Outline Sept 8:

- Recap last time
- Continue: type conversion and input
- First programs in atom (using print and main)
- Mathematical operations and math library

Reminders

- Make sure to handin21 for Lab 0 by Sat night!
- Office hours today 3-5pm (Sci. Center 260)
Recap Wednesday
Recap key concepts

• *Variables* as a way to store *values*
Recap key concepts

• **Variables** as a way to store *values*

• **Assignment operator** (=) is a way to change the value of a variable (not symmetric like equals operator in math!)
 • Variable name on the left, expression on the right
Recap key concepts

- **Variables** as a way to store **values**

- **Assignment operator** (=) is a way to change the value of a variable (not symmetric like equals operator in math!)
 - Variable name on the left, expression on the right

- The **type** of a variable is the type of the value it refers to
Recap key concepts

- **Variables** as a way to store *values*

- *Assignment operator* (=) is a way to change the value of a variable (not symmetric like equals operator in math!)
 - Variable name on the left, expression on the right

- The *type* of a variable is the type of the value it refers to

- We can *convert* a variable to a different type, but it does not change the value of the original variable
Types for the first few weeks
Types for the first few weeks

• **int**, examples: 3, 0, -10

• **float**, examples: 7.32, 21.1, -30.0

• **str**, examples: “hello”, ‘hello’, “what is your name?”
Functions from last time
Functions from last time

- **type(...)**
 - *input*: variable or value
 - *output*: the type (*int*, *str*, *float*...)

- **input(...)**
 - *input*: *str* (usually a query)
 - *output*: *str* (whatever the user typed in response to the query)

- **int(...)**
 - *input*: variable or value
 - *output*: input converted to an *int* if possible (error if not possible)

- **str(...)**
 - *input*: variable or value
 - *output*: input converted to a *str* if possible (error if not possible)

- **float(...)**
 - *input*: variable or value
 - *output*: input converted to a *float* if possible (error if not possible)
First programs
Steps for welcome.py

• Run update21

• In /home/[username]/cs21/inclass/week01 there should be a file welcome.py

• From the terminal, run python3 welcome.py, what happens?

• Run atom welcome.py (example of the print function)

• Change atom tab default to 4 (python guideline)

• Modify this program to ask the user for their name

• Print the name in the welcome message too!
Other program to try with a partner

1) Ask the user for their graduation year and the current year, then print out how many years until they graduate.
Key ideas

- We will always use `def main():` and then write main indented
Key ideas

• We will always use `def main():` and then write main indented

• *Expressions* vs. *statements*
 • In the interpreter, the results of expressions are shown
 • In the editor (i.e. in our code) we need to write full statements
Key ideas

• We will always use `def main():` and then write main indented

• *Expressions* vs. *statements*
 • In the interpreter, the results of expressions are shown
 • In the editor (i.e. in our code) we need to write full statements

• *Comments*: use hashtag symbol (#)
Key ideas

• We will always use `def main():` and then write main indented

• *Expressions* vs. *statements*
 • In the interpreter, the results of expressions are shown
 • In the editor (i.e. in our code) we need to write full statements

• *Comments*: use hashtag symbol (`#`)

• User variable names that implicitly show type
Key ideas

• We will always use `def main():` and then write main indented

• *Expressions* vs. *statements*
 • In the interpreter, the results of expressions are shown
 • In the editor (i.e. in our code) we need to write full statements

• *Comments*: use hashtag symbol (#)

• User variable names that implicitly show type

• *print* is very powerful! A way to see what is going on and to give the user valuable information