CSC 390
Topics in Artificial Intelligence

“Unsupervised Machine Learning”

Fall 2016
Prof. Sara Mathieson
Smith College
Outline: 10/27

• Today:
 o Recap Homework 4
 o Hidden Markov Models (HMMs)
 o Viterbi Algorithm
 o Lab 4

• Office Hours today: 4-5pm, Ford 355

• Next time: start mid-semester presentations
 o Email me your paper!
Followups

• Extra materials on Deep Learning and HMMs on Piazza

• Homework 6: we will use a Python package for HMMS

• From notecards:
 o More on PCA, autoencoders, and stats/probability
Homework 4: Elbow plot

Elbow Plot for K-means on NCI dataset (transformed)

$k = 3$
Homework 4: k-means and PCA

Raw Data

Transformed Data
Homework 4: k-means and PCA

PCA on NCI microarray dataset (k=3 on raw data)

PCA on NCI microarray dataset (k=3 on transformed data)

Raw Data

Transformed Data
Homework 4: visualization

PCA on NCI microarray dataset (k=3 on transformed data)
Homework 4: visualization

PCA visualization of K-means with k=3

Credit: Farida
Some of our clusters seem to correspond to the labels of the data, but there are some surprises. The blue cluster contains almost all the melanoma samples, but also a few breast cancer samples. The leukemia samples are all in the far right of the green cluster, while the colon cancer samples are at the top, suggesting this cluster should perhaps be broken up. The red cluster also looks like it contains some sub-clusterings (renal, ovarian, CNS).

However, the tissue type is not the only thing that determines a gene expression profile (genetics being another important factor). In this particular real-world example, it might make more sense to focus on the groupings themselves (which are based on genes, which could respond to treatment) and not try to mold the clusterings to fit the labels.