Pumping Lemma: Context Free Languages

If A is a context free language then there is a pumping length p st if $s \in A$ with $|s| \ge p$ then we can write s = uvxyz so that

- $\forall i \ge 0 \ uv^i x y^i z \in A$
- |vy| > 0
- $|vxy| \le p$

To prove $\{a^nb^nc^n | n \ge 0\}$ is *not* context free using the Pumping Lemma

- Suppose $\{a^n b^n c^n \mid n \ge 0\}$ is context free.
- Let $s = a^p b^p c^p$
- The pumping lemma says that for some split s = uvxyz all the following conditions hold
 - |vy| > 0
 - uvvxyyz ∈ A

Case 1: both v and y contain at most one type of symbol Case 2: either v or y contain more than one type of symbol

To prove $\{a^{i}b^{j}c^{k} | 0 \le i \le j \le k\}$ is *not* context free using the Pumping Lemma

- Suppose $\{a^{i}b^{j}c^{k} \mid 0 \le i \le j \le k\}$ is context free.
- Let $s = a^p b^p c^p$
- The pumping lemma says that for some split s = uvxyz all the following conditions hold
 - uvvxyyz ∈ A
 - |vy| > 0
- Case 1: both v and y contain at most one type of symbol

Case 2: either v or y contain more than one type of symbol

To prove $\{a^{i}b^{j}c^{k} \mid 0 \le i \le j \le k\}$ is *not* context free using the Pumping Lemma

- Let $s = a^p b^p c^p$
- *some* split **s** = **uvxyz**
- |vy| > 0

Case 1: both v and y contain at most one type of symbol

- (i) a's not included \Rightarrow uxz \notin A
- (ii) b's not included
 - (i) a's included \Rightarrow uvvxyyz \notin A
 - (ii) C's included \Rightarrow uxz \notin A
- (iii) **c**'s not included
 - (i) a's included \Rightarrow uvvxyyz \notin A
 - (ii) b's included \Rightarrow uvvxyyz \notin A

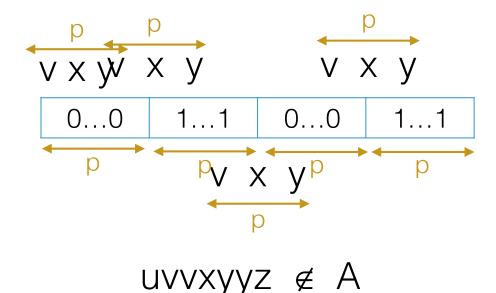
To prove **{ww I w** \in **{0,1}**^{*}**}** is *not* context free using the Pumping Lemma

- 1. Suppose $\{ww \mid w \in \{0,1\}^*\}$ is context free
- 2. Call its pumping length p
- 3. Find string $s \in A$ with $|s| \ge p$. Let $s = 0^{p}10^{p}1$
- 4. The pumping lemma says that for *some* split s = uvxyz all the following conditions hold
 - $\forall i \ge 0 \ uv^i x y^i z \in A$
 - |vy| > 0

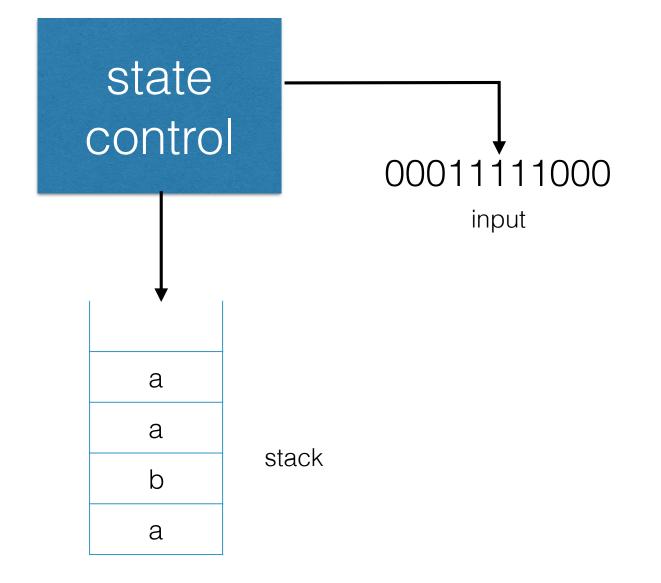
To prove {ww | $w \in \{0,1\}^*$ } is *not* context free using the Pumping Lemma

- 1. Suppose $\{ww \mid w \in \{0,1\}^*\}$ is context free
- 2. Call its pumping length p
- 3. Find string $s \in A$ with $|s| \ge p$. Let $s = 0^{p}1^{p}0^{p}1^{p}$
- 4. The pumping lemma says that for *some* split s = uvxyz all the following conditions hold
 - $\forall i \ge 0 \ uv^i x y^i z \in A$
 - |vy| > 0

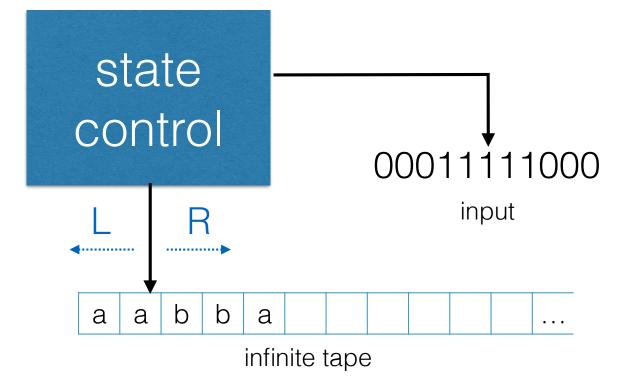
To prove **{ww I w** \in **{0,1}**^{*}**}** is *not* context free using the Pumping Lemma



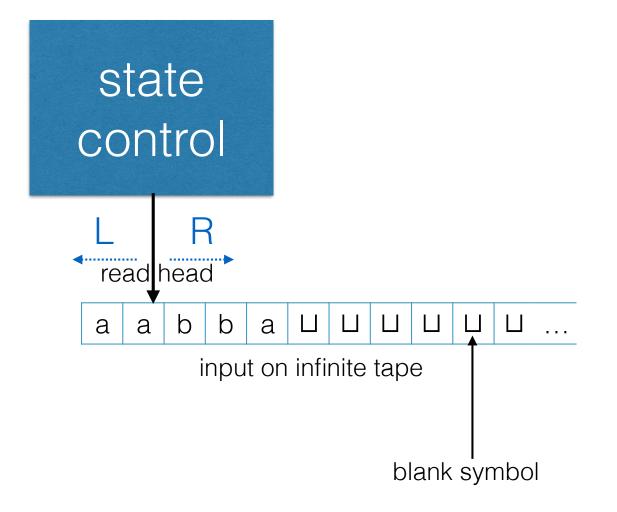
Pushdown Automata (PDA)



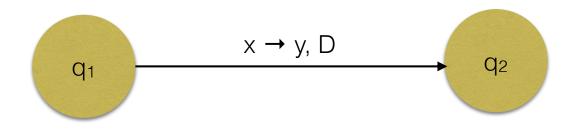
Turing Machines



Turing Machines



Turing Machines (TM)

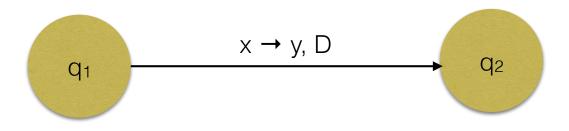


If the current tape symbol is x then

- transition from q₁ to q₂
- replace x with y
- advance tape head in direction $D \in \{L, R\}$

Turing Machines (TM)

special case 1

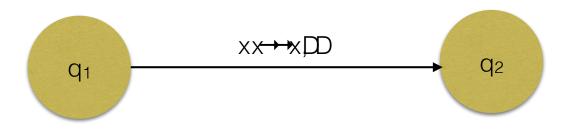


If the current tape symbol is x then

- transition from q₁ to q₂
- advance tape head in direction $D \in \{L, R\}$
 - if the tape head is on first cell, and D = L, stay put

Turing Machines (TM)

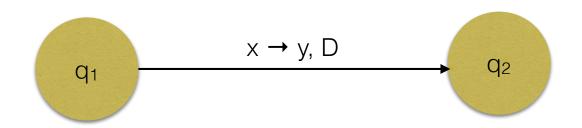
special case 2



If the current tape symbol is x then

- transition from q₁ to q₂
- advance tape head in direction $D \in \{L, R\}$

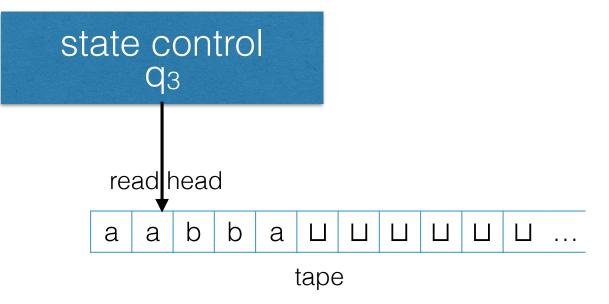
Turing Machines (TM) does not contain u halting states $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$



see complete formal definition 3.3 in text

Configuration of a TM

- current state
- current tape contents
- current head location



a q₃ a b b a

Possible outcomes of a TM on an input string

- halt
 - accept
 - reject
- loop

When does a TM accept a string?

if it eventually enters the q_{accept} state

recall that q_{accept} is a halting state

When does a TM reject a string?

if it eventually enters the *q_{reject}* state
if it never halts