluation: both by N50 and pairwise sequence alignment

3. Pairwise Sequence Alignment
 - What is the goal of sequence alignment? What is the input; what is the output?
 - What is the difference between local and global alignment?
 - Vocab: dynamic programming (DP), homologous, substitution, gap: insertion or deletion
 - Constructing and filling in a dynamic programming table, back-tracing to find the alignment
 - Modifications for global (Needleman-Wunsch) vs. local (Smith-Waterman) alignment
• How do we weight gaps, matches, mismatches? (BLOSUM matrix for proteins)
• Multiple ways to trace back from a given cell vs. multiple cells with max score (local only)
• Modifications to the DP algorithm to produce overlap/containment alignments
• Runtime of Needleman-Wunsch and Smith-Waterman in terms of sequence lengths

4. BWT and Read Mapping

• Why would we not want to use DP when aligning many short reads to a reference genome?
• What is read mapping? What is the input; what is the output?
• What is the Burrows-Wheeler Transform (BWT) of a string S? Why was it originally used?
• How can we recover the original string from the BWT? Why does this process work?
• How much time and space does it take to construct the BWT?
• FM-Index (BWT/$L + \text{occ} + M$), plus additional data structures F and A (suffix array)
• How can we use the FM-Index for exact pattern matching (i.e. the recursive formulas for start point and end point in F)? Why does this work?
• How do we use the suffix array A to find the pattern locations in the original string?
• What are the time and space requirements of error-free read mapping? (in terms of G, L, n)
• High-level idea of how BWA and Bowtie deal with mismatches (errors and variation)
• What does genetic variation represent? Evolutionary process of mutations on tree branches