Homework 1

Problem 0.5

For a set \(S \), the power set of \(S \) denoted \(\mathcal{P}(S) \) contains \(2^{|S|} \) elements. The most straightforward technique is to show that a bijection exists between bit strings of length \(|S| \) and the elements of \(\mathcal{P}(S) \).

That is, we need to show that for any set \(S \)

- For any bit string of length \(|S| \) we can construct a unique subset of \(S \)
- For any subset of \(S \) we can construct a unique bit string of length \(|S| \)

To see this, assign an (arbitrary) order to the elements of \(S = \{s_1, \ldots, s_{|S|}\} \).
Now, consider any bit string of length \(|S| \), \(b = b_1 \ldots b_{|S|} \). Construct set \(A \) as follows:

\[
\forall i \quad s_i \in A \iff b_i = 1
\]

Note that \(A \subseteq S \) by construction.

Now, note that any subset \(A \) of \(S \) can be used to define a bit string \(b = b_1 \ldots b_{|S|} \) where

\[
b_i = \begin{cases}
0 & \text{if } s_i \in A \\
1 & \text{otherwise}
\end{cases}
\]

Thus we have defined a bijection between bit strings of length \(|S| \) and the elements of \(\mathcal{P}(S) \).

An alternative proof is by induction on the number of elements in \(S \). \(\square \)

Homework 2

Problem 1.38

Here we had to show that

- all-NFAs recognize the class of regular languages
- NFAs recognize the class of languages defined by all-NFAs
Suppose A is a regular language. This means that there is a DFA D such that $L(D) = A$. But this means that every branch of the DFA accepts any string in A. Thus this DFA can be run as an all-NFA for A.

Suppose A is a language such that there is an all-NFA N such that $L(N) = A$. We need to show that we can construct an equivalent NFA (or DFA) that also recognizes this language. The issue here is that if we simply run the all-NFA as an NFA there will be strings not in A that could be accepted as well. We will simulate this all-NFA by an equivalent DFA. The construction is very similar to the construction of an equivalent DFA from an NFA.

Given all-NFA $N = (Q, \Sigma, \delta, q_0, F)$ define a DFA $D = (Q', \Sigma, \delta', q'_0, F')$ where, as before, $Q' = \mathcal{P}(Q)$, δ' is the epsilon-closure of transitions from the elements of the state-set, $q'_0 = \{q_0\}$. However, the set of accept states $F' = \mathcal{P}(F)$. This is because the DFA should accept only when the simulated NFA ends all its branches in accept states. In other words, every branch ends in some $q_f \in F$.

Problem 1.42

This problem asks you to show that the class of regular languages is closed under shuffle. Suppose you are given regular languages A and B. This means that DFAs $D_A = (Q_A, \Sigma, \delta_A, q_0^A, F_A)$ and $D_B = (Q_B, \Sigma, \delta_B, q_0^B, F_B)$ exist so that $L(D_A) = A$ and $L(D_B) = B$. Define a new NFA $N = (Q, \Sigma, \delta, q_0, F)$ that accepts strings that are in the shuffle of A and B by nondeterministically choosing to simulate one of the DFAs on each symbol in the input string.

That is, the set of states of N is the cross product of the states of D_A and D_B, $Q = Q_A \times Q_B$. The start state of N is the pair of start states of D_A and D_B, $q'_0 = (q_0^A, q_0^B)$. The accept states of N is the pair of states where the first element is an accept state of D_A and the second element is an accept state of D_B, $F = \{(q_{f_A}, q_{f_B}) \mid q_{f_A} \in F_A \text{ and } q_{f_B} \in F_B\}$. On input symbol $x \in \Sigma$, $\delta((q_A, q_B), x) = \{\delta_A(q_A, x), q_B), (q_A, \delta_B(q_B, x))\}$. That is the NFA N nondeterministically simulates either the DFA D_A or the DFA D_B.

Homework 3

Problem 1.46(c)

Let $A = \{w \mid w \in \{0, 1\}^* \text{ is not a palindrome}\}$.

Consider the complement of A, the language $\bar{A} = \{w \mid w \in \{0, 1\}^* \text{ is a palindrome}\}$. Since the class of regular languages is closed under complementation, it suffices to show that \bar{A} is not regular. Suppose for a contradiction that \bar{A} is regular. Consider the string $s = 0^p1^p \in \bar{A}$. Clearly, $|s| > p$. The pumping lemma for regular languages says that we can write $s = xyz$ so that $xy^iz \in \bar{A}$ for all $i \geq 0$ with $|y| > 0$ and $|xy| \leq p$. Since $|xy| \leq p$ and $|y| > 0$, it must be the case that $y = 0^k$ for some $k > 0$. But then $xz \notin \bar{A}$ since it has the form 0^j1^p for some $j < p$. This is a contradiction. Hence, \bar{A} is not regular and neither is A.
Problem 1.53
Consider the string \(1^p = 0 + 1^p \in ADD \) and use an argument similar to the previous problem.

Homework 4: Practice Problems

Problem 2.6(b)
To define a CFG for the complement of the language \(A = \{a^n b^n | n \geq 0\} \) we first split the language \(\bar{A} \) into 3 components \(A_1 = \{a^i b^j | i > j\} \), \(A_2 = \{a^i b^j | i < j\} \) and \(A_3 = \Sigma^* b \Sigma^* a \Sigma^* \) so that \(\bar{A} = A_1 \cup A_2 \cup A_3 \).

The grammar for \(A_1 \) can be written as
\[
S_1 \rightarrow aS_1 b \mid aS_1 \mid a
\]
The grammar for \(A_2 \) can be written as
\[
S_2 \rightarrow aS_2 b \mid S_2 b \mid b
\]
The grammar for \(A_3 \) can be written as
\[
S_3 \rightarrow XbXaX \\
X \rightarrow aX \mid bX \mid \epsilon
\]
The grammar for \(\bar{A} \) can be written as
\[
S \rightarrow S_1 \mid S_2 \mid S_3
\]

Note on Practice Problem 1.54(c)
This problem shows that there are languages that are not regular that still satisfy the conditions of the pumping lemma. This is not a contradiction because the statement is that the pumping lemma necessarily holds for all regular languages.

It is important to be clear that the following two statements are not equivalent:

- If a language is regular then the pumping lemma holds
- If the pumping lemma holds for a language then it is regular