Pumping Lemma: Regular Languages

If A is a regular language, then there is a pumping length p st if $s \in A$ with $|s| \ge p$ then we can write s = xyzso that

- $\forall i \ge 0 \ xy^i z \in A$
- |y| > 0
- |xy| ≤ p

To prove A is *not* regular using the Pumping Lemma

- 1. Suppose A is regular
- 2. Call its pumping length p
- 3. Find string $s \in A$ with $|s| \ge p$
- 4. The pumping lemma says that for *some* split s = xyz *all* the following conditions hold
 - $\forall i \ge 0 \ xy^i z \in A$
 - |y| > 0
 - |xy| ≤ p
- 5. Goal: Find a string that violates the lemma

Pumping Lemma: Context Free Languages

If A is a context free language then there is a pumping length p st if $s \in A$ with $|s| \ge p$ then we can write s = uvxyz so that

- $\forall i \ge 0 \ uv^i x y^i z \in A$
- |vy| > 0
- $|vxy| \le p$

To prove A is *not* context free using the Pumping Lemma

- 1. Suppose A is context free
- 2. Call its pumping length p
- 3. Find string $s \in A$ with $|s| \ge p$
- 4. The pumping lemma says that for *some* split s = uvxyz all the following conditions hold
 - $\forall i \ge 0 uv^i xy^i z \in A$
 - |vy| > 0
 - $|vxy| \le p$
- 5. Goal: Find a string that violates the lemma

To prove $\{a^nb^nc^n \mid n \ge 0\}$ is *not* context free using the Pumping Lemma

- 1. Suppose $\{a^nb^nc^n \mid n \ge 0\}$ is context free
- 2. Call its pumping length p
- 3. Find string $s \in A$ with $|s| \ge p$. Let $s = a^p b^p c^p$
- 4. The pumping lemma says that for *some* split s = uvxyz all the following conditions hold
 - $\forall i \ge 0 \ uv^i x y^i z \in A$
 - |vy| > 0
 - $|vxy| \le p$

To prove $\{a^nb^nc^n \mid n \ge 0\}$ is *not* context free using the Pumping Lemma

- Suppose $\{a^n b^n c^n \mid n \ge 0\}$ is context free.
- Let $s = a^p b^p c^p$
- The pumping lemma says that for some split s = uvxyz all the following conditions hold
 - |vy| > 0
 - uvvxyyz ∈ A

Case 1: both v and y contain at most one type of symbol Case 2: either v or y contain more than one type of symbol To prove $\{a^{i}b^{j}c^{k} | 0 \le i \le j \le k\}$ is *not* context free using the Pumping Lemma

- 1. Suppose $\{a^i b^j c^k \mid 0 \le i \le j \le k\}$ is context free
- 2. Call its pumping length p
- 3. Find string $s \in A$ with $|s| \ge p$. Let $s = a^p b^p c^p$
- 4. The pumping lemma says that for *some* split s = uvxyz all the following conditions hold
 - $\forall i \ge 0 \ uv^i x y^i z \in A$
 - |vy| > 0
 - $|vxy| \le p$

To prove $\{a^{i}b^{j}c^{k} | 0 \le i \le j \le k\}$ is *not* context free using the Pumping Lemma

- Suppose $\{a^{i}b^{j}c^{k} \mid 0 \le i \le j \le k\}$ is context free.
- Let $s = a^p b^p c^p$
- The pumping lemma says that for some split s = uvxyz all the following conditions hold
 - $uvvxyyz \in A$
 - |vy| > 0
- Case 1: both v and y contain at most one type of symbol

Case 2: either v or y contain more than one type of symbol

To prove $\{a^{i}b^{j}c^{k} \mid 0 \le i \le j \le k\}$ is *not* context free using the Pumping Lemma

- Let $s = a^p b^p c^p$
- *some* split **s** = **uvxyz**
- |vy| > 0

Case 1: both v and y contain at most one type of symbol

- (i) a's not included \Rightarrow uxz \notin A
- (ii) b's not included
 - (i) a's included \Rightarrow uvvxyyz \notin A
 - (ii) C's included \Rightarrow uxz \notin A
- (iii) **c**'s not included
 - (i) a's included \Rightarrow uvvxyyz \notin A
 - (ii) b's included \Rightarrow uvvxyyz \notin A