1. Coordinate systems and pixels
 - Be able to use different coordinate systems (origin location, axis orientation, etc)
 - Basics of pixel coloring (RGB) within a coordinate system
 - How this is done in raster for a PPM file
 - Review: Lab 1 (checkboard, odd/even pixel coloring, other simple coloring loops)

2. Lines
 - Line equations (explicit, implicit, parametric)
 - Slopes, line intersections, line segments, etc
 - Line drawing algorithm between two points (what if $|m| > 1$?)
 - Line clipping algorithm
 - Review: HW1, HW4, Lab 2

3. Polygons
 - Convex vs. concave
 - Regular polygons and basic trig (HW2)

4. Fill
 - Flood fill algorithm (recursive), review: Lab 3, Slides 3
 - Sweep fill algorithm for convex polygons (HW2)
 - Basic idea of fill for concave polygons

5. Transformations
 - Rotate, translate, scale, shear, and reflect (last two in less detail)
 - Be able to draw out what a given transformation does
 - 2D matrix form for all transformations above
 - Why do we need 3x3 matrices for some 2D transformations?
 - Matrix multiplication for transformations and their compositions
 - Commuting properties for different combinations of transformations
 - Review: HW3, Transformation notes, Lab 4, Slides 4

6. OpenGL
 - OpenGL workflow
 - 2D points, lines, shapes (all primitives), and coloring them
 - Transformations and animations in OpenGL (HW4)

7. Curves
 - Mathematics of splines and Bézier curves
 - Be able to draw out what curves would look like from control points
 - Recursive definition of Bézier curves
Pair programming partners (random) for Lab 9

- Marina & Emma
- Sophie S. & Kaylynn
- Marissa & Sarah
- Jen & Kassandra
- Zhaoyan & Em
- Bri & Farida
- Laura & Isabel
- Tam & Yvaine
- Grace & Jessica
- Sharon & Sophie H.
- Bianca & Julia
- Stone & Elyse
- Dejia & Chloe