labs: project updates (5pts)

attendance is mandatory

• individual contributions
• previous goal
• specificity and scope of next goal
progress report due
1:00 am Monday, 11/16

this is a hard deadline:
no late days allowed!

progress presentations moved to Nov 23
(3-5 slides)
intro to recommender systems
Recommender Systems

- collaborative filtering
- content-based filtering

amazon

netflix

pandora
preliminaries
Clustering
Clustering
Hierarchical Clustering
k-means Clustering

- pick k initial points (*means*)
- for every remaining point x
 - assign x to the cluster with the closest mean
- recompute means
k-means Clustering
k-means Clustering
measuring similarity and distance
Jaccard Similarity

\[
\text{sim}(S, T) = \frac{|S \cap T|}{|S \cup T|}
\]

for given sets \(S \) and \(T \)
Jaccard Similarity
Distance Measures

distance \(d(x,y) \) satisfies

- \(d(x,y) \geq 0 \) with equality exactly when \(x = y \)
- \(d(x,y) = d(y,x) \)
- triangle inequality \(d(x,y) \leq d(x,z) + d(z,y) \)

example:

- **Jaccard Distance** = 1 - Jaccard Similarity
- \(d(X,Y) = 1 - \text{sim}(X, Y) \)

 \[= 1 - \frac{|X \cap Y|}{|X \cup Y|} \]
Cosine Distance

- treat points as “directions”
- distance is the angle between them (0-180)
Cosine Distance

distance $d(x,y)$ satisfies

- $d(x,y) \geq 0$ with equality exactly when $x = y$
- $d(x,y) = d(y,x)$
- triangle inequality $d(x,y) \leq d(x,z) + d(z,y)$

$$\theta \leq \theta_1 + \theta_2$$
Cosine Similarity

- treat points as “directions”
- similarity is $\cos \theta$ and lies between -1 and 1
User-user CF

idea: find users with high agreement on rated items

\[p_{u,i} = \bar{r}_u + \sum_{u' \in N} \frac{s(u, u')(r_{u',i} - \bar{r}_{u'})}{\sum_{u' \in N} \left| s(u, u') \right|} \]