The Class \mathbb{P}

\[\mathbb{P} = \bigcup_{k} \text{TIME}(n^k) \]
RELPRIME = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime} \}

RELPRIME \in P
PATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a path from } s \text{ to } t \}\}

PATH \in P
Def: \(\text{NTIME}(t(n)) \)

set of all languages decidable by an \(O(t(n)) \) time nondeterministic TM

\[\bigcup_{k} \text{NTIME}(n^k) \]
HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ has a Hamiltonian path (that visits each node exactly once) from } s \text{ to } t \\}
HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ has a Hamiltonian path (that visits each node exactly once) from } s \text{ to } t \}
\[
\text{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a path from } s \text{ to } t \} \\
\text{PATH} \in P
\]
G is a directed graph
Does it have a Hamiltonian path from s to t?
G is a directed graph
Does it have a Hamiltonian path from s to t?

Step 1: Mark s
Step 2: Repeat until no additional node is marked
1. Scan through all edges
2. Locate edge of form (marked, unmarked)
3. Mark unmarked node
Step 3: Check if t is marked.
\text{HAMPATH} = \{ \langle G, s, t \rangle \mid G \text{ has a Hamiltonian path from } s \text{ to } t \} \\

\textbf{Finding} a Hamiltonian path seems to be \textit{hard} \\
Given a path, \textit{easy} to \textbf{check} that it is
\begin{itemize}
 \item valid
 \item Hamiltonian
\end{itemize}
The Class \textbf{NP}

class of languages that have \textit{polynomial time verifiers}
Def: (polynomial) verifier

Language A with verifier V

$A = \{ w \mid \exists c \text{ such that } V \text{ accepts } \langle w, c \rangle \}$

V is a decider that runs in $O(n^k)$ time

Certificate
\[\text{HAMPATH} = \{ \langle G, s, t \rangle \mid G \text{ has a Hamiltonian path from } s \text{ to } t \} \]

\[\text{HAMPATH} \in \text{NP} \]
HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ has a Hamiltonian path from } s \text{ to } t \}\}

certificate is the Hamiltonian path from \(s \) to \(t \)
A language is in NP iff it is decided by some nondeterministic polynomial time TM has a polytime verifier.
polytime NTM for HAMPATH

N: On input \(\langle G, s, t \rangle \)
1. Nondeterministically generate a permutation of \(n \) nodes of \(G \)
2. Check if the first node is \(s \) and the last node is \(t \)
 2.1. If not, \textbf{reject} this branch
3. Check if every adjacent node pair is connected by an edge
 3.1. If not, \textbf{reject} this branch
3.2. If yes, \textbf{accept}
If a language is in NP then it is decided by some nondeterministic polynomial time TM has a polytime verifier.
If a language is in \textit{NP} then it is decided by some \textit{nondeterministic polynomial time} TM has a polytime verifier.
Given: $A \in \text{NP}$ has polytime verifier V

Construct: nondeterministic polytime TM N that decides A

V runs in $O(n^k)$

N: On input w

1. Nondeterministically pick a string c in Σ^n
2. Run V on $\langle w, c \rangle$.
 2.1. If it accepts, accept
 2.2. If it rejects, reject this branch
If a language is decided by some nondeterministic polynomial time TM, then it is in NP and has a polytime verifier.
Given: nondeterministic polytime TM N that decides A

Construct: polytime verifier V for A

Every branch of N halts in $O(n^k)$

V: On input $\langle w, c \rangle$

1. Deterministically simulate the branch of N indicated by c
 1.1. If it accepts, accept
 1.2. If it rejects, reject